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Abstract: It is unquestionable that the concept of entropy has played an essential role both in
the physical and biological sciences. However, the entropy production, crucial to the second
law, has also other features not clearly conceived. We all know that the main difficulty is
concerned with its quantification in non-equilibrium processes and consequently its value
for some specific cases is limited. In this work we will review the ideas behind the entropy
production concept and we will give some insights about its relevance.
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1. Historical Remarks

The concept of entropy, indispensable for dealing with the subject of entropy production, is
certainly one of the most abused, and misunderstood concepts in theoretical physics. Since it is also
unquestionably related to the concept of irreversibility, we believe that, even for the nth time, it is
convenient to briefly summarize in this review both its origins and what we believe is its correct position
in this field, as well as its pertinent conceptualization.

So, let us go back to June 12, 1824 when Sadi Carnot published his treatise on heat engines [1]. His
main contribution was that for an engine drawing heat from a hot reservoir the amount of work that may
be obtained from the engine could never reach a 100% efficiency. There would always be a heat lost
to a cold reservoir which he knew would arise from friction, noise and vibration. Nevertheless he was
able to predict that the efficiency of a “Carnot engine” would depend only on the temperature difference
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within the engine. It was left to William Thomson, later Lord Kelvin, to prove in 1852 that this was
indeed the case and that a thermodynamic or universal temperature (T ) could be defined and shown to
be numerically equal to the empirical temperature (θ). It is also worth mentioning that it was around this
time that Lord Kelvin himself already spoke of the natural tendency of the existence of energy dissipation
in natural processes [2]. This fact was already well known to Newton [3].

The last part of this work was due to R. Clausius who, between 1854 and 1875 made three important
contributions [4]. The first one, well known to any student of thermostatics, is the fact that in a reversible
process the heat transferred ± d−Qr between the system and a heat reservoir whose temperature is θ, the

integral over the whole cycle of
d−Qr

θ
vanishes. Moreover he proved that θ = T and that

d−Qr

T
is the

differential of a state function S which he later called the “entropy”. Hence S is defined only for systems
known to be in their equilibrium states. Secondly he defined two “transformations”, the conversion of
heat Q into work W and its inverse, and the transfer of heat ∆Q from a hot to a cold body and the
opposite. He then showed that in a reversible cycle [5],

N ≡ −
∫
d−Qr

T
= 0 (1)

with the convention d−Qr < 0 if given by the system and d−Qr > 0 if absorbed. He then proceeded to state
that for irreversible processes, which he never carefully defined, the “compensation” N is such that the
heat transferred from a hot to a cold body and the conversion of work into heat required no compensation
whereas the inverse processes did. Thirdly, his great step was to show that for transformations which
occur in any cyclic process N must be non-negative or,

N ≡ −
∫
d−Q

T
≥ 0 (2)

so that if the cycle has a reversible path connecting two arbitrary equilibrium states 1 and 2 and an
irreversible one connecting the same two states, then trivially

N +

∫ (2)

(1)

d−Q

T
= S(2)− S(1) (3)

which is, for closed systems the most general statement of the second law thermodynamics. Clearly, for
an infinitesimal arbitrary process, Equaqion (3) reads

dS + dN =
d−Q

T
(4)

and for obvious dimensional requirements, dN may be written as

dN =
d−Q′

T
(5)

where d−Q′ is now called “uncompensated heat”. This heat as already pointed out by Carnot, Kelvin and
Clausius himself, arises from the dissipative effects naturally present in any real process (friction!) and
it is rather unfortunate that the appropriate term for such effect was not kept but substituted by its present
one “entropy production”, which, if carefully analyzed, means nothing.
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The last contribution to this effect came from a very distinguished student of Clausius, Max Planck,
who clearly defined thermodynamical irreversibility and proved a wonderful theorem [6]: “If any process
that has been identified as irreversible is shown to be reversible, then all irreversible processes must
be reversible.” Noticing next that in nature there exist no process free from friction he gives a full
significance to Clausius’ compensation attribute leaving a very important open question, namely, what
is the nature and how can we quantify N ? Attempts to answer this question are deeply associated
with the concept of irreversibility itself and to the contents of which is now known as irreversible
thermodynamics. This term is obviously repetitive since the second one ought to be enough. But uses
and habits prevail so we shall keep the full term in what follows.

2. Irreversible Thermodynamics

It appears that the first explicit reference to the existence of irreversible processes in macroscopic
physics is due to J. B. Fourier. In the stage of developing what later became his magnificent book “La
Théorie Analytique du Chaleur” [7] he established clearly that the process of transferring heat from a
hot to a cold body is irreversible and further, that the amount of heat transferred per unit area and unit of
time is proportional to the temperature gradient existing between the bodies. He then proceeded to study
heat transfer in simple geometries, spheres and cylinders and showed that for steady states,

∇ · (κ∇T ) = 0 (6)

κ being a property of the material, and for non–steady states,

∂T

∂t
= DT∇2T (7)

if the thermal diffusivity DT = κ/ρcV where ρ is the density and cV is the specific heat at constant
volume, is independent of the position.

In opposition to microscopic dynamics where classically Newton’s equations are invariant under time
reflections, t→ −t, Equation (7) is not, a signature characterizing an irreversible (dynamical) process.

