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Abstract: Inefficient utilization of the frequency spectrum due to conventional regulatory 
limitations and physical performance limiting factors, mainly the Signal to Noise Ratio 
(SNR), are prominent restrictions in digital wireless communication. Pattern Based 
Communication System (PBCS) is an adaptive and perceptual communication method 
based on a Cognitive Radio (CR) approach. It intends an SNR oriented cognition 
mechanism in the physical layer for improvement of Link Spectral Efficiency (LSE). The 
key to this system is construction of optimal communication signals, which consist of 
encoded data in different pattern forms (waveforms) depending on spectral availabilities. 
The signals distorted in the communication medium are recovered according to the  
pre-trained pattern glossary by the perceptual receiver. In this study, we have shown that it 
is possible to improve the bandwidth efficiency when largely uncorrelated signal patterns 
are chosen in order to form a glossary that represents symbols for different length data 
groups and the information can be recovered by the Artificial Neural Network (ANN) in 
the receiver site. 
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1. Introduction 

The fundamental restriction in data transmission through communication channels has two crucial 
aspects. These are transmitting the data within spectral bandwidth limitations and making this 
transmission robust to noise with the highest possible data bit rate. As proposed by the Shannon Limit 
Theorem [1], the channel capacity is directly proportional to the spectral bandwidth and Signal  
to Noise Ratio (SNR) and in order to maximize the channel capacity both parameters should  
be optimized. 

The ratio of Energy per bit to Noise Power Spectral Density Ratio (Eb/N0) expresses the relation 
between SNR and Link Spectral Efficiency (LSE). The following equation shows this function. The 
most important aim of PBCS is to maximize the LSE value at the possible lowest SNR level. This 
situation directly points the minimization of the area under the graph for Eb/N0 vs. Bit Error Rate 
(BER) space: 
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where S is a power of signal, N is a power of noise, W is a spectral bandwidth and C is the channel 
capacity to transmit the data. 

Spectral bandwidth usage is defined in line with certain standards. It needs to be used in the most 
optimized way to maximize the spectral efficiency. Although conventional RF communication systems 
concentrate on transmitting the data with the highest possible data rate by using specified modulation 
methods and certain assigned channels, they neglect to optimize the utilization of the spectral 
bandwidth. This gap was handled in 1999 by Mitola’s concept of Cognitive Radio (CR) [2] that 
optimizes bandwidth efficiency by sensing the free spectral bandwidth sections and fills these sections 
by switching among modulation techniques. 

The existing modulation techniques deal with the capacity problem in terms of the speed of data 
transmission. They manage to work under specified SNR value; still they are far from the Shannon 
boundary. Therefore, communication systems are in need of a new and efficient spectral bandwidth 
modulation technique, that allows data transfer with approximately zero BER, even under the influence 
of higher noise. 

The system proposed in this paper involves a new modulation and encoding technique, which 
consists of the construction of largely uncorrelated signal pattern (waveform) sets called glossaries. 
Each glossary in the glossary space can be chosen with two components. These are the free SNR 
capacity of the communication channel and the LSE, which is the proportion of the data bit rate (bps) 
and the spectral bandwidth (Hz). In this new technique, the channel capacity determines the available 
data bit rate to perform the transmission. Then, similar to the CR concept, there is an adaptive 
mechanism in Pattern Based Communication System (PBCS) that switches between the glossaries due 
to difference between the measured noise level of the assigned channel and the SNR limitation of the 
glossary that maximizes the LSE. 

In the receiver, the disarrangements caused by possible delays and reflections in the communication 
medium are corrected via a pattern separation process that puts the patterns in correct order 
(synchronization) and eliminates multipath effect with the time delay estimation algorithms. Then 
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these corrected patterns are fed into the Artificial Neural Network (ANN). Having been trained for all 
possible sets of glossaries, the ANN recovers the incoming noise added signal pattern into the 
associated binary code. The information is reconstructed by concatenating these binary codes.  

