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Abstract: In the present paper, the thermoeconomic optimization of an irreversible

solar-driven heat engine model has been carried out by using finite-time/finite-size

thermodynamic theory. In our study we take into account losses due to heat transfer across

finite time temperature differences, heat leakage between thermal reservoirs and internal

irreversibilities in terms of a parameter which comes from the Clausius inequality. In

the considered heat engine model, the heat transfer from the hot reservoir to the working

fluid is assumed to be Dulong-Petit type and the heat transfer to the cold reservoir is

assumed of the Newtonian type. In this work, the optimum performance and two design

parameters have been investigated under two objective functions: the power output per unit

total cost and the ecological function per unit total cost. The effects of the technical and

economical parameters on the thermoeconomic performance have been also discussed under

the aforementioned two criteria of performance.
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1. Introduction

In 2000, Sahin et al. [1] studied the thermoeconomic performance of an endoreversible solar-driven

heat engine. In this study, they considered that the heat transfer from the hot reservoir to the working

fluid is dominated by radiation because radiation heat transfer plays a key role in the collector ambient

heat loss mechanism, while the mode of heat transfer from the working fluid to the cold reservoir is

given by a Newtonian heat transfer law. Sahin et al. [1] calculated the optimum temperatures of the

working fluid and the optimum efficiency of the engine operating at maximum power conditions. Later,

Sahin and Kodal [2], applied this procedure to study the thermoeconomics of an endoreversible heat

engine in terms of the maximization of a profit function defined as the quotient of the power output

and the annual investment cost. Recently, Barranco-Jiménez et al. [3], studied the optimum operation

conditions of an endoreversible heat engine with different heat transfer laws at the thermal couplings but

operating under maximum ecological function conditions, and more recently, Barranco-Jiménez et al. [4]

also studied the thermoeconomic optimum operation conditions of a solar-driven heat engine. In these

studies, Barranco-Jiménez et al. considered three regimes of performance: The maximum power regime

(MPR) [5–7], the maximum efficient power [8,9] and the maximum ecological function regime (MER)

[10,11]. In this work, we study the thermoeconomics of an irreversible heat engine by considering

further with losses due to heat transfer across finite time temperature differences [12–15], heat leakage

between thermal reservoirs [16–24] and internal irreversibilities [25–27] in terms of a parameter which

comes from the Clausius inequality. In our study we use two regimes of performance: The maximum

power regime, and the so-called ecological function regime. Besides, in our thermoeconomical analysis,

conductive-convective and radiative terms are considered by means of a heat transfer law of the

Dulong-Petit type [28,29]. Some of our numerical results are compared with data stemming from three

power plants [7,30]. The article is organizes as follows: In Section 2 we present the heat engine model; in

Section 3 the numerical results and discussion are presented; finally in Section 4 we give the conclusions.

2. Theoretical Model

The considered irreversible solar-driven heat engine operates between a heat source of temperature

TH (the collector) and a heat sink of temperature TL (cooling water), see Figure 1a. The temperatures of

the working fluid exchanging heat with the reservoirs at TH and TL are TX and TY , respectively. A T-S

diagram of the model including heat leakage, finite time heat transfer and internal irreversibilities is also

shown in Figure 1b. The rate of heat leakage Q̇LK from the hot reservoir at temperature TH to the cold

reservoir at temperature TL with thermal conductance γ is given by,

Q̇LK = γ (TH − TL)
5
4 = ξUHAH (TH − TL)

5
4 , (1)

where γ is the internal conductance of the heat engine and ξ denotes the ratio of the internal conductance

with respect to the hot-side convection heat transfer coefficient and heat transfer area, that is, ξ = γ
UHAH

[27]. The 5/4 exponent is usual in a Dulong-Petit heat transfer law [28]. The rate of heat flow Q̇H from

the hot source to the heat engine is given by,

Q̇H = UHAH (TH − TX)
5
4 , (2)
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where UH is the hot side heat transfer coefficient and AH is the heat transfer area of the hot side heat

exchanger. Equations (1) and (2) are of the Dulong-Petit type, which include conductive-convective

and radiative effects [28], instead of only to use a Stefan-Boltzmann law, which is appropriate for space

applications [11], where the effect of atmospheric gases is not present. On the other hand, a Newtonian

heat transfer is assumed as the main mode of heat transfer to the low temperature reservoir, therefore the

heat flux rate Q̇L from the heat engine to the cold reservoir can be written as,

Q̇L = ULAL (TY − TL) , (3)

where UL is the cold side heat transfer coefficient and AL is the heat transfer area of the cold side heat

exchanger. Then the total heat rate Q̇HT transferred from the hot reservoir is,

Q̇HT = Q̇H + Q̇LK = UHAH (TH − TX)
5
4 + ξUHAH (TH − TL)

