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Abstract: The valuation of farmland is a perennial issue for agricultural policy, given its 

importance in the farm investment portfolio. Despite the significance of farmland values to 

farmer wealth, prediction remains a difficult task. This study develops a dynamic 

information measure to examine the informational content of farmland values and farm 

income in explaining the distribution of farmland values over time. 
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1. Introduction 

The topic of real estate bubbles has gained prominence amidst the recent housing market crash and 

financial crisis. The related issue of bubbles in the rural land market is equally important given that 

farmland is the most important asset in the farm business and in the farm household investment 

portfolio. Volatility in farmland values generates potential economic hardship, especially for 

communities dependent upon agriculture for economic security [1]. Yet the valuation of farmland is 

not well understood and remains a problematic exercise [2]. 
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The dynamics of farmland pricing are only partially explained by market fundamentals in the  

long-run, with the relationship breaking down in the short-run. As indicated in Schmitz [3] farmland 

values appear to be in long-run equilibrium, but there is significant correlation in the short-run errors. 

In other words, farmland markets appear to be efficient in the long-run, but are not weakly efficient in 

the short-run. Copeland [4] defines a weakly efficient market (or a weak-form efficiency) as the case 

where investors cannot earn excess returns by trading rules based on historical prices and return 

information. Ingersoll [5] gives a similar definition based on random walks. Predicting farmland 

markets is thus important not only to the rural community but also for formulating policy responses 

during economic turmoil. 

Decomposing the information content of asset values is key to understanding the dynamics of 

farmland prices. Measuring the informational content of asset values originates with the work of Theil 

and Leenders [6] and Fama [7], who calculate the informational content of stock market prices using 

an information measure based on the entropy measure of Shannon [8]. Since then, use of entropy to 

forecast financial market volumes has become a valuable exercise [9–13]. We depart from the standard 

analysis in this paper to examine the informational content of changes in relative asset values and 

allow for a regional decomposition of the information measure. 

In particular, we are interested in the dynamic information content in farm returns and we extend 

the information measure in Moss, Mishra, and Erickson [14] to incorporate persistence into the entropy 

measure. Specifically, we let the signal in the previous year's information measure decay as the number 

of lags increases. This allows us to obtain a measure of the loss of information over time. This loss of 

information can also be interpreted as the additional entropy between time periods. Thus the larger this 

measure is, the greater the dispersion in information between the two sets of information measures. 

In the boom-bust cycle debate, one issue is the amount of new information contained in each year's 

income. Similar to the variance bounds formulations [15–17], if changes in farmland values are 

determined solely by changes in income then the information in the changes in farmland values cannot 

exceed the amount of information contained in changes in income. The concept is similar to the 

variance bounds concept in that given that asset values are derived from income, the variance in 

income places a bound on the variance in asset values. 

2. Information Theory and Economics 

Information theory, originating with Shannon [8], brought a technical and precise definition of 

information to the field of statistics. The technical notion of information states that outcomes 

conflicting with prior expectations should be given more weight than outcomes conforming to prior 

expectations. Shannon popularized the notion of entropy as the expected information from a 

distribution, and developed a quantified measure of information. The optimal measure of the amount 

of information, as developed by Shannon, is the entropy of an outcome or an event (or a signal in 

Shannon terminology) and is expressed as 

 
=1

= ln
N

i i
i

J p p
      

(1) 

where J  is the measure of entropy and ip  is the probability that a given event or signal will occur.  

As pi→1 then ln →0, meaning a signal that is almost certain to occur contains no information. The 
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weighted average of each signal that could be received is the total amount of information in the signal. 

Entropy was proposed by Shannon as a way of measuring the information contained in a message that 

causes a change in prior expectations or probabilities. More generally, entropy measures the 

uncertainty or volatility of a random variable or distribution. Shannon named the measure entropy 

because of the similarity with the concept of thermodynamics entropy. Davis [18] is credited with 

introducing information theory to the econometrics literature while Theil [19] popularized the use of 

information theory (see [10] for a discussion). Golan [20] offers an excellent introduction to entropy 

measures and uses in econometrics. 

Kullback and Liebler [21] generalize Shannon-entropy and develop relative entropy, or  

cross-entropy, that measures how two distributions differ from each other. Specifically, cross-entropy 

measures the discrepancy or inequality between two distributions, thus often being referred to as a 

measure of information inequality. The Kullback-Leibler function is also interpreted as a measures of 

the difference of information content between distributions. Many generalizations of Shannon entropy 

exist, but the Kullback-Leibler function provides a meaningful information quantity that serves as the 

basis of the empirical application in this paper. 