PBCS can provide some advantages for military communications where robustness against noise 
generated by jammers is an important issue. It can be used to transmit the signal with minimal error, 
even within improved SNR characteristics, by adaptively switching to an appropriate pattern glossary 
set. Moreover, since the glossaries are formed by the user, an external party cannot decode the signal 
pattern without knowledge of the glossary. This also allows the system to be used as part of an 
encryption system. High link spectral efficiency capability allows an increased data rate in low 
frequency ranges, which improves the data transfer performance of submarine communication systems. 

The remaining sections of the paper are organized as follows: in Section 2, the PBCS model is 
described. In Section 3, the transmitter and the receiver structures of PBCS are introduced in detail. In 
Section 4, simulation results are presented. The conclusions of the paper are drawn in Section 5. 

2. PBCS Model 

When the signal from the transmitter reaches the receiver, it is distorted by both natural and man-
made noises acting upon it during the transmission process. In the proposed PBCS, the communication 
task is fulfilled, when, in the receiver, the distorted signal patterns are matched with the original 
patterns by the ANN, which is trained a priori and offline. The fundamental reason for selecting ANN 
as the recognition layer of the system is the sensitivity of ANN while recognizing the amplitude, 
frequency and phase changes in the communication signal. The primary aim of PBCS is to separate the 
glossary patterns by using this feature of an ANN. From the CR perspective, the PBCS has the 
objective of optimizing the SNR vs. LSE relationship of the communication system by making 
dynamic band utilization through pre-defined glossaries, which have distinct characteristics. 

A prominent subject under the CR concept is spectrum sensing, on which extensive work has been 
reported in the literature. This work includes Matched Filtering (MF) [3], Waveform-based sensing, 
Cyclostationary-based Sensing [4–5], Energy Detector-based Sensing [6] and Radio Identification [7–8]. 
Among these, MF is the closest method to PBCS. The most significant disadvantage in the practical use 
of MF is the fact that the information about bandwidth, operating frequency, modulation type and order, 
pulse shaping, frame format etc. should also be known by the receiver, whereas the proposed system 
overcomes this disadvantage, since the information is embedded into the ANN recognition process. 

There are various methods that utilize ANN to achieve spectrum sensing. Palicot et al. [9] have 
managed to successfully determine the bandwidth and its shape by using RBNN (Radial-based Neural 
Network). In another study, Gandetto et al. [10] have used Feed-Forward Back Propagation Neural 
Networks (FFBPNN) and Support Vector Machine (SVM) with Radial Bases Function (RBF) to make 
time-frequency analysis. On the other hand, Tsagkaris et al. [11] have introduced and evaluated the 
learning schemes those are based on artificial neural networks and their study could be used to predict 
the capabilities (e.g., data rate) of a specific radio configuration. Finally, Fehske et al. [12] have used 
Spectral Correlation Density (SCD) and Spectral Coherence Function (SCF) to perform Multi-layer 
Perceptron (MLP) to sense the spectrum. As opposed to these methods, the proposed system develops 
its own modulation technique by using Amplitude Frequency Phase Shift Keying (AFPSK) and the 
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data communication is achieved when the signal waveforms constructed through this method are 
recognized by MLP. 

The aim of this study is to evaluate the robustness of the proposed system against to the noise 
model in the communication channel. It is assumed that the effects of other communication channel 
models are handled by conventional methods in the literature. For instance, the multipath channel 
model effect on the performance is handled by the time delay estimation algorithm by using ANN [13]. 
The channel capacity determines the LSE and the measured noise level of the assigned channel points 
SNR value on the communication band. To select the most appropriate glossary from the glossary 
space, PBCS uses LSE to obtain from the data transfer rate availability in the channel capacity. Then, 
it measures the noise level of the assigned channel and it points SNR value on the communication 
band. Using these two values, it chooses the most appropriate glossary (Gi) from the glossary space 
(G) for transmission. Since the glossary space is known by both the transmitter and receiver, the 
received glossary information functions as the switch between ANN’s at the receiver side. The ANN 
decodes the information and offers it to the user service. 