In 1854 G. Kirchhoff reached similar results for the electrical charge flow. If the electric field is
E = −∇φ where φ is the electric potential, then the steady state of a conductor is characterized by the
equation

∇ · (ξ∇φ) = 0 (8)

where ξ is the electrical conductivity, implying that there is no charge accumulation on it. It is rather
striking that Equations (6) and (8) are nothing but the Euler–Lagrange equations for the variational
principle

δ

∫
ξ(r)(∇φ)2dV = 0 (9)

subject to the condition that δφ(r) = 0 on the boundaries of V , and the same for the temperature.
One therefore wonders why the study of irreversible processes did not follow the route of its relatives,
namely, mechanics and electrodynamics for which the equations of motion can be obtained from
Lagrangians or Hamiltonians through variational principles. In fact, this path was followed by Gibbs in
thermostatics [8] but has rarely been pursued in thermodynamics. In short, is it possible to formulate
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variational principles for what we may call a non-equilibrium entropy and obtain information about
how fast and along which trajectory an irreversible process occurs? Very few and restricted attempts
have been made along this line by Onsager [9,10], Gyarmati [11], and Ziegler [12] but until today a
convincing solid reply to this question remains unknown. This claim is somewhat unfair. Almost forty
years ago the mathematical physicist M. A. Biot [13] published a delightful monograph dealing precisely
with the formulation of variational principles to deal with the problem of heat transfer, both in linear and
non-linear systems. As he showed in the appendix of this work the method is applicable to other fields
including irreversible thermodynamics. The main question is how to construct variational principles
for field variables such that the resulting Lagrangian equations are equivalent to a minimum dissipation
principle. This is achieved through a function which, in many cases turns out to be proportional to
the standard entropy production term. This result brings to two facts: first, the absolutely unphysical
association of the true cause of irreversibility, namely Clausius’ uncompensated heat, with the entropy
production which has obscured the heart of the problem; second, the rather frequent assertion stating
that very little work has been done in this direction. Our opinion is that Biot’s result and plausible
generalizations have simply being ignored.

A clear example of the above method is the relationship between the Bénard instability and entropy
production, whereby one obtains a thermodynamic interpretation of dissipative structures. Although this
kind of analysis and other similar examples are so far restricted to linear regimes [14], the extensions to
non-linear cases could be approached using Biot’s ideas.

In order to keep the language as precise as possible we shall use the symbol S for the equilibrium
value of the entropy, or its local equilibrium counterpart as it will soon show up. The thermodynamic
function which will play the role of an entropy, provided it can be defined with precision, will be denoted
by η per unit mass so that ρη will act as an a non-equilibrium entropy per unit volume and

∫
ρ η dV where

the integration is over the whole volume of the system, is the sought “non-equilibrium” entropy SNE .
We warn the reader that the physical content of all this terminology remains still to be carefully clarified.

We may now return to examine the origins of modern non-equilibrium thermodynamics which bring
us back to the differential form of Equation (3) which in turn, together with Equation (3) may be
written as

TdS
NE − d−Q = d−Q′ > 0 (10)

for an arbitrary process. Clearly, Clausius entropy S cannot appear in (10) since the process is not
necessarily a reversible one. Nevertheless, in 1923 the Belgian physical chemist T. de Donder took
Equation (10) and wrote it as [15,16]

T
dS

dt
− d−Q

dt
=
d−Q′

dt
≥ 0 (11)

which is, in general, not valid unless we appeal to the local equilibrium assumption, as we shall
discuss later. Using the definition of affinity, Gibbs equation for chemical reactions and the first law
of thermodynamics also written as a time dependent equation, he was able to show that

d−Q′

dt
≡ σ =

A

T
Jc (12)

where Jc, the so called “chemical flux” is proportional to the time rate of change of the “degree

of advancement” of a chemical reaction [15,16]. The term
A

T
that he identified with the chemical
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force inducing the reaction and the time rate of change of Clausius’ uncompensated heat became the
“entropy production”, a rather unfortunate term since it hides the origin of d−Q′, namely, dissipation.
Yet this “flux–force” relation became the fundamental relation that for over forty years dominated the
development of irreversible thermodynamics, and in many ways spread the significance of the term
“entropy production”.

In this connection it is interesting to mention a specific case for which Clausius uncompensated
heat can be readily calculated. Indeed consider a homogeneous reactive system undergoing an
isochoric–isothermal chemical reaction involving r components and assume that the local equilibrium
assumption (LEA) holds true. Then for the change in the entropy one may write

dS = diS + deS (13)

where deS
NE

=
d−Q

T
, assuming the existence of a universal temperature T . The quantity diS

NE is
related to the internal dissipation processes occurring during such process and thus is somehow related
to Clausius’ uncompensated heat, and S is the local equilibrium entropy. Gibbs equation reads

dS =
1

T
dH − 1

T

∑
r

µr dηr (14)

µr being the chemical potential for the rth component with ηr moles.
Now 1

T
dH = 1

T
(dQ)p = deS, is the change in the entropy due to the heat transferred between the

system and its surroundings. Thus

dS = deS −
1

T

∑
r

µr dηr (15)

By definition, Gibbs free energy changes in time according to

dG

dt
=
dH

dt
− T dS

dt
(16)

so that combining Equations (15) and (16) and using the definition of chemical affinity,

A =
∑
r

µr dηr (17)

we get that
dG

dt
=
dAT,V
dt

=
diS

dt
(18)

But according to Garfinkle [17,18] for such reactions,

dAT,V
dt

= Aref

(
1

t
− 1

tK

)
(19)

where Aref is a reference value for the affinity and tK the time (finite) in which the reaction reaches
equilibrium. From Equations (18) and (19) we see that the total amount of heat produced by the
“internal” friction in the reaction is

∆iS = Aref

[
ln(t0/tK)−

(
t0
tK
− 1

)]
(20)
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where t0 is an initial time clearly different from zero since collisions must take place before the reaction
starts. Clausius uncompensated heat would be T ∆iS, in principle measurable in the laboratory.

The theories that were set forward using this idea where pioneered by Onsager in 1931 [19,20] and
afterwards modified and adapted to a great variety of systems by Eckart in 1940 [21,22], Meixner during
1942–1943 [23], Prigogine in 1947 [24], de Groot (1952) [25], and finally summarized in the well known
monograph of de Groot and Mazur in 1962 [26]. Since all this work is well known to the thermodynamics
audience and further, it has been also analyzed within the framework of more recent developments in
several review articles [27–29]. We will limit ourselves here to outline the most relevant ideas underlying
such work, emphasizing those which are relevant to the purposes of this paper.