Kullback-Leibler cross-entropy is basically a measure of unpredictability or uncertainty, measuring 

the divergence between two densities. Given N mutually exclusive events E = {E1,…,EN} each event 

has an associated probability of occurrence. The prior probabilities, xi, are the probabilities of an event 

occurring before a message is received and the posterior probabilities, yi, are the updated, or 

conditional, probabilities given the information content of the message. Formally stated then,  

cross-entropy measures the unpredictability of an event Ei given the event's prior and posterior 

probabilities of occurrence. 

The value of the information contained in the message is proportional to the inequality between the 

prior and posterior distributions since a greater discrepancy implies a more unexpected event. For 

example, if event E1 has a prior probability of 0.95 and a message is received resulting in an updated 

posterior probability of 0.05, then the message is informative since the probability of the event 

occurring went from high to low. However if the message results in an updated posterior probability  

of 0.94, then the message is uninformative (or at least no new information) since the probabilities 

remain mostly unchanged. This is similar to answering the question “what is the information gain 

between x and y” or “what is the distance or divergence between x and y”. 
Cross-entropy,  :I y x , is written as the logarithmic measure of the discrepancy or inequality 

between the prior and posterior probability distributions 

 
=1

: = ln 0.
N
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      (2) 

The cross-entropy,  :I y x , is a measure of the gain or loss in information as a result of the change 

from the prior probabilities to the posterior probabilities. When the logarithm in Equation 2 has 2 as a 

base, information is measured in binary digits, or bits. Often the natural log is used, in which case 

information is measured in nits, where 1 nit is equal to 1.443 bits. Given that the logarithm is a 
concave function,  :I y x  is always positive, meaning the value of the information in the message is 

always positive. The cross-entropy measure is also a monotonic function since the greater the 
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information in the signal the larger the value of the inequality. The more valuable the information in 

the message the greater the discrepancy, or information inequality, between the prior and the posterior. 
If  : 0I y x  , then no discrepancy exists between the prior and the posterior and so the message 

contains no information. If  :I y x  , then the discrepancy is so large that the information is 

infinitely valuable or that the receiver of the message is “infinitely” surprised by the information 

contained within that message [18]. 

The cross-entropy measure has useful aggregation properties that allow decomposition of the total 

entropy into a between-group information measure and a within-group information measure. Suppose 
that N  mutually exclusive events  1, , NE E E   can be aggregated into G N  sets of events, 

 1, , GS S S   so that each iE  belongs to exactly one gS , where 1, ,g G  . The prior and posterior 

probabilities can be aggregated so that 

=g i
i sg

X x



      (3) 
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      (4) 

which are the sum of the prior and posterior probabilities, respectively, of the events in set gS . 

The cross-entropy measure  :I y x  in Equation 2 can be applied to each group gS . The within-group 

cross-entropy, gI , is 
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The between-group cross-entropy, 0I , is 

 0
=1
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     (6) 

The total cross-entropy is equal to the sum of the average within-group cross-entropy, g gg
Y I , and the 

between-group cross-entropy,  0 :I y x , 

     0
=1

: = : :
G

g g
g

I y x I y x Y I y x
     (7) 

The between-group entropy measures the information inequality across groups, whilst the within-
group entropy measures information inequality across events of set gS . The average within-group 

inequality, given by g gI Y I , is a weighted average of the individual within-group inequalities. 

Note that no implications about the content of the message are provided by the cross-entropy 

measure. The interpretation cross-entropy as a measure of information depends on the prior and posterior 

probability distributions involved as well as the context of the problem under consideration [23].  
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The terms ix , iy , iX , and iY  can be given an interpretation other than probabilities as long as they 

satisfy the properties of probabilities; non-negativity and summing up to unity. For example, consider 
the states of the United States and define ix  as state i  population divided by total U.S. population and 

then define iy  as per capita income of state i  divided by total U.S. per capita income. The terms ix  

and iy  now have the interpretation of shares, which satisfy the properties of probabilities. Moreover, 

the cross-entropy measure in Equation 2 has the interpretation of a state income-inequality measure. 

The income-inequality measure takes on positive values when per-capita incomes among the states 

differ and reduces to zero in the instance of no income-inequality. The aggregate decomposition in 

Equation 3 through Equation 7 can be used to define regions of the U.S. and compare between-region 

and within-region income-inequality. 