PBCS is designed for multi-purpose utilization as a single-user or multi-user access. Different 
information sources (Sx, x = 1…n, in Figure 1) can be located in the transmitter side. Tx and Rx point 
the transmitter and the receiver blocks of PBCS, respectively. As mentioned in a previous study [14], 
the combined source signals and noise can be separated by the receiver. While the digital information 
is encoding, each binary word is assigned to the artificially constructed patterns in its glossary. Since 
this procedure realizes the modulation of the signal, there is no need for additional modulation in 
transmission. These modulated signals can be simultaneously transmitted through the communication 
medium. The natural noise is automatically added to these different signal patterns on the 
communication medium. The antenna at the receiver side percepts the combined and distorted 
information. Recognition layer can decode this received and synchronized signal. Figure 1 shows the 
generalized view of the PBCS structure. 

Figure 1. Generalized pattern based communication system structure. 

 
 
PBCS requires a dynamic radio frequency (RF) Front-end because of dynamic spectrum utilization. 

This need was already handled when the studies of Akos et al. [15] in which so-called Direct RF 
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Sampling was applied to the RF Front-end. Then, Psiaki et al. [16] have presented a new algorithm 
that finds the minimum sampling frequency and thus avoids overlap. The most important advantage of 
this study was the fact that Direct RF Sampling had the capability of processing multiple-frequency 
bands using a single front end. 

3. PBCS Structure 

As in all communication systems, digital information is modulated in the transmitter and 
demodulated in the receiver based on some method. In PBCS, the modulation is performed by using 
Sinusoidal Pattern Envelope Construction (SPEC), which will be explained in the following  
sub-section. On the other hand, the demodulation, which is another important process that determines 
efficiency and the performance of the system, corresponds to the offline pre-training of the ANN. This 
will also be explained in the Receiver Structure and ANN Design sub-section. 

3.1. Transmitter Structure and Constructing the Glossary 

The sequence of M-bit information is fed into a buffer. According to the size of the glossary, buffer 
takes the n-bit sequence from this information. This n-bit binary sequence is matched with any n-bit 
glossary (i.e., the binary sequence “010” is mapped to second pattern in selected 3-bit glossary). The 
encoder output is fed into the pattern sequencer. It concatenates these patterns in sequence. The 
concatenated pattern sequence is transmitted through RF Front-end. As seen, by not requiring any 
modulation and/or coding layer, the glossary construction algorithm forms the basis of PBCS. Figure 2 
shows the transmitter structure of the PBCS. 

Figure 2. PBCS transmitter structure. 

 
 

The “Glossary Selector” block has the most important role in PBCS performance. This block takes 
the glossary space information and channel spectral situation as an input. According to these inputs, 
this block calculates the maximum likelihood value. It uses a hysteresis function to determine the set of 
most proper glossaries in the glossary space. The reason for the usage of the hysteresis function in the 
glossary selector block is that the system gives the priority to the active glossary to reduce the 
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communication costs. The encoder uses the information of the bit stream size at the buffer and it 
selects the best-fit glossary from the glossary set given by the glossary selector. 

It is assumed that in order to construct the glossary space, the three fundamental parameters of the 
communication signal need to be shifted. For that reason, the AFPSK modulation method is used in 
PBCS. On the other hand, as far as the efficient use of spectral bandwidth is concerned, for an 
optimum solution this shifting operation needs to be sinusoidal instead of linear. For this purpose, the 
quarter sinus forms have been used as the basis units in the shift keying. The choice of quarter sinuses 
as the basis bears the advantage of making the shifts in the signal smooth thus prevents the unexpected 
extra spectral usage. Moreover, as a fundamental necessity of the RF communication, the constructed 
signal patterns satisfy the following three conditions: (1) Zero DC component: Average of each 
symbol and the series of symbols must be zero, so that the RF energy can efficiently be transferred. (2) 
Continuity: First and Second Derivatives of the symbol and the consequent symbols must be continues 
in order to prevent non-transferrable harmonics beyond the pass-band. (3) Bandwidth limitation: 
Spectral distribution of the generated signal should ideally be inside the pre-defined frequency interval. 
These features also provide a perfect fit during the pattern synchronization. SPEC space defined above 
is shown in Figure 3. One of the alternatives is shown in bold in the following figure. 