The starting point of these theories now referred to as Linear Irreversible Thermodynamics (LIT) is to
write for the change in the non-equilibrium entropy SNE for any process occurring in the system, either
open or closed, that

dS
NE

= deS
NE

+ diS
NE

(21)

For the whole volume V occupied by the system,

S
NE ≡

∫
ρ η dV (22)

and
dS

NE

dt
= −

∫
A

Jη,t · da (23)

where Jη,t is the total entropy flowing through the boundaries A of the system. Moreover,

diS
NE

dt
= −

∫
σdV (24)

where σ (multiplied by T ) is Clausius’ uncompensated heat per unit volume. Pointwise,
Equations (22–24) lead to the well known “entropy balance” equation, namely,

∂(ρ η)

∂t
+∇ · Jη,t = σ (25)

which is indeed an “empty” equation since none of the quantities present has been given a clear
physical significance. In LIT this is achieved by assuming that the “local equilibrium assumption” holds
true [30]. In simple words this assumption establishes that the validity of the usual thermostatic
relationships among state (equilibrium) variables hold true at every space point r of the system and
any time t. Thus, SNE → S, Clausius’ entropy, η ≡ s(r, t),

Jη,t ≡
Jq
T

+ ρ s u (26)

where Jq is the conventional heat flux, u is the hydrodynamical velocity, ρ ≡ ρ(r, t) and σ turns out to
be, as mentioned before, a bilinear form in the fluxes (Ji) and their corresponding forces (Xi). Whence

σ =
r∑
i=1

Ji : Xi (27)
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In Equation (27) the symbol : denotes the appropriate tensorial contraction. Finally one assumes that
the theory is valid for small values of the “gradients”, a restriction contained in the well known linear
relationship between forces and fluxes which transforms Equation (27) into a quadratic form

σ =
r∑

i,j=1

Lij XiXj (28)

where Lij is the matrix of the transport coefficients. σ is referred to as the “entropy production” in the
system and as Clausius conjectured, it arises from the dissipative effects which are irremediably present
in any irreversible process. Besides, Lij = Lji, as it was proved by Onsager himself, a fact well known
as Onsager’s reciprocity theorem [31]. Further, in LIT one either assumes or proves, using in general
experimental information about the transport coefficients, that σ > 0, which is consistent with the second
law of thermodynamics. The vast number of processes to which this formalism may be applied is so
well documented that it is completely unnecessary to extend ourselves in this direction. One additional
comment is however pertinent. The term “entropy production” associated to σ is unfortunate. In fact it is
meaningless as to speak of the production of energy, pressure, volume or any other thermostatic variable.
Being what it is, the concept of dissipation should have remained attached to it,

∫
T (r, t)σ(r, t)dr

is precisely, the total amount of “uncompensated heat” arising from friction and/or the dissipative
mechanisms. It is precisely that amount of heat that we can measure in the laboratory, entropy, even
in its local meaning is not a measurable quantity.

At this stage one reaches the confrontation of how to go beyond LIT whose limitations are also well
known and also very nicely summarized in recent review articles on the subject [27,28]. The first, most
fundamental question is precisely the physical meaning of the so-called “non-equilibrium entropy”. If
this is not achieved then what we may understand about irreversible process remains in the dark. In 1969,
using rather attractive ideas about the operation of electrical networks, Meixner conjectured [32] that for
processes occurring in non-equilibrium systems SNE either cannot be uniquely defined or if it can, it may
be done in an infinite number of ways. Curiously enough, using similar arguments it has been shown
that for a linear planar electric network, the currents that appear in the network, governed by Kirchhoff’s
law, are distributed in such a way that the maximum entropy production state is achieved [36]. In this
calculation the local equilibrium assumption enters in a rather disguised way since di S in Equation (21)

is identified with the equilibrium entropy and
dσ

dt
with

1

T

d−Q

dt
although in this last expression, energy

dissipation appears in its usual form, Joule’s heat RI2.
From the microscopic view and for closed systems the second possibility was shown already over

twenty years ago to be the most probable one [33,34]. Thus it appears that Shannon’s information
entropy would be the most suitable candidate for this purpose but in that case σ would have to be carefully
interpreted.

Another alternative that has prevailed in the last thirty years consists of several approaches all known
under the generic name of continuous or rational thermodynamics, although continuum and rational
may not be exactly synonymous. They can be in general classified as entropy theories and entropy
free thermodynamics. The latter seem to have serious deficiencies so we shall not worry about them
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here [27,28]. The former ones basically start from the assumption that the so-called Gibbs–Duhem
equation holds true in a finite volume of the system, namely

d

dt

∫
V

ρ η dV +

∫
A

Φ · da−
∫
V

ρfη dV =

∫
ρ σ dV > 0 (29)

where ρ η is defined in Equation (22), Φ ≡ Jη,t the total entropy flux and fη is the entropy source per unit
mass. Thus a non-equilibrium entropy is assumed to exist and further the total uncompensated heat (here
σ is per unit mass) is assumed to obey the second law of thermodynamics. In some of these theories
Equation (29) is assumed to hold also locally so that

∂

∂t
(ρ η) +∇ ·Φ− ρ fη ≡ ρ σ ≥ 0 (30)

The two most successful members of these theories are those of Coleman and Noll and of I. Müller.
Both have been thoroughly discussed, evaluated and compared in excellent recent reviews to which the
interested reader is referred for all pertinent details [27,28]. Nonetheless one has to accept that neither
one completely fulfills the requirements of a unique, solid thermodynamic theory of irreversibility.
Many loopholes and fine points are still at large and more work will be required in this direction. In
the following two sections we will provide, first a more microscopic basis specifically for Clausius’
uncompensated heat and second, some examples of a variety of phenomena illustrating the relevance of
this concept.