3. Entropy Model and Data 

The starting point is a typical farmland pricing formula based on the net present value framework 

for land price determinantion with rational expectations. Specifically, the model explains the value of 

land based on changes in asset valuation over time using the differential model of farmland values 

proposed by Schmitz [3] 
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where tV  is the farmland value per acre at time t , 1t t tV V V     is the difference in farmland values, 

 1|t tE CF   is the expected value of cash flows to farmland (typically Ricardian rent) given the 

information available at time 1t  , where the information set is denoted 1t  , and tr  is the effective 

discount rate (or opportunity cost of capital) at time t . Schmitz assumes that 
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where t  becomes white noise, meaning no information remains in the residual term. However, 

Schmitz rejects the hypothesis that the residuals are white noise using a Ljung-Box test. Thus, while 

farmland appears to be appropriately priced in the long-run, the series contains significant information 

which could support the notion of rational bubbles. 

To measure the persistence in farm returns, this paper proposes an extension of the information 
measure used by Moss, Mishra, and Erickson [14]. Specifically, we let itp  be the share of farm 

revenues this year and , 1i tp   be the share of farm revenues last year. Therefore, a measure of the new 

information 1tI  in t  from Equations 8 and 9 is 

1
=1 , 1

= ln
n
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t it
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This information inequality measures the relative persistence in the spatial value of land prices and 

represents a dynamic information inequality. The lagged share can be thought of as a dynamic 

probability. 

Next, we consider the decay of the information in the signal by computing the information in the 
second lagged shares , 2i tp   denoted 2tI  defined as 

2
=1 , 2

= ln
n

it
t it

i i t

p
I p

p 

 
  
 


      (11) 

Taking the difference between Equations 11 and 10 yields a dynamic information inequality that 

measures the loss of information (additional entropy between data points) 
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   (12) 

The larger the number, the greater the dispersion in information between the two information sets. If 

the value is positive, there is an information loss, meaning the first information lag is less than the 

second information lag so the information in the measure is increasing. Equations 10, 11, and 12 can 

be similarly derived for the total value of farmland as well as a cross-inequality between total land 

values and net value added (where net value added is the prior probability and total land value is the 

posterior). 

Data are published by the National Agriculture Statistics Service (NASS) of the U.S. Department of 

Agriculture for 1950 through 2008. Farm real estate values are obtained from the Agricultural Land 

Values and Cash Rents publication. Land in farms are obtained from the Farms, Land in Farms, and 

Livestock publication. Farm real estate values are defined as the per acre dollar value of all land and 

buildings used for agricultural production. Land in farms is defined as the total acres of farmland, in 

thousands of acres, for each state. The total value of farm real estate is computed by multiplying the 

per acre dollar real estate value by the total number of acres of farmland for each state. Net value 

added is used in place of the more traditional net farm income for describing farm revenues. Net value 

added (NVA) includes the net returns to all equity and non-equity holders and thus represents the 

contribution of agriculture to the overall economic activity of the United States. 

4. Results 

The results for the information change across time periods are presented in Table 1 for the ten 

Economic Research Regions. In this study we use the traditional regions with the Northeastern states 

include Connecticut, Delaware, Maine, Maryland, Massachusetts, New Jersey, New York, 

Pennsylvania, Rhode Island, and Vermont, Lake States are Michigan, Minnesota, Wisconsin; the Corn 

Belt region includes Illinois, Indiana, Iowa, Missouri, and Ohio; the Appalachian region includes 

Kentucky, North Carolina, Tennessee, Virginia, and West Virginia; the Southeast states are Alabama, 

Florida, Georgia, and South Carolina; Delta States are Arkansas, Louisiana, and Mississippi; the 

Southern Plains states are Oklahoma and Texas; the Mountain region includes Arizona, Colorado, 
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Idaho, Montana, New Mexico, Nevada, Utah, and Wyoming; and the Pacific states are California, 

Oregon, and Washington. The results in this table indicate whether income (net value added) contains 

dynamic information. At the mean and median there is little change in the information set for value 

added. In other words, the dynamic probability doesn't change the prediction very much. Moreover, 

many of the information measures are negative, indicating that the first lag may contain more noise 

than the second lag. Thus, even if the mean and median are positive, if the first quantile (Q1) is 

negative, the most recent information may simply add noise. This oscillation is somewhat consistent 

with the dynamic adjustment found by Burt [24]. 

Table 1. Dynamic Information Inequality in Value Added. 