Figure 3. SPEC space for Level: ±2 and Depth:6.  

 
 

In Figure 3, the waveform envelope combinations for ±2 levels and 6 depth layers are given as an 
example. All possible outcomes in the SPEC space are formed by the changes in the amplitude, 
frequency and phase parameters of the signal. The three possible alterations between each depth layer 
can be a positive or negative quarter sinus or constant level. Since the changes in the signal parameters 
form the basis of the pattern system, they should be as uncorrelated as possible in the space in which 
they are located. Therefore, the glossary patterns are constructed so that depending on the number of 
bits that the glossary should contain, the most uncorrelated number of sinusoidal changes is chosen 
(i.e., for a 4-bit glossary, 16 routes). The vertical levels in the SPEC space represent the maximum and 
the minimum values that any of the signal characteristics can take. For instance, in a case of phase 
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equals to 5 degrees, the spaces defined between the limits +L2 = +5 and �L2 = �5; shifting is made 
between these two values. Similarly, when the frequency change is chosen to be between 2410 MHz 
and 2414 MHz, 2414 MHz and 2410 MHz are assigned to +L2 and -L2 respectively. Thus, basic signal 
glossary space G is formulated in Equation (2): 
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Each row represents a group of n(x) signal pattern inside the respective SNR and LSE limitations. 
Although the chosen glossary set Gi can be changed due to channel conditions, the signal pattern 
sequence is constructed from the same glossary for a certain data frame length. This is required for 
synchronization between the transmitters and the receivers besides satisfying the continuation of the 
communication signal. Each communication pattern is the consequence of signal patterns from one of 
the “m” glossaries. The number of signal pattern n(x) is determined by encoding of the binary data to be 
transferred. For instance, if Gx is 4-bit glossary, n(x) is set to 16. jth signal pattern from the ith glossary is 
defined as: 

� � � � � � � �� � njmitttftAftS jijijiji ...1  ;...1for     ,,, ,,,, ����  (3)
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 ��  � �  � � �  � � ��	 � 	 �  
(4)

where Ai,j(t), fi,j(t), and �i,j(t) varies between �1 (minus quarter sinus change) and +1 (plus quarter 
sinus change) with respect to one of the envelope combinations shown in Figure 3 and they satisfy 
SNR and LSE conditions assigned for the ith glossary. f0 is the central frequency, A0 is the mean value 
of amplitude interval, �A and �f is the allowed limitation on amplitude and frequency change for each 
level. In the initial condition of t = 0 (at L0), which corresponds to (0, 0, 0) coordinate on the SPEC 
space, the formula the basic signal pattern is simplified into the following: 

� � � �tfAtS ���� 000 2sin � (5)

3.2. Receiver Structure and ANN Design 

In the PBCS receiver the signal distorted by the communication medium arrives at the RF 
Front-end, where, after a pattern separation (synchronization and elimination of multipath effect) 
process, it will be fed into the ANN as an input. Since ANN is pre-trained for the patterns, it can 
recover the distorted signal into known patterns, and outputs the associated bit sequences. These bit 
sequences are concatenated by the Bit Sequencer layer in order to come up with the original 
information. This procedure is described below in Figure 4. 
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Figure 4. PBCS receiver structure. 

 
 

In the receiver, the layer that has the most crucial effect on the performance of the system is the 
ANN and specifically its design. The ANN design process includes the training and the test procedure. 
In the training phase, the ANN is trained offline according to the glossary patterns, which are called 
the training set. Distorted by the communication medium, the training set now becomes the test set, 
which is used to check the performance of the pre-trained ANN. 