Before proceeding with the following sections, one last note of caution must be given. This note
concerns with essentially three terms that frequently appear in the literature, namely, the theorem of
minimum entropy production as stated in LIT [24,26], the maximum entropy production principle, and
the maximum entropy formalism. When read on a first glance they appear to be, if not contradictory,
somewhat confusing. Let us briefly recall their origins. The minimum entropy production theorem was
first proved by Prigogine and in essence establishes that if in a system a subset of the irreversible forces
acting on it are kept constant, the fluxes which are generated by the remaining set of available forces
are zero and the entropy production in the system is a minimum. Proofs, examples and long discussions
about the limitations and applications of this result are available in the literature [24,26]. Further, that
the theorem is a simple corollary of the Onsager–Gyarmati’s variational method. A particular case of
the maximum entropy production principle (MEPP) set up originally by these authors may be found in
Reference [37]. Further, the MEPP method and the maximum entropy formalism (MEP) are practically
synonymous. In the words of one of its stronger adepts, E. T. Jaynes [38], the method is not as ambitious
as a physical theory which asks for explanations of how systems behave. Here we simply ask a more
modest question: “Given the practical information that we have from observations, what are the best
predictions we can make of observable phenomena?” Thus, concerning the subject of this paper, one
is not seeking an explanation of irreversibility but limits the answer to describe and predict observable
facts. These ideas are very old [39]. Their probabilistic roots date back to Bayes and Laplace and were
brought into physics by Maxwell, Boltzmann, Gibbs, and Shannon. The concept of entropy production
appears only when MEF itself is used to deal with irreversible processes and in this context has been
extensively used and described for a large variety of cases. We shall come back to it in the forthcoming
sections in a very careful way.
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3. Entropy Production and Kinetic Theory

As we pointed out, the concept of entropy is, if not the most, certainly one of the most abused,
misunderstood and polemic concepts in theoretical physics. In the kinetic theory of dilute gases the
situation is somewhat less critical since the so-called H theorem provides an explicit form for the
so-called H functional that in equilibrium is related to the Sackur–Tetrode formula for the equilibrium
entropy of a classical perfect gas. However, the question of irreversibility (which is not restricted to
dilute gases) closely tied to the H theorem has provided extensive discussions in the literature that
even in these days are present, making us to believe that the discussions will continue in the future. In
part this situation can be explained because we have new discoveries and tools that were unavailable to
previous researchers; the emergence of chaos in deterministic systems and the wide use of computational
techniques[40], for example.

Let us start by making some brief historical remarks that, again, are useful to put the ideas in
perspective [41]. According to Chapman and Cowling [42], in 1858 Clausius introduced the concept
of mean free path, although earlier studies started with Daniel Bernoulli in 1738. Later on, in 1859,
Maxwell obtained formulae for the transport coefficients using the concept of mean free path, introduced
the concept of velocity distribution function (f ), and obtained the form of the equilibrium distribution
function f (0).

Coming back to the origins of entropy production in the kinetic theory of dilute gases, in 1872
Boltzmann with his H–theorem improved Maxwell’s proof for the form of f (0), the celebrated
Maxwell–Boltzmann distribution function, by using an integro-differential equation, now named the
Boltzmann equation;

∂ f

∂ t
+ c · ∇r f + F · ∇c f = J(f, f) (31)

where J(f, f) represents the collision term whose explicit form is given below, c is the molecular
velocity, and F is the external force per unit mass (acceleration). The collision term is given by,

J(f, f) =

∫
de′
∫
dc1 gΣ(g, χ)

(
f(r, c′, t) f(r, c′1, t)− f(r, c, t) f(r, c1, t)

)
(32)

This term gives the rate of change of the distribution function due to binary collisions. It consists of
a gain term corresponding to molecules with initial velocities c′ and c′1 that after colliding have final
velocities c and c1, and a lost term in which molecules with initial velocities c and c1 collide and end up
with final velocities c′ and c′1. Since one is interested in calculating all possible situations in which one
of the molecules has velocity c or ends up with such velocity, one has to integrate over all the possible
velocities c1. The unit vector e′ is defined by g′ ≡ c′1 − c′ = ‖g′‖ e′, the corresponding integration over
e′ takes into account all the possible directions that c′1 has with respect to c′. Σ(g, χ) is the differential
scattering cross section [48], g ≡ ‖c1 − c‖ = g′ ≡ ‖g′‖, g = g e, and cos(χ) = e · e′. More details can
be found in the book by Chapman and Cowling [42] and other publications [43,45–54].

Let f = f(r, c, t) be a solution to the Boltzmann equation, then the following statements can be
obtained from the Boltzmann equation,
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• For any well-behaved function (provided f exists and the integrals converge) the transport equation
for any function ψ(r, c, t) is obtained by multiplying the Boltzmann equation by it and integrating
over the molecular velocities,∫

dcψ(r, c, t)
∂f

∂t
+

∫
dcψ(r, c, t) c · ∇rf +

∫
dcψ(r, c, t) F · ∇cf

=

∫
dcψ(r, c, t) J(f, f) (33)

The following identity for the right hand side of the transport equation, Equation (33), will be
useful later on and can be found in [42,47] — see Equation (3.54,5) in Reference [42] and Equation
(4.1-11) in Reference [47], respectively—,∫

dcψ(r, c, t) J(f, f) =
1

4

∫
dc

∫
de′
∫
dc1 gΣ(g, χ)(ψ + ψ1 − ψ′ − ψ′1)(f ′ f ′1 − f f1) (34)

where the following short hand notation has been introduced for convenience,

f ≡ f(r, c, t), f1 ≡ f(r, c1, t), f ′ ≡ f(r, c′, t), f ′1 ≡ f(r, c′1, t) (35)

with similar definitions for ψ. Equation (34) is true provided the principle of microscopic
reversibility holds true.