5
4 , (4)

and the total heat rate Q̇LT transferred to the cold reservoir is,

Q̇LT = Q̇L + Q̇LK = Q̇L = ULAL (TY − TL) + ξUHAH (TH − TL)
5
4 . (5)

Applying the first law of thermodynamics, the power output is given by,

W = Q̇HT − Q̇LT = Q̇H − Q̇L = UHAH (TH − TX)
5
4 − ULAL (TY − TL) . (6)

Applying the second law of thermodynamic to the irreversible part of the model we get,

∮ dQ

T
=

Q̇H

TX

− Q̇L

TY

< 0. (7)

One can rewrite the inequality in Equation (7) as,

Q̇H

TX

= R
Q̇L

TY

, (8)

where R is the so-called non-endoreversibility parameter [32,33]. Substituting Equations (2) and (3) into

Equation (8), a relationship between TY and TX is obtained as,

TY

TL

=
RAR

RAR − β (1−θ)
5
4

θ

; (9)

where θ = TX

TH
, AR and β are the ratios of the heat transfer areas and the heat conductance parameter

respectively, and are defined as,

AR =
AL

AH

, (10)

and

β =
UH

UL

T
1
4
H . (11)

These two parameters can be taken as design parameters. The thermal efficiency of the irreversible heat

engine is,

η = 1− Q̇LT

Q̇HT

=
Q̇H − Q̇L

Q̇H + Q̇LK

. (12)
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Figure 1. Schematic diagram of the irreversible heat engine and its T − S diagram [31].
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In thermoeconomic analysis of power plant models, an objective function is defined in terms of

a characteristic function (power output [6,31,34], ecological function [3,10,29], etc.) and the cost

involved in the performance of the power plant. In his early paper on this issue, De Vos [6] studied

the thermoeconomics of a Novikov power plant model in terms of the maximization of an objective

function defined as the quotient of the power output and the performing costs of the plant. In that paper,

De Vos considered a function of costs with two contributions: The cost of the investment which is

assumed as proportional to the size of the plant and the cost of the fuel consumption which is assumed

to be proportional to the quantity of heat input in the Novikov model. Analogously, Sahin and Kodal

made a thermoeconomic analysis of a Curzon and Ahlborn [5] model in terms of an objective function

which they defined as power output per unit total cost taking into account both the investment and

fuel costs [34], but assuming that the size of the plant can be taken as proportional to the total heat

transfer area, instead of the maximum heat input previously considered by De Vos [6]. Following the

Sahin et al. procedure [31], the objective function has been defined as the power output per unit

investment cost, because a solar driven heat engine does not consume fossil fuels. In order to optimize

power output per unit total cost, the objective function is given by [31],

F =
W

Ci

, (13)

where Ci refers to annual investment cost. The investment cost of the plant is assumed to be proportional

to the size of the plant. The size of the plant can be proportional to the total heat transfer area. Thus, the

annual investment cost of the system can be written as [31],

Ci = aAH + bAL, (14)

where the investment cost proportionality coefficients for the hot and cold sides a and b respectively are

equal to the capital recovery factor times investment cost per unit heat transfer area, and their dimensions
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are ncu/(year ·m2), ncu being the national current unity. By using Equations (2), (6), (9), (13) and (14),

we get a normalized expression for the objective function associated to the power output given by [31],

Fmp =
Ẇ

C
=

τ(1− θ)
1
4 − AR

β

(
TY

TL
− 1

)
AR

β
(1−f

f
) + 1

, (15)

where τ = TH

TL
and the parameter f , is the relative investment cost of the hot size heat exchanger defined

as [31],

f =
a

a+ b
. (16)

In Figure 2a, we depict the objective function given by Equation (15) versus θ, for several values of the

parameter R. In Figure 2b we show the function Fmp for several values of the parameter AR.