The ANN concept was first proposed by Haykin [17] under the name of MLP (Multilayer 
Perceptron). Hierarchically structured, the ANN achieved successful results in complex classification 
and pattern recognition problems. Therefore, in this study, ANN is used in order to recognize the 
signal patterns, which are constructed based on the RF signal construction principles. 

The MLP has one input and one output layer, and in addition, it may have one or several hidden 
layers. Essentially, it is referred to as Black-box in some studies; it aims to determine any function 
between input and output values. The difference between the output of ANN and the expected output is 
fed into the system using the back-propagation algorithm. After a number of repetition, which is 
determined with respect to the user defined finishing criterion, a function can be formulated between 
the input and the output. 

Many methods are developed in the literature for back-propagation algorithms. Since it was the 
most applicable to the proposed system, the “Steepest Descent” one was chosen in this study. This 
method based on minimization of the quadratic cost function by tuning the network parameters. The 
mathematical expression is this algorithm as below: 
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where w represents the weights of the ANN, k is the number of iterations, � is error between the output 
of ANN and the actual value, � is the learning rate. Learning rate can be selected as a constant or an 
adaptive coefficient. An adaptive learning method is preferred for ANN in the PBCS receiver. The 
well-known adaptive method for the learning rate update is called as “additive increment and 
multiplicative decrement”. This approach provides a cost effective solution in terms of simplicity and 
more robust behavior to find the best value of learning rate. The formulization of this procedure is in 
the following equation: 
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Another important aspect in ANN design is to determine the number of hidden layers and of 
neurons located in these layers. From the low complexity and high applicability perspectives, a single 
hidden layer is chosen in PBCS design. The number of neurons in this layer is determined by the 
cross-validation method. On the other hand, the number of neurons at input layer is set as equal to the 
number of samples for each pattern. The number of neurons at the output layer is selected as equal to 
the number of patterns in the glossary. 

The constructed signal pattern (waveform) P(t), is sampled by the unit time delay and S(t) is 
obtained with the sample and hold circuit. Each sample corresponds to the neurons of the input layer. 
The number of neurons in the hidden layer is determined by the cross-validation in an offline process. 
The outputs y1, y2,…, yq indicates recognition levels between the glossary and the applied signal in the 
q-tap frame. The encoder block in this figure encodes the ANN output, which is converted into the 
respective binary signal sequences in the glossary order. The binary sequences at each frame instant 
are added to recover all the information at the receiver where these frames were encoded by ordering 
the patterns at the origin. 

The error in ANN is calculated in terms of mean squared error (MSE). The aim is to decrease this 
error at each training and to finally bring it below the user defined threshold. The resulting error value 
is given in the equation below: 

q,1,jfor     )()()( ���� nyndne jjj  (8)

where d is the actual response and y is calculated response. The difference between them signed as 
error (e). q represents the number of neuron at output layer. MSE can be calculated as: 
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where e, D, � and � denote error of neural network at output, dimension of array, total number of 
patterns in the training set and mean squared error sequentially. 

The synaptic weights are adjusted to minimize the quadratic cost function. However this process is 
different between the layers. For example, the adjustment of synaptic weights between hidden layers 
and output layer is given by the Equation (10) and Equation (11): 
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where � is activation function, which will be explained below in detail. H represents the number of 
neuron at hidden layer. Furthermore, the adjustment of synaptic weight coefficients between the input 
layer and the hidden layer is given by Equation (12): 
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where I represents the number of neuron at input layer and � indicates learning-rate. Designer can 
design it as constant or adaptive. In case the network does not converge, Rumelhart et al. [18] has 
generalized the formula. It uses to determine weight coefficients including " momentum parameter. 
This formula is given in Equation (13): 

)()()1()( nynnwnw ijjiji ��" ����  (13)

The activation function is effective on the sensitivity of the output layer. There are many activation 
functions in the literature. Three main functions are called sigmoid, linear and tangent hyperbolic and 
are shown in Figure 5. Due to the appropriation of upper and lower limit and its transition function, the 
sigmoid function has been selected as the activation function in our case. The problem in this system is 
to determine which pattern has been entered by the input layer. Therefore, the output corresponding to 
the input pattern should be one, and the rest should be zero. The most proper activation function for 
this purpose is the sigmoid as given in Equation (14): 

� � ))exp(1/(1 #$# ���!  (14)

However, this function carries the problem of determining a constant (“�”) at the formula, which 
affects the performance of the ANN directly. This value is determined by test experiments. 