• The most general function Ξ(r, c, t) is a collision invariant, meaning that∫
dc J(f, f) Ξ(r, c, t) = 0 (36)

For a monatomic gas, a linear combination of the following fundamental collision invariants that
express the mass, momentum and kinetic energy are conserved during the binary collisions:

Mass
Ξ(r, c, t) = m (37)

Momentum
Ξ(r, c, t) = m c (38)

Energy
Ξ(r, c, t) =

m

2
‖c‖2 (39)

where m is the mass of the molecules. For each of the previous collision invariants the transport
equation given by Equation (33) leads to the conservation equations of mass, momentum, and
energy, their explicit form is available in the literature [42,45,47,48,54,56]. Notice that for any
collision invariant the right hand side of Equation (33) is zero by definition.

• For Ψ(r, c, t) = ln f(r, c, t) and defining the function H by (notice that a positive distribution
function is here essential),

H(r, t) ≡
∫
dc f ln f (40)
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the transport equation leads, when F = 0, to

∂

∂t
H(r, t) +∇ · (JH) = σH(r, t) (41)

with,

JH =

∫
dc c f ln f (42)

and

σH(r, t) =

∫
dc J(f, f) ln f =

1

4

∫
dc

∫
de′
∫
dc1 gΣ(g, χ) ln

(
f f1

f ′ f ′1

)
(f ′ f ′1 − f f1) (43)

where the second equality in Equation (43) follows from Equation (34). The main point to notice

is that the sign of ln

(
f f1

f ′ f ′1

)
is always opposite to the sign of (f ′ f ′1 − f f1) so that σH(r, t) ≤ 0

since gΣ(g, χ) ≥ 0. We are now in position to establish a connection with our previous discussion
in relation with Equation (25). Defining s(r, t) = −k

B
H(r, t)/ρ(r, t), where k

B
is the Boltzmann

constant and s will be identified later on, Equation (41) reads as,

∂(ρ s)

∂t
+∇ · (−k

B
JH) = −k

B
σH (44)

It turns out that in equilibrium the integral of s over the volume [48] can be identified with the
equilibrium entropy per unit mass of a classical perfect gas, as given by the Sackur–Tetrode
formula, so that the kinetic theory of gases gives a meaning to Equation (25) when the
identifications η = s, Jη,t = −k

B
JH , and σ = −k

B
σH ≥ 0, are made. It is possible to

claim that since s reduces to the equilibrium entropy per unit mass of a classical perfect gas,
it can be considered as a generalization for situations out of equilibrium. However, being a
thermodynamical concept it would be more appropriate to first show that the whole equilibrium
thermodynamics admits a generalization, but this is far from being accomplished although claims
contradicting this statement can be found. Furthermore, the concept of entropy has many
meanings [57] and it has been pointed out [54] (p. 107) that J. von Neumann suggested Shannon to
use the term entropy for a similar expression arising in statistical mechanics, arguing that nobody
knew what entropy is and so in a debate he would always had the advantage. We think that the
concept of entropy has a clear thermodynamic meaning within the context of LIT. Therefore, the
concept of entropy production can have a well thermodynamic meaning in the same context. As we
will see, the statement that the entropy production density is maximum is derived near equilibrium
as happens also for LIT, but first we will make some pertinent comments.

• It is important to briefly mention Boltzmann’s H theorem that follows easily from what we have
just seen. In fact, for an homogenous system (independent of r) Equation (41) reduces to,

dH

dt
= σH ≤ 0 (45)

which is the original H theorem by Boltzmann and means that the function H decreases
monotonically with time. Then, since H is bounded below [42] it cannot decrease indefinitely but



Entropy 2011, 13 93

tends to a limit characterized by
dH

dt
= 0. As pointed out by Résibois–DeLenner [48] the theorem

can be generalized to non-uniform systems when there is no exchange with the external world
(
∫
A

JH · da = 0, with A the area delimiting the system) (see page 96 and also reference [47]). The
condition characterizing the limit just mentioned is σH = 0. It turns out that this condition holds
when ln f is a collision invariant and then the local Maxwell–Boltzmann distribution function is
obtained,

f (0)(r, c, t) =
n(r, t)

(2 π k
B
T (r, t)/m)3/2

exp

(
− m c2

2 k
B
T (r, t)

)
(46)

where n = ρ/m is the number density with ρ the mass density, and T is the temperature. Their
expressions in terms of the distribution function are given below, see Equation (47). Some of the
statements just given have not been justified with the level of rigor that mathematicians require,
but detailed discussions by mathematicians of the H theorem and the limit just described can be
found elsewhere [49,54].

In the discussion given above we started by assuming a well-behaved solution of the Boltzmann
equation, this is precisely the point in which a mathematician would be interested; to give a proof that
there are solutions to the Boltzmann equation, see Equation (31). The drift part of this equation, left
hand side of Equation (31), does not seem to present a problem but the collision term, the right hand
side of Equation (31) whose explicit form is given in Equation (32), should have a clear mathematical
meaning. Here start some of the mathematical problems associated with the equation. Actually in many
works a cut-off is introduced to make the collision term well-behaved since for long range potentials
the total cross section diverges and this introduces mathematical problems as in the case of plasmas
[55]. The problem is discussed in depth in the review by Villani [54]. According to him the theory of
renormalized solutions to the Boltzmann equation introduced by DiPerna and Lions is the only proper
theoretical framework in which the problem of existence can be treated in a robust way. The problem of
the existence of solutions to the Boltzmann equation was considered by the famous mathematician David
Hilbert (see [46,48] for what we consider clear accounts of his work). The basic point that we want to
stress from Hilbert’s work is that he was able to show that under certain assumption on f(r, c, t), the
solution to the Boltzmann equation is determined solely in terms of the initial values of five moments;
mass density (ρ), hydrodynamic velocity (u), and temperature (T )