Figure 2. Variation of the thermoeconomic objective function Fmp respect to θ = TX

TH
, for

(a) different values of the parameter R with AR = 1, and for (b) several values of AR with

R = 1.
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For our thermoeconomic optimization approach, we define another objective function in terms of the

so-called ecological function [10,29], divided by the annual investment cost, that is, FE = W−TLΣ
Ci

, where

Σ is the total entropy production of the engine model. Analogously to Equation (15), the normalized

objective function associated to the ecological function is given by,
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FE =
bFE

ULTL

=
1

1 + AR(1−f)
f

[(1− θ)5/4(τ + 1)− ξ(τ − 1)(
τ − 1

τ
)5/4 −

2

[
AR

β

(
TY

TL

− 1
)]

− (1− θ)5/4

θ
+

AR

β

(
1− TL

TY

)
]. (17)

And, by using Equations (1–3), the thermal efficiency, η, of the irreversible heat engine can be

expressed by,

η =
τβ(1− θ)

5
4 − AR

(
TY

TL
− 1

)
τβ(1− θ)

5
4 + ετ

(
τ−1
τ

) 5
4

. (18)

In Equation (17) we have applied the second law of thermodynamics to calculate the total entropy

production given by Σ = Q̇L

TL
− Q̇H

TH
+ QH

Tx
− QL

Ty
− QLK

TH
+ QLK

TL
(see Figure 1). The dimensionless

thermoeconomic objective functions [Equations (15) and (17)], can be plotted with respect to

θ = TX/TH , for given values of AR and f as shown in Figures 2a and 2b, and Figures 3a and 3b

for the cases of the maximum power output and maximum ecological function conditions, respectively.

In all cases we use τ = 4, as in [31], where TL ≈ 300K and therefore TH ≈ 1200K, this value of τ is for

comparison with [31], however a more realistic value of TH could be of the order of 431K [7], which is

the effective sky temperature stemming from the dilution of solar energy.

Figure 3. Variation of the thermoeconomic objective function FE respect to θ = TX

TH
, for

(a) different values of the parameter R with AR = 1, and for (b) several values of AR with

R = 0.8.
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As it could be seen from Figures 2a–3b, there is a value of θ that maximizes the objective functions

for given f , AR and τ values. In Figure 4, we show the comparison of the aforementioned two

objective functions. Since the two objective functions and thermal efficiency depend on the working

fluid temperatures (TX , TY ), the objective functions given by Equations (15) and (17) can be maximized

with respect to TX or TY , that is, we calculate dF
dθ
|θ=θ∗ = 0, the θ∗ values obtained give us the maximum

values for Fmp and FE functions, respectively. This optimization procedure has been numerically carried

out in the next section [3,31].

Figure 4. Comparison of both the thermoeconomic objective functions, Fmp and FE , respect

to θ = TX

TH
, for (a) different values of the parameter R and for (b) several values of AR.
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3. Numerical Results and Discussion

We can observe from Figures 2 and 3 that the maximum thermoeconomic objective functions (Fmp

and FE) diminish while the corresponding optimum hot working fluid temperatures shift towards

TH when the internal irreversibility parameter R decreases. On the other hand, the thermoeconomic

objective function at MER is less than the thermoeconomic objective function at MPR (see Figure 4).

In Figures 5 and 6, for both MPR and MER cases, the variation of the dimensionless thermoeconomic

objective functions with respect to thermal efficiency for several values of R, β, AR, and f are presented.

From Figures 5a–5d, we see that the loop shaped curves become smaller as f , β and AR decrease. We

can also see that the maximum thermal efficiency is independent of f values, while the maximum Fmp

(or FE), decreases for decreasing f values (see Figures 5d and 6d).
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Figure 5. Variations of the dimensionless thermoeconomic objective function Fmp, with

respect to thermal efficiency for various R (a), β (b), AR (c) and f (d) values, respectively.

(ξ = 0.02).
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Figure 6. Variations of the dimensionless thermoeconomic objective function FE , with

respect to thermal efficiency for various R (a), β (b), AR (c) and f (d) values, respectively.

(ξ = 0.02).
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In Figure 7 we show the variation of the maximum dimensionless thermoeconomic objective functions

(Fmax, for both MPR and MER cases) with respect to the ratio AR = AL

AH
for different values of the

parameter R (see Figure 7a) and for several values of the temperature ratio τ = TH

TL
(see Figure 7b).

We can observe in Figure 7, for both MPR and MER, that as AR increases, Fmax increases to its peak

value, and then smoothly decreases. We can also observe that Fmax increases and the optimal AR value

considerably decreases for increasing R and τ values.