Figure 5. Activation Functions: (a) Sigmoid, (b) Tangent Hyperbolic, (c) Linear.  

 
 

The parameters used in this system are the constant user defined momentum coefficient and the 
adaptive learning rate coefficient. The hidden layer neuron quantity of ANN is determined by the 
cross-validation algorithm. The Sigmoid activation function was selected in the output layer. The ANN 
design obeying the above constraints is represented in Figure 6. 

Both the transmitter and receiver sides of PBCS are formed in line with unique algorithms in order 
to enable a more dynamic utilization for the communication medium. The following section will cover 
and analyze the simulation results regarding the design process of PBCS. 

4. Simulation and Test Results 

The objective of this study was to design a system which can manage SNR vs. LSE relationship 
depending on the user expectations and spectrum availabilities. In line with this objective, for each bit 
level, distinct glossaries were constructed and the number of neurons in the associated ANN is 
determined through the cross-validation process. The results of this process are given below. 



Entropy 2011, 13              
 

 

74

Figure 6. The general view of MLP neural network architecture. P(t) is the pattern in the 
active glossary, and S(t) is the sampled form of the pattern. 

 
 

The most important innovation in PBCS is to design a system, which can manage SNR depending 
on the user request in terms of LSE. According to the user request and channel conditions, it switches 
the communication signals and find out the best point. Six different glossaries are constructed with 
different boundary conditions for the signal parameters (A, F and P). These glossaries are constructed 
by the usage of SPEC algorithm for depth 6 and level ±2. MLP is designed with single hidden layer. 
The number of neurons in the hidden layer is determined with the cross-validation method (Figure 7). 
The momentum coefficient is set to 0.5. The coefficient for the sigmoid is selected as � = 0.6. The 
learning rate is adjusted in adaptive manner. The glossary space G is constructed with these rules and 
parameters. This matrix has six rows and each row has different number of column regarding the bit 
level of glossary. Some glossaries constructed with the SPEC algorithm are listed in Table 1. These 
values indicate the interval boundaries in SPEC space. Minimum and maximum values for each feature 
points –L2 and +L2 levels, respectively. 
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Figure 7. Cross-validation for determining the number of neurons. 

 
 

Table 1. Glossary interval boundaries for SPEC space @ 2.412 GHz central frequency. 

Glossary Amin (V) Amax (V) Fmin (MHz) Fmax (MHz) �min (°) �max (°) 
G1 (1-bit) 0.09 0.10 2410 2414 �45 +45 
G2 (1-bit) 0.09 0.10 2401 2423 �90 +90 
G3 (1-bit) 0.09 0.10 2410 2414 �15 +15 
G4 (2-bit) 0.09 0.10 2401 2423 �90 +90 
G5 (4-bit) 0.09 0.10 2410 2414 �35 +35 
G6 (4-bit) 0.09 0.10 2408 2416 �35 +35 
 
The Shannon boundary is drawn by using the Shannon limit theorem that is based on a function of 

signal bandwidth and the SNR rate [1] of the system. Just the parameters of this theorem are adapted to 
the space parameters of SNR vs. LSE. Hence Equation (15) is derived and Shannon boundary line in 
Figure 8 is drawn with respect to Equation (15): 
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Figure 8 shows the flexible structure of PBCS in SNR vs. LSE space. Many distinct glossaries are 
constructed by using the SPEC algorithm and the AFPSK method. Constructed communication signals 
are then band pass filtered with respect to IEEE 802.11.a/g channel mask model [19]. According to the 
user demand and channel conditions, PBCS switches to the best point for optimizing the 
communication system performance. The marks in Figure 8 show the best working point regarding the 
glossary at 10�5 BER. 
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Figure. 8. LSE via manageable SNR and comparison with Shannon boundary. 