ρ(r, 0) = m

∫
dc f(r, c, 0), u(r, 0) =

∫
dc c f(r, c, 0), T (r, 0) =

m

3 k
B

∫
dc ‖c‖2 f(r, c, 0) (47)

The definitions for mass density, hydrodynamic velocity, and temperature for any time follow from
Equations (47) by changing the initial time t = 0 by t. Hilbert’s work is considered as the initial step
for considering the so-called normal solutions that correspond to solutions in which the distribution is
a functional of the conserved variable; ρ(r, c, t), u(r, c, t), and T (r, c, t). The program was developed
independently by Enskog and Chapman and the method is known as the Chapman–Enskog method for
solving the Boltzmann equation [42]. The main idea is to express the solution as a power expansion in
terms of the Knudsen number and to obtain the relevant equations for the different orders. To order zero
in the Knudsen number the Euler equations are obtained, to first order the result is the Navier–Stokes
equations, etc. Critiques to the method are available in the literature [49,54]. There are other methods
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like Grad’s moments method [46], which sometimes is referred to as an uncontrolled approximation,
where the main idea is to express the distribution function as a series expansion in terms of a given set of
orthogonal polynomials and cut the expansion up to some point. Grad originally considered Hermite
polynomials (actually tensors) and cut the expansion considering thirteen moments. Nevertheless
several authors have considered more moments [58,59] or “regularizations” to Grad’s thirteen moment
approximation [60]. The method of the stretched fields and the Maxwellian iteration [49] have also been
used for solving the Boltzmann equation. There are other methods or variants of the methods mentioned,
the ones we have mentioned are the most well-known as far we know. Readers interested in knowing
more about them may take a look to the bibliography [43,45–54].

For the sake of illustrating the extremum of the entropy production we will consider an example
based on the Chapman–Enskog method. To determine the first order in the gradients solution with this
method (first order in the Knudsen number) one arrives at a stage where such solutions written as Φ(1) in
f = f (0)(1 + Φ(1)) has the form [42,47,61]

Φ(1) = − 2

n
B CC

◦

: ∇u− 1

n

(
2 kB T

m

) 1
2

A · ∇ lnT (48)

where C ≡ c − u is the peculiar velocity and the tensor B and vector A satisfy the following integral
equations,

n I(A) = f (0)

(
C 2 − 5

2

)
C , nI(B) = f (0) C C

◦

(49)

where the vector C is the dimensionless peculiar velocity, C ≡
(

m

2 kB T

) 1
2

C, the circle denotes the

corresponding traceless tensor, and the operator I is given by,

n2 I(F ) ≡
∫ ∫

de′ dc gΣ(g, χ) f (0) f
(0)
1 (F + F1 − F ′ − F ′1) (50)

for any scalar function F of the molecular velocity (its extension to vectors and tensor can be performed
in terms of their components); the meaning of the subscripts is similar as defined in Equation (35). In
the following, the bracket

[F,G] ≡
∫
G1 I(F ) dc1 (51)

will be used, when considering [F,G] with F and G vectors (or tensors) the scalar product (or full
contraction) is understood.

To proceed, one evaluates the rate of change of the local entropy of the gas s (s ≡ −k
B

∫
dc f ln f )

due to the collisions [62]

(∂s/∂t)coll ≡
1

4

∫
g b db dε dc dc1(f ′ f ′1 − f f1) ln(f ′ f ′1/f f1) (52)

using f = f (0)(1 + Φ(1)) and keeping only linear terms in Φ(1) it follows that [47]

(∂s
FK
/∂t)coll ≈ kB

(
2 kB T

3m
[A,A] ‖∇ lnT‖2 +

4

5
[B,B] S : S

)
= λ ‖∇ lnT‖2 +

2µ

T
S : S

≡ (∂s/∂t)coll,L (53)
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where λ > 0 is the thermal conductivity, µ > 0 the shear viscosity, and S is the rate–of–shear tensor [47]
given by,

S =
1

2

[
∇u + (∇u)t

]
− 1

3
∇ · u I (54)

with I the identity matrix and the superscript t denotes the transpose of the corresponding matrix.
Let a be a vector of the form a = a(C) C with C = ‖C‖ (or D a tensor of the form D = D(C) CC

◦
)

that satisfies the condition [a, a] = [a,A] with A = A(C) C (or [D,D] = [D,B], with B = B(C) CC
◦

)
Then, from the relation [a−A, a−A] ≥ 0 (and a similar relation for the tensor case) it follows that,

[a, a] ≤ [A,A], [D,D] ≤ [B,B] (55)

where the equality holds when a(C) = A(C) or D(C) = B(C), respectively. Since A and B given
in Equation (53) have the assumed forms of the statement just given, it follows that both [A,A] and
[B,B] must have maximum values implying that σH (see Equations (43)) (52) and (53) should also have
a maximum value. In other words, we have the maximum principle (or variational principle) that the
rate of change of the entropy density due to collisions is maximum. Other derivations of this maximum
entropy production principle are available in the literature [45,48]. When the Rayleigh–Ritz method and
Sonine polynomials are used, the principle provides a way to calculate the shear viscosity and thermal
conductivity [45,47,48]. It should be pointed out that the maximum principle just given is restricted to
first order in the Knudsen number and also to a linearization. In this sense, it can in no way be claimed
to be more general than the Boltzmann equation from which it was obtained. There are other variational
principles in the kinetic theory of gases related to the entropy production theorem discussed here, the
interested reader is referred to the relevant literature [37,63,64] . For discussions of the entropy balance
equation and extremum entropy principles using Grad’s moments method, see [65,66]. In particular,
Struchtrup and Weiss [66] proposed a minimax principle stating that the maximum over all positions
of the local entropy production rate is minimal for stationary states. Indeed they consider the principle
as an aid to determine the boundary conditions for the moments, and they actually considered fourteen
moments in their test case. Castillo and Hoover [67,68] studied the convecting flows of a stationary,
compressible, viscous and heat-conducting fluid using the Navier–Stokes equations. They found that the
unstable solution with six rolls was, among the other two solutions mentioned by Castillo and Hoover,
the one selected by the minimax principle. Struchtrup and Weiss replied that the boundary conditions are
known for the Navier–Stokes equations and therefore there is no point for using the minimax principle in
this case. While this is true we expect that any principle should give the correct answer in a simpler case,
even if it is not needed, it seems that the principle does not give the correct answer for the Navier–Stokes
equations. On the other hand, Weiss and Struchtrup mentioned that the minimax principle should not be
used for stability analysis.