Statistic 21I  31I  41I  51I   21I  31I  41I  51I  
 Northeast  Lake States 

Min −3.92 −4.89 −3.67 −4.53  −1.98 −5.47 −5.79 −5.62 
Q1 −0.31 −0.15 −0.04 0.05  −0.30 −0.40 −0.28 −0.19 

Median 0.04 0.14 0.47 0.50  0.02 −0.01 0.00 0.17 
Q3 0.69 0.76 1.00 0.95  0.36 0.52 0.59 0.57 

Max 2.97 2.83 4.38 5.26  5.58 5.51 2.31 4.49 
Mean 0.18 0.24 0.54 0.63  0.12 0.16 0.03 0.20 

Std. Dev. 1.08 1.15 1.16 1.34  1.10 1.45 1.13 1.33 
 Corn Belt  Northern Plains 

Min −4.57 −3.06 −2.90 −2.66  −11.23 −3.85 −5.98 −5.33 
Q1 −0.96 −0.32 −0.42 −0.22  −0.65 −0.21 −0.23 −0.17 

Median −0.10 0.07 0.19 0.13  −0.16 0.11 0.32 0.29 
Q3 0.33 0.50 0.60 0.67  0.37 0.65 0.97 1.44 

Max 3.06 3.12 3.18 3.09  5.71 7.18 12.10 7.51 
Mean −0.09 0.15 0.15 0.22  −0.15 0.43 0.62 0.58 

Std. Dev. 1.21 1.05 1.02 1.06  2.48 1.80 3.01 1.92 
 Appalachia  Southeast 

Min −1.79 −1.15 −1.36 −0.96  −4.41 −4.78 −4.47 −4.75 
Q1 −0.29 −0.04 −0.06 −0.01  −0.44 −0.29 0.22 −0.09 

Median −0.08 0.19 0.36 0.40  −0.13 0.12 0.24 0.35 
Q3 0.20 0.67 1.06 1.19  0.10 0.62 1.08 0.78 

Max 1.30 2.07 3.33 4.17  4.82 2.86 3.95 4.53 
Mean −0.06 0.27 0.53 0.70  −0.11 0.10 0.45 0.45 

Std. Dev. 0.58 0.63 0.97 1.07  1.17 1.09 1.37 1.29 
 Delta States  Southern Plains 

Min −3.05 −2.63 −1.88 −1.73  −1.42 −1.59 −1.33 −1.08 
Q1 −0.43 −0.31 −0.09 −0.32  −0.22 −0.19 −0.15 −0.12 

Median −0.05 0.02 0.04 0.09  −0.01 0.00 0.03 0.05 
Q3 0.08 0.47 0.19 0.46  0.12 0.27 0.30 0.42 

Max 2.74 2.91 3.01 3.66  1.36 2.12 1.87 1.82 
Mean −0.16 0.04 0.09 0.16  −0.02 0.09 0.09 0.16 

Std. Dev. 0.83 0.98 0.81 0.92  0.50 0.66 0.61 0.60 
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Table 1. Cont. 

Statistic 21I  31I  41I  51I   21I  31I  41I  51I  
 Mountain  Pacific States 

Min −9.18 −8.83 −9.46 −9.67  −0.59 −0.40 −0.21 −0.36 
Q1 −0.95 0.05 −0.12 0.04  −0.14 −0.10 −0.07 −0.06 

Median −0.14 0.44 0.41 0.52  −0.03 0.01 0.06 0.04 
Q3 0.28 1.42 1.48 2.34  0.07 0.18 0.25 0.34 

Max 8.36 5.93 7.77 9.45  0.37 0.69 0.82 1.22 
Mean −0.41 0.81 1.01 1.19  −0.04 0.06 0.12 0.16 

Std. Dev. 2.10 2.13 2.69 2.90  0.21 0.23 0.23 0.32 
 Regional Inequality  Overall Inequality 

Min −3.36 −2.39 −0.91 −2.08  −4.54 −2.76 −1.46 −2.17 
Q1 −0.41 −0.12 −0.08 0.11  −0.88 0.04 0.05 0.24 

Median −0.17 0.22 0.30 0.48  −0.19 0.40 0.59 0.89 
Q3 0.04 0.49 0.63 1.06  0.20 0.94 0.99 1.58 

Max 2.60 2.75 1.80 3.15  3.34 3.11 3.02 4.69 
Mean −0.18 0.28 0.30 0.58  −0.26 0.49 0.60 0.96 

Std. Dev. 0.87 0.89 0.63 0.93  1.18 1.10 0.92 1.14 

 

A typical result for the information measure reported in Table 1 is that the change in information is 

initially negative becoming positive in the second difference. Typically, the change in information 

becomes increasingly positive for the remaining two differences. For example, the mean and median 

21 tI  are both negative for the Corn Belt (−0.09 and −0.10, respectively) while the mean and median 

31 tI  are positive (0.07 and 0.15, respectively). This may be the result of optimizing behavior at the 

farm level. Specifically, higher profits resulting from exogenous factors such as weather or demand 

shocks may result in increased plantings that reduce the relative profitability in the intermediate run. 