 
 

The most significant feature of the proposed method is its competence to operate at a region around 
Shannon boundary. This provides the manageable SNR capability by adaptive switching to optimal 
signal pattern (communication waveform) set between high noise redundancy and high data bandwidth 
requirements under observed spectrum conditions. Since the pre-trained signal patterns are used in this 
system; the Shannon boundary is seen as it is virtually broken at some points (G4 and G6) in SNR vs. 
LSE space. This depends on the difference between the bandwidth of recovered digital data based on 
priori information in glossary and the raw physical data bandwidth inside the communication medium. 
In other words, use of predefined patterns in glossaries also provides a sort of soft compression of the 
information and virtually working beyond the Shannon boundary depends on the nature of data and the 
selected glossary features. In fact, since a sort of error recovery is also processed during the decoding 
of the received signal by a trained ANN, it cannot be seen as violation of the physical limitation set by 
Shannon Theorem. 

Another observation is that the PBCS is robust to high levels of Additive White Gaussian Noise 
(AWGN). Figure 9 represents the distortion effect of the AWGN on the signal patterns for the selected 
SNR values. The pre-trained ANN can recognize the pattern under this noise pressure. This distortion 
on one of the glossary pattern G1 is shown in Figure 8. The data is recovered under �2.12 dB SNR 
value with 10�5 BER. 

The comparison between the Eb/N0 curves of the PBCS for specific glossaries and of the MF 
performance is given in the Figure 10. 

According to the performance evaluation, the proposed method gives better results than the MF for 
specific glossaries. This figure shows that G4 has 28.2% and G2 has 92.2% better performance than 
MF. These values are derived from the area calculation under the graph between ultimate Shannon 
limit (�1.59 dB) and 10 dB in Figure 10. SNR level affects the Eb/N0 value exponentially, although the 
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LSE is linear dependent. Therefore, the slope of the curve takes different positions regarding to the 
position of the glossary in SNR vs. LSE space. It must be considered that besides the use of fixed 
signal pattern sets (Glossary) for each graph in simulation results, performance optimization of the 
PBCS mainly depends on adaptive switching between set of patterns due to SNR capability and the 
sensed SNR under dynamic requirement and availability variations. MF has better performance than 
G4 for high BER values when the comparison is made for fixed glossary set. 

Figure 9. The distortion on signal pattern with AWGN in Glossary 1 (G1). 

 
 

Figure 10. Performance comparison between PBCS and matched filtering. 
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A block diagram of a semi-hardware lab test platform is shown in Figure 11. This test platform is 
independent of RF front-end features and designed to confirm assumptions at baseband only. ANN and 
the calculations are performed on a PC connected via I/O cards. 

Figure 11. Block diagram of PBCS test platform. 

 
 

Some glossaries constructed with SPEC algorithm for 8 KHz central frequency are listed in Table 2. 
These glossaries are used to test baseband performance of PBCS. 

Table 2. Glossary interval boundaries for SPEC space @ 8 kHz central frequency. 

Glossary Amin (V) Amax (V) Fmin (Hz) Fmax (Hz) �min (°) �max (°) 
G7 (1-bit) 0.75 1.00 7995 8005 �5 +5 
G8 (1-bit) 0.50 1.00 7998 8002 �3 +3 
G9 (1-bit) 0.01 1.00 7990 8010 �10 +10 

 
Randomly generated binary information is encoded here by the PBCS encoder. The base frequency 

is selected as 8 kHz for the principle validation. The spectral bandwidth utilization is measured through 
a spectrum analyzer. Each pattern in baseband is sampled by 40 kHz Analog to Digital Converter 
(ADC). The digital information is fed into ANN by the use of Delay Network. ANN decodes the digital 
signal to binary words and the sequencer concatenates the ANN output. The comparator measures the 
BER with respect to buffered original and the information recovered by the PBCS receiver. LSE values 
for three different glossaries at three different SNR rates are listed in Table 3. 