We now would like to briefly discuss the results mentioned above. First of all we would like to point
out that the condition σH(r, t) ≤ 0, or equivalently (∂s

FK
/∂t)coll ≥ 0, holds when the full solution

of the Boltzmann equation is used. It may be not true when an approximation is used, in particular
when the first order correction of the Chapman–Enskog method is used (first order correction in the
Knudsen number) there is no guarantee that it should hold. In the maximum principle just discussed,
it can be shown that when linearizing in the perturbation Φ it also holds, (∂s

FK
/∂t)coll,L ≥ 0, but this
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could be a fortuitous accident. Closely related to this issue is another point that as far as we know
has not been discussed in the literature, namely, the fact that since the perturbation is a polynomial in
the components of the peculiar velocity, it is possible to conceive large values of them so that (1 + Φ)

is negative [46,69], implying a distribution function that can have negative values and thus ln f is not
defined. Similar remarks apply to other approximations such as Grad’s moment method since here,
again, the approximations are polynomials in the components of the peculiar velocity. This reassures
that the H–theorem holds when considering the exact solution of the Boltzmann equation and when
using approximations one must proceed with care. For studies of entropy production, Boltzmann’s
H–theorem, the approach to equilibrium, etc., without considering approximations and from the point
of view of mathematicians, see references [49,54].

We end this section discussing several points that are related with the issue at hand. We start by
discussing the derivation of the Boltzmann equation using the maximum entropy (MAXENT) principle
as was shown by Lewis in 1967 [70]. Actually Lewis derived not only the Boltzmann equation using the
principle but he also claimed to obtain Vlasov’s equation, Euler’s equations, a generalization of Grad’s
ten moment approximation, the Gibbs distribution, Onsager’s equations of irreversible thermodynamics,
Liouville equation, and Hamilton’s equations of classical dynamics. However, as he pointed out, he
did not give an a priori justification of the principle, but an analysis that clarifies its physical content is
available [71]. One question that comes to the mind is why it is possible to derive such a large number of
theories from the principle and if this fact in some way compromises its predictive power. The reason for
this is that Lewis’ general entropy principle is based on the following assumptions [72] : (a) an entropy
functional, S[u], where u is a state function meaning a function that describes the state of a statistical
system; the N–particle or one particle distribution function are two examples of state functions; (b)

the particle dynamics
∂u

∂t
= M(u), with M an operator which is in general nonlinear, and (c) side

conditions. Thus, changing (a), (b) or (c) leads to different sets of equations which explains why it is
possible to obtain different sets of equations. The problem of deriving the Boltzmann equation from the
particle dynamics has also been considered by Landford [73,74], while the original proof by Landford
was so short that it was not possible to justify the applications of the Boltzmann equation (for more recent
discussions on this matter see reference [51]). It is interesting to notice that not all mathematicians
have been interested in this problem, for example Truesdell [49] took for granted the Boltzmann
equation [75]. Notice that while the Boltzmann equation is well established, its scope is limited to
dilute gases, so the question arises: what to do in the case of a dense gas? This is a more delicate
question and here the MAXENT method has played an important role. In fact the ideas by Lewis were
extended to deal precisely with this problem. The field is known as Kinetic Variational Theories (KVT)
and several kinetic equations [76–78] were derived using this methodology (see Reference [78] for more
bibliography) . In this field the entropy production has been explored [79] and in particular a bound to
the entropy production in terms of the energy conversion rate between particles and Fisher’s information
integrals describing the system has been found. Using Lewis principle to obtain the kinetic description
of a dense gas is not the only way to achieve the goal, and several extensions to the work by Enskog who
obtained the so-called Enskog equation [48] are available. Nevertheless, a discussion of all these matters
would be lengthy and somewhat distractive to our objective.
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4. Onsager’s Reciprocity Relations

Many names of brilliant scientists come to mind in relation with the development of non-equilibrium
Thermodynamics. Thus the works by Fourier, Thomson, Clausius, Einstein, and Onsager, among
others, become relevant in a discussion concerning the concepts behind the entropy production.
Non-equilibrium thermodynamics has its origins in the experiment and in fact, plenty of well-known
irreversible effects were discovered and described before any attempt to give them a formal
structure [26,35,80]. In a previous section the structure of usual irreversible thermodynamics
was outlined, and now we will be concerned with Onsager’s work in relation to the reciprocity
relations [19,20,81], with emphasis on the main hypotheses driving to their demonstration. Their
demonstration goes out of the thermodynamic scheme, being a result of fluctuations consideration.
Here we will recall Onsager’s main hypotheses in order to clarify their range of validity. First of
all, let us consider an isolated macroscopic system characterized by means of a certain number of
well-defined macroscopic variables {Ai} which in the equilibrium state become constant. When there is
a transport process occurring in the system, it manifests through time-dependent changes such that the
set of variables {Ai(t)} becomes time-dependent. (the selection of which and how many macroscopic
variables are needed depends on the system and the quantities we are interested in). Also, we can
consider the fluctuations of such variables around their equilibrium values, those fluctuations are labelled
as αi(t) = Ai− < Ai(t) > and they will be taken into account. The fluctuations are time-dependent,
though in a more general treatment they can be local variables. Now, one of the hypotheses in Onsager’s
work is based on a direct use of the Boltzmann’s fundamental relation between the entropy and the
probability of the states described by the macroscopic variables S({Ai}) = kB lnW ({Ai}) + constant.
Onsager considers that the entropy (or its change) is determined by the relevant variables, although the
same was assumed for the entropy when written in terms of the fluctuations αi. Then,