Figure 7. Variation of the two maximum thermoeconomic objective functions with respect

to AR for: (a) two values of R with τ = 4, and (b) for several values of τ with R = 0.8. In

both cases, β = 1, f = 0.7 and ξ = 0.02.
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In Figure 8, we show the optimal thermal efficiencies for both MPR and MER cases. In this figure,

we can observe that the optimal thermal efficiencies under MER (for all values of the parameter R, see

Figure 8a) and for several values of the parameter τ , see Figure 8b) are bigger than the optimal thermal

efficiencies at MPR. Besides, these optimal efficiencies satisfy the following inequality:

ηC > ηMER
opt > ηMPR

opt > ηCA, (19)

where the subscripts C and CA refer to Carnot and Curzon-Ahlborn respectively. The previous

inequality was recently obtained by Barranco-Jiménez et al. for the case of an endoreversible model

of a solar driven-heat engine [4].
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Figure 8. Optimal thermal efficiencies vs. AR for the two regimes. (a) For three values

of R with τ = 4 and (b) For three values of τ with R = 0.8. In both cases, β = 1,

f = 0.7 and ξ = 0.02 (these optimal thermal efficiencies were obtained by substituting θ∗ in

Equation (18)).
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On the other hand, regarding actual photothermal converters, their thermal efficiencies are not easily

available in the technical literature. A reported case is that corresponding to the solar power plant

Eurelios at Adrano (Italy) [7]. The experimental efficiency for this plant is around 0.13, which is smaller

than the theoretical value (around 0.68) given by the De Vos model [7]. For the model of the present

work, we can see in Figure 8 that for τ = 3 we obtain efficiencies around 0.3, which is bigger than the

experimental one, but remarkably smaller than the De Vos value. If we locate the 0.13 point in Figure 6

(a, b, c or d) it corresponds to a negative ecological function, that is, this plant seemingly has a dissipation

larger than its power output. Thus, under the perspective here formulated, some solar power plants have

yet a large range of efficiencies to be reached by means of design improvements. As it was asserted

by Wu [30], there are few solar engine data to compare with TTF corresponding models. However,

Wu took two solar thermal power generation plants given by Hsieh with efficiency values of 0.36 and

0.37, respectively [35]. Wu [30] proposed a simple endoreversible model of the Curzon-Ahlborn type

to compare with Hsieh’s data. His numerical comparison is very good and this author concludes that

these solar power plants should be operated closer to the CA-efficiency. However, in Figure 9 we show

a numerical result corresponding to our model working at maximum ecological regime but with several

irreversibilities, which in this case are: R = 0.9, ξ = 0.011 and R = 1, ξ = 0.023, respectively. As
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it can be seen, we obtain efficiencies very close to the experimental ones but under some more realistic

conditions. Thus, this scenario is also possible to describe the performance regime to the Hsieh’s plants.

Figure 9. Optimal thermal efficiencies vs. ξ at maximum ecological regime, for four values

of R with τ = 2.46, AR = 1 and β = 4.1373 for comparison with the values reported by

Wu [30].
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4. Conclusions

In this work, a thermoeconomic performance analysis using finite time/finite size thermodynamics

has been carried out for an irreversible solar-driven heat engine model in terms of the maximization of

two objective functions. The objective functions have been defined as the quotient between power output

and the ecological function per unit total investment cost, respectively. By means of the maximization

of these objective functions, the optimum thermoeconomic performance and the corresponding best

design parameters of the solar-driven heat engine were determined. In this context, the effects of

the economic parameter, f , and the ratio of heat transfer areas, AR, on the optimal thermoeconomic

performance have been investigated. For the model here studied which uses a Dulong-Petit heat transfer

law (convective-conductive plus radiative effects) at the superior thermal coupling (see Figure 1) instead

of only the simultaneous conduction and radiation modes as in [27], we systematically obtain lower

values for TX and AR. That is, for a fixed value of AH , our model leads to smaller heat transfer areas

for the cold-side heat exchanger. On the other hand, we show how the optimal thermal efficiencies

under maximum ecological conditions are bigger than the optimal thermal efficiencies at maximum

power conditions. This result has been observed in all kind of thermal engine models operating under

maximum ecological conditions. Our model takes into account several irreversibilities, which are not

usually considered in solar driven heat-engine models. Additionally, we have presented some numerical

comparisons of our results with efficiencies of three actual solar driven power plants.
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