Alternatively, the loss of information may simply be the result of uncertainty caused by short-run 

noise. In almost all cases, the first quantile remains negative, indicating that at least 25 percent of the 

time the new information does not reduce the information measure. Further, the first quartile is only 
negative for 21 tI  in the Corn Belt. Thus, the newer information on net value added is informative at 

least 75 percent of the time. 

The value of the change in information contains nonparametric information about the changes in 

income into permanent and transitory components. Specifically, if the returns follow a random walk 

the change in information would be large and positive (especially if the innovations were uncorrelated 

within a particular region). That is new information would result in differences between the prior and 

posterior shares of income. However, as the returns become less highly autocorrelated the information 

measure decay because the returns would not depart significantly from their original shares. That is the 

distribution of returns across states would not diverge because of permanent shocks. As the length of 

the change increases, the short-run (transitory) shocks average out while the long-run (persistent or 

permanent) information across states in a region remains. Alternatively, in the parlance of 

nonstationarity, the transitory effect yields a bounded variance while the permanent effect grows 
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arithmetically over time. Following the implication of Equation 8, transitory variation cannot explain 

permanent changes (in farmland values). 

Thus, the mean and median changes in inequality along with the asymmetry of the change in 

equality contain information about the relative persistence of changes in income. Across all regions, 

only the Northeast possesses both a positive initial change in information and a positive asymmetry in 

information change (i.e., the median less the first quantile is 0.35 while the third quantile less the 

median is 0.65). Hence, the income changes in the Northeast contain the greatest quantity of 

information about the distribution of future income (at least initially). In the long-run the Mountain 

region contains the greatest median information at 0.52. The Lake States, Corn Belt, Delta States, 

Southern Plains, and Pacific States all have small long-run changes in information. The differences in 

the change in long-run information may be due to several factors. One temptation may be to equate the 

significance of farm policy with the lack of information since the Lake States, Corn Belt, Delta States, 

and Southern Plains are reliant on program crops (specifically, corn, cotton, soybeans, and wheat) 

while Northeast is less dependent on agricultural policy (with the exception of dairy payments in  

New York). However, other factors such as farm size and weather risk should also be considered in 

future studies. 

The results for the information change across time periods based on total farmland values are 

presented in Table 2. The results in this table examine the value of the dynamic information in land 

values. Looking at the change in the relative asset values yields some significant changes in the 

information set. For example, the median for the Northeast increases from 0.07 to 0.16 to 0.40, so there 

are noteworthy changes in the information measure. More recent values contain more information than 

lagged values. The consistency of this result across regions and lags indicates that more recent 

information always yields more information in regards to the total value of farmland. 

Table 2. Dynamic Information Inequality in Land Values. 

Statistic 21I  31I  41I  51I   21I  31I  41I  51I  
 Northeast  Lake States 

Min −0.06 −0.05 −0.09 −0.05  −0.16 −0.05 −0.03 −0.13 
Q1 0.03 0.10 0.16 0.22  0.01 0.01 0.02 0.09 

Median 0.07 0.16 0.23 0.40  0.04 0.09 0.16 0.16 
Q3 0.14 0.35 0.53 0.93  0.13 0.18 0.29 0.45 

Max 1.51 2.33 2.22 2.12  1.30 1.60 1.40 1.05 
Mean 0.13 0.28 0.42 0.57  0.12 0.18 0.25 0.29 

Std. Dev. 1.08 0.37 0.45 0.49  0.24 0.30 0.34 0.31 
 Corn Belt  Northern Plains 

Min −0.05 −0.09 −0.13 −0.12  −0.08 −0.11 −0.02 −0.02 
Q1 0.01 0.02 0.04 0.02  0.00 0.01 0.02 0.04 

Median 0.04 0.07 0.09 0.09  0.02 0.05 0.07 0.11 
Q3 0.08 0.15 0.21 0.23  0.06 0.09 0.15 0.23 

Max 0.87 0.82 0.73 0.61  0.28 0.51 0.62 0.87 
Mean 0.08 0.11 0.15 0.13  0.04 0.08 0.12 0.15 

Std. Dev. 0.14 0.16 0.18 0.16  0.06 0.12 0.14 0.16 
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Table 2. Cont. 