Table 3. PBCS performance analysis @ 8 kHz test platform. 

 Input Output 
Glossary Bandwidth (Hz) BER SNR (dB) LSE (bps/Hz) 
G7 5.75 10�5 20.25 10.869 
G8 7.21 10�5 15.75 8.668 
G9 381.56 10�5 �3.10 0.163 
 
In real-time applications, multi-path effect is an important factor that is effective in both RF 

communication and underwater ultrasonic communication. Although we have developed solutions by 
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making some improvements to the ANN structure against multi-path effect problems, they have not 
been taken into consideration here in order not to increase complexity at this level. Solutions and 
performance for medium property related problems within specified frequency range will be published 
as joint work of this study. 

As shown by the simulation results, PBCS provides the advantage of selecting the most suitable 
point among different possible combinations in the SNR vs. LSE space. Practically, there are two 
significant problems of PBCS a) high sampling rate and processing power requirement, if direct RF 
sampling is preferred after RF signal receiver b) on-line training of ANN with the received signal, if it 
is down converted to baseband. The minimum sampling rate should be twice the central frequency 
according to the Nyquist Theorem. Moreover, the recognition layer, namely ANN, can be realized 
either by a floating point Digital Signal processor (DSP) or a Field Programmable Gate Array (FPGA) 
with sufficient amount of multiplier and adder elements inside. A critical consideration is the 
recognition time performance of the neural receivers in hardware design. We preferred using FPGAs 
instead of DSPs especially for the recognition mechanism since the progress can totally be 
mathematically modeled and requires higher speed processing as the base frequency increases. 
Although the decoding process takes around 0.00014 s/bits during the given simulations on a standard 
PC platform (Intel T2400 @ 1.83 GHz for MATLAB on a Windows XP system), this changes 
dramatically when we directly program on an embedded system. FPGA based hardware 
implementation also provides real time performance assurance. For example the FPGA EP4SE230 
from Altera STRATIX IV E family has 18-bit 1,288 multipliers in one package and this allows the 
construction of neural networks with 120 by 5 by 2 neurons in each layer respectively. These numbers 
indicate the quantity of nodes in the input, hidden and output layers of any used neural network in 
simulation results for 1-bit glossary. 

5. Conclusions 

Inspired by the recognition capability of the human, Pattern Based Communication System (PBCS) 
follows the perceptual selectivity of a human being. When a human recognizes sounds, the brain keeps 
perceiving sounds in the native language while shutting down to the others. The trained brain can 
selectively focus on to chosen conversation among all other sounds even if its portion is much less than 
all other heard sounds at same time. In PBCS, the communication system selectively recognizes and 
recovers the communication signal in known patterns and just like the human brain it ignores the 
unknown patterns. The objective of PBCS is to optimize the data transmission performance under 
varying spectral and SNR limitations.  

In this study we proposed a signal construction method called SPEC for PBCS so that the user can 
construct band limited glossaries for different target data transmission rates and SNR values. The 
signal patterns (waveforms) are constructed according to proposed SPEC method and matched with the 
binary information in the transmitter in computer simulation and the laboratory tests. The distorted and 
received communication signal pattern is recovered by an Artificial Neural Network (ANN) 
implemented on a PC in both cases. The output is then concatenated by the bit sequencer to obtain the 
original information. During the laboratory tests, generated and distorted signals patterns are sampled in 
the baseband and processed on a scaled PC platform after digitalization. The low frequency laboratory 
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measurements (Table 3) validate the simulation results when we neglect communication medium 
property related effects. As a result, SPEC method provides the necessary band limited and perceivable 
signals for pattern glossaries of PBCS and the proposed system offers advantages for variable 
communication performance requirements between noise redundancy and high link spectral efficiency. 
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