Statistic 21I  31I  41I  51I   21I  31I  41I  51I  
 Appalachia  Southeast 

Min −0.12 −0.02 −0.04 0.00  −0.32 −0.39 −0.33 −0.27 
Q1 0.01 0.03 0.09 0.10  0.02 0.05 0.09 0.19 

Median 0.04 0.07 0.13 0.19  0.06 0.11 0.22 0.30 
Q3 0.07 0.14 0.24 0.30  0.14 0.35 0.46 0.70 

Max 0.39 0.51 0.62 0.94  1.21 1.27 1.63 2.81 
Mean 0.05 0.11 0.17 0.23  0.11 0.24 0.40 0.54 

Std. Dev. 0.07 0.11 0.14 0.19  0.20 0.31 0.46 0.63 
 Delta States  Southern Plains 

Min −0.05 −0.08 −0.21 −0.34  −0.04 −0.08 −0.08 −0.08 
Q1 0.00 0.01 0.01 0.02  0.00 0.00 0.00 0.01 

Median 0.03 0.04 0.07 0.09  0.01 0.02 0.03 0.05 
Q3 0.07 0.12 0.16 0.20  0.04 0.07 0.11 0.15 

Max 0.62 0.77 0.95 1.38  0.59 1.11 1.65 2.10 
Mean 0.05 0.09 0.13 0.16  0.04 0.08 0.13 0.17 

Std. Dev. 0.10 0.17 0.21 0.28  0.11 0.21 0.32 0.40 
 Mountain  Pacific States 

Min −1.94 −1.14 −1.01 −1.83  −0.03 −0.08 −0.06 −0.07 
Q1 0.03 0.06 0.10 0.14  0.01 0.02 0.03 0.07 

Median 0.06 0.15 0.19 0.39  0.04 0.08 0.16 0.22 
Q3 0.09 0.37 0.58 0.76  0.11 0.32 0.48 0.53 

Max 5.24 5.25 5.47 5.50  0.49 0.65 0.81 1.11 
Mean 0.15 0.33 0.51 0.68  0.08 0.16 0.25 0.35 

Std. Dev. 0.75 0.85 1.02 1.18  0.10 0.18 0.25 0.34 
 Regional Inequality  Overall Inequality 

Min −0.13 −0.12 −0.01 0.04  −0.30 −0.19 −0.03 −0.07 
Q1 0.03 0.07 0.14 0.20  0.07 0.16 0.27 0.41 

Median 0.05 0.13 0.19 0.30  0.11 0.24 0.40 0.57 
Q3 0.13 0.26 0.46 0.61  0.19 0.54 0.83 1.03 

Max 0.67 1.12 2.16 2.80  1.05 1.62 2.60 3.58 
Mean 0.11 0.24 0.38 0.52  0.18 0.40 0.62 0.84 

Std. Dev. 0.14 0.28 0.43 0.56  0.23 0.39 0.56 0.69 

 

Given that the information measures are greater than zero for the median and mean throughout 

Table 2, the question is whether the information measures are increasing or decreasing over time. In all 
cases, 1 21j I I    for each region. Hence, the information in the sample declines over time or 

information loss occurs in farmland values. The next question is whether this information loss is 

occurring at an increasing or decreasing rate. To measure this concept we adopt the measure of 

logarithmic concavity proposed by Hansen [25]. Specifically, a positive measure is logarithmically 

concave if 
2

1 1 , = 1,2,n n na a a n        (13) 
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and logarithmically convex if 
2

1 1 , = 1,2, .n n na a a n        (14) 

To apply this concept to the information measures, we compute 

 
 

2

1 31 21 41

2

2 41 31 51

=

=

t I I I

t I I I

   

        

 (15) 

If 1 2, 0t t   then the information measure is concave while if 1 2, 0t t   the measure is convex. Applying 

these rules to the median and mean information in Table 2 we see that the median of the information 

measure is concave in the Corn Belt, Appalachia, and the Southeast regions, and the mean of the 

information measure is concave in the Northeast, Corn Belt, Appalachia, Southeast, and Delta regions. 

Further, neither measure is convex in any region. Hence, the information loss is increasing at an 

increasing rate. 

As in our discussion of changes in the information in returns from Table 1, the change in 

information of farmland values has information about the decomposition of these changes into 

permanent and transitory components. Several Falk [26] provides evidence that farmland values are 

nonstationary. Hence, errors tend to be permanent. This result is largely borne out in Table 2 in that 

both the mean and median information measures are uniformly positive for every state. In fact the first 

quantile is positive for every state at every time period. Again, mimicking the results in Table 1, the 

median measure of the change in information is highest for the Northeast (increasing to 0.40 for the 

fourth change) and Mountain (increasing to 0.39 for the fourth change) regions and the smallest for the 

Corn Belt (reaching a maximum of 0.09), Delta States (reaching a maximum of 0.09), and Southern 

Plains (reaching a maximum of 0.05). In this case, the size of the change in information measures the 

similarity between farmland in each region. Specifically, if dispersion between farmland shares is 

permanent because of stationarity, when the errors are highly correlated (the Wiener increment in the 

random walk is correlated) the farmland values do not wander far from each other. This correlation 

may be a artifact of cointegration. Thus, the Corn Belt, Delta States, and Southern Plains are composed 

of states with similar farmland value changes over time. However, there is more dispersion in the 

Northeast and the Mountain regions. This result is plausible because of the number of states in each 

region and the dispersion of crops and practices. 

Table 3 gives the difference in information on current land values based on changes in lagged 

returns. Results presented here look at the dynamic information in net value added in predicting land 

values. Thus, the results indicate the predictive value of returns in the explanation of current land 

values changes over time. The results for this measure are fairly diverse across regions. For example, 

the mean information is consistently positive for the Northeast (reaching a maximum of 0.16), 

Southeast (reaching a maximum of 0.27) and Southern Plains (reaching a maximum of 0.09) regions 

implying that more recent information on returns is informative in explaining farmland values on 

average. In addition, the median is consistently positive for the Northeast region. However, the first 

quartile for each distribution is consistently negative. Alternatively, the mean and median information 

measure for the Northern Plains, Appalachia, Mountain States, and Pacific States is always negative. 



Entropy 2011, 13  

 

 

49

Building on Equation 15, the information measure is concave for both the mean and median in the 

Northeast region. 

The critical insight from Shiller [16] is that the variance of an asset (such as a stock price) cannot 

exceed the variance of the return sequence (such as the dividends) on which the price of that asset is 

based. Hence, the variance of asset values (farmland) must be bounded by the variance of its returns 

series (returns to farmland). Table 3 indicates that information on the dispersion in returns do not 

significantly explain the dispersion of farmland values. Further, interquartile range of the change in 

information in returns in predicting farmland values (in Table 3) are much larger than the interquartile 

range of the change in information in farmland values (in Table 2). For example, the interquartile 

range for the change in information for the Corn Belt are 0.07, 0.13, 0.17, and 0.21 for changes in 

farmland value compared with 2.03, 1.52, 1.29, and 1.54 for the information in farmland returns in 

predicting values. Thus, the dispersion in farmland values is smaller than the dispersion in returns 

consistent with the insight from Shiller. 

Table 3. Dynamic Information Cross Inequality Between Land Values and Valued Added. 

Statistic 21I  31I  41I  51I   21I  31I  41I  51I  
 Northeast  Lake States 

Min −6.21 −6.77 −5.03 −4.94  −4.99 −4.97 −4.53 −4.99 
Q1 −1.21 −1.00 −0.91 −1.10  −0.67 −0.70 −0.61 −0.96 

Median 0.04 0.18 0.22 0.15  −0.06 −0.10 −0.12 −0.17 
Q3 0.81 1.23 0.98 1.10  0.62 0.56 0.48 0.47 

Max 4.96 4.07 5.48 5.53  4.55 4.58 4.01 5.28 
Mean 0.01 0.04 0.12 0.16  −0.10 −0.15 −0.18 −0.21 

Std. Dev. 1.92 1.94 1.90 2.30  1.63 1.50 1.55 1.70 
 Corn Belt  Northern Plains 

Min −3.48 −3.12 −2.65 −3.75  −5.84 −4.84 −9.24 −6.72 
Q1 −1.22 −0.87 −0.74 −0.81  −0.98 −0.86 −0.95 −0.93 

Median −0.07 0.00 0.00 −0.12  −0.03 −0.05 −0.09 −0.10 
Q3 0.81 0.65 0.55 0.73  1.04 0.50 0.92 0.77 

Max 3.00 3.77 2.25 2.67  9.80 9.48 9.51 9.24 
Mean −0.03 −0.04 −0.02 −0.01  −0.06 −0.05 −0.09 −0.03 

Std. Dev. 1.26 1.27 1.11 1.30  2.15 2.24 2.67 2.47 
 Appalachia  Southeast 

Min −5.93 −8.95 −12.79 −13.71  −7.96 −7.74 −7.11 −8.35 
Q1 −1.50 −2.10 −2.70 −3.23  −0.64 −0.51 −0.62 −0.54 

Median −0.18 −0.43 −0.51 −0.76  0.12 0.11 −0.03 −0.16 
Q3 0.85 0.99 0.74 0.76  0.55 0.72 0.73 0.99 

Max 9.56 9.67 13.34 16.24  7.44 6.35 5.76 7.45 
Mean −0.33 −0.53 −0.69 −0.77  0.05 0.07 0.14 0.27 

Std. Dev. 2.44 3.60 4.70 5.51  2.14 1.99 1.82 2.44 
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Table 3. Cont. 

Statistic 21I  31I  41I  51I   21I  31I  41I  51I  
 Delta States  Southern Plains 

Min −4.53 −4.75 −3.47 −4.57  −2.56 −2.44 −2.40 −0.98 
Q1 −0.46 −0.59 −0.62 −0.51  −0.12 -0.15 -0.10 −0.11 

Median −0.03 −0.08 −0.05 −0.15  0.00 0.00 0.01 0.02 
Q3 0.30 0.35 0.36 0.31  0.19 0.16 0.20 0.24 

Max 4.77 5.81 3.64 5.40  2.55 2.85 2.81 2.65 
Mean −0.06 −0.08 −0.14 −0.15  0.02 0.04 0.05 0.09 

Std. Dev. 1.16 1.40 1.05 1.21  0.60 0.66 0.64 0.54 
 Mountain  Pacific States 

Min −12.42 −16.38 −19.80 −20.01  −1.42 −2.15 −2.39 −2.35 
Q1 −1.31 −1.67 −2.57 −2.54  −0.27 −0.27 −0.33 −0.54 

Median −0.20 −0.35 -0.19 0.13  −0.09 −0.06 −0.06 −0.06 
Q3 0.57 0.82 1.45 1.09  0.18 0.15 0.15 0.25 

Max 15.93 16.35 14.27 17.84  0.85 0.72 0.83 1.00 
Mean −0.22 −0.42 −0.42 −0.31  −0.08 −0.11 −0.13 −0.13 

Std. Dev. 3.33 4.12 4.55 4.87  0.43 0.47 0.54 0.64 
 Regional Inequality  Overall Inequality 

Min −4.21 −3.85 −3.30 −3.44  −5.50 −4.79 −4.43 −4.24 
Q1 −0.57 −1.00 −0.80 −1.06  −0.85 −1.48 −1.26 −1.42 

Median −0.17 −0.26 −0.13 0.02  −0.25 −0.26 0.01 −0.20 
Q3 0.67 0.50 0.58 0.73  0.72 0.66 0.72 1.15 

Max 3.69 4.34 3.51 3.66  4.39 4.13 4.95 4.65 
Mean −0.11 −0.16 −0.18 −0.13  −0.18 −0.28 −0.31 −0.22 

Std. Dev. 1.35 1.51 1.32 1.55  1.66 1.84 1.75 2.02 

5. Conclusions 

This paper examines the change in information in net value added to farmland and farmland values 

over time and the relationship between the two. Results indicate that new information increases the 

entropy in the short-run, but reduces the entropy in the signal in the intermediate run. This loss in 

short-run information may be the result of random shocks which do not persist or producer response to 

market changes, a finding consistent with Burt [24]. However, changes in information are consistently 

positive (even at the first quantile) for farmland values. Hence, more recent data on farmland values is 

relatively more informative than recent data on net value added. 

The results for the information in farmland values over time are fairly uniform. The minimum and 

first quartiles of the information measures are negative while the median, third quartile, maximum, and 

mean are generally positive. In addition, most are increasing, though by varying magnitudes. This 

result may contain information about the differential value of information by region. For example the 

Mountain states have a very high maximum value which is much larger than the other regions. The 

mean and median information for the Northeast and Southeast are consistently positive. However, the 

same values are consistently negative for the Northern Plains, Appalachia, Mountain States, and 
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Pacific States. This result is consistent with Schmitz [3] in that short-run variations in net value added 

(or net returns to farmland) may contain significant noise. 

The results are less consistent for the lagged information of returns in predicting farmland values. 

For example, while the means and medians are negative for many regions, they are positive for the 

Northeast, Southeast, and Southern Plains. The maximum values are also quite a bit higher than for the 

information contained in lagged farmland values, moreover the range in general is wider. Returning to 

the possibility of excess volatility, the data supports the contention that the variation in farmland 

values is smaller than the variation in net value added. Thus, farmland prices may be more consistent 

with variance bounds than common stocks under the formulation of Shiller [16]. 
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