∆S({αi}) = kB lnW ({αi}) (56)

It means that for a deviation of the equilibrium state involving an entropy change, the probability
to observe such a deviation is proportional to exp(∆S/kB). It should be mentioned that according
to Clausius, the entropy is a state function defined for thermodynamic equilibrium states, however
Equation (56) when applied to fluctuations leads the entropy concept to a non-equilibrium regime. On
the other hand, the assumption made implies that this entropy obeys the same relations as it does in
the equilibrium state, at least in what refers to the probability W ({αi}), a hypothesis which is valid
at most in the local equilibrium regime. In fact, the development in Onsager’s papers begins with the
structure of Linear Irreversible Thermodynamics (LIT), where the system is described by means of
macroscopic variables that satisfy the balance equations. Quantities such as the heat flux, the viscous
tensor, diffusion fluxes follow a set of linear phenomenological equations, in terms of the gradients in
the intensive variables. In order to give the main ideas, we will restrict the discussion to variables which
do not depend on position. The interested reader may found an extensive treatment in the book by
Keizer [82]. Now, the definition of thermodynamic forces is given as

Xi =
(∂∆S

∂αi

)∣∣∣
αj 6=αi

= −
∑
k

Gikαk (57)
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whereGik is a matrix with elements given by the second derivatives of the change in entropy with respect
to the fluctuations. The corresponding fluxes are

Ji =
dαi
dt

(58)

As a second step in Onsager’s work he assumes that the dynamical behavior of fluctuations is described
by the so-called “regression of fluctuations hypothesis”, which tells us that the fluctuations follow the
same behavior as the one described by the phenomenological behavior in the relevant variables.

dαi
dt

= Ji =
∑
k

LikXk = −
∑
kj

LikGkjαj (59)

where matrix Lik corresponds to the phenomenological transport coefficients. Those coefficients come
from LIT and, they describe how the fluxes appear in a macroscopic system when it undergoes a transport
process forced by the so-called thermodynamic forces. The regression of fluctuation hypothesis asserts
that the system does not distinguish if it suffers a fluctuation or if it is forced by external means. It
should also be noticed that Equation (59) implies an expansion in the change of entropy up to the second
order in the fluctuations, consistent with the idea of small fluctuations around the equilibrium state. It
means that this hypothesis can only be applied near the equilibrium state, where the fluctuations are small
when compared with the mean value of the corresponding variable (near equilibrium are words usually
employed in this subject, in this case it means that the regression of fluctuations is in the context of the
local equilibrium hypothesis). Onsager remarks that those rate equations are valid for aged systems,
meaning that their application is valid after a certain time τ0 which can be measured in terms of the
Knudsen number [19,20]. The phenomenological equations containing the transport coefficients Lik
come directly from the experiment, so their range of validity is well-defined in those terms.

All these elements allowed Onsager to derive the main result by making the most important
assumption in the scheme—the “microscopic reversibility”, which in the words of Onsager reads as
... if α and β be two quantities which depend only on the configuration of molecules and atoms, the event
α = α′, followed τ seconds later by β = β′, will occur just as often as the event β = β′, followed τ
seconds later by α = α′.

αi(t)βk(t+ τ) = βk(t)αi(t+ τ) (60)

The demonstration needs the averages of fluctuations at time t, a quantity calculated by means of
Equation (56), so the relation between the entropy and probability is crucial in the development. This last
hypothesis completes the scheme driving to the well-known reciprocity relations, which are fundamental
in this subject. Notice that the conditions under which they were proved do not allow their extrapolation
to other regimes than the one determined by the local equilibrium hypothesis and the linear relation for
the constitutive equations. In a paper written by Casimir [83], he reviewed the Onsager’s regression
of fluctuation hypothesis and remarked that ... in principle we can imagine a pseudo-linearity holding
at reasonable large amplitudes. He also generalized the Onsager’s treatment to odd variables (with
respect to time inversion), giving a more general proof. Regardless of this fact, it is unquestionable
that the reciprocal relations represented a huge advancement, unsurpassed to date, in the development of
irreversible thermodynamics.
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In connection with the results it is worth pointing that some attempts have been made to examine the
validity of Onsager’s reciprocity relations beyond the linear approximation. In fact, in 1982 Hurley and
Garrod wrote a provocative paper [84,85] hinting at such possibility. Their arguments were basically
based on the validity of a mathematical identity satisfied by an arbitrary matrix which may depend on
time and of the of variables say (Ai(Γ)) describing the states of the system and may be either even or
odd functions of the moments. A more physical interpretation of this result was provided by a rather
different approach in which the equations of motion are either Markovian or non-Markovian [86]. Later
on the generalization of Onsager’s reciprocity theorem (ORT) was performed including fluctuations of
the regression variables around an arbitrary initial state [87]. Although in principle non-linear Markovian
dynamics may be included in this formalism, concrete applications and conclusive facts that the ORT
may be valid in more general cases have never been offered. The question thus remains: can the ORT be
extended to a non-linear dynamics of the regression variables? This is an open question.

Going further in fluctuation theory and in connection with the relation between macroscopic and
microscopic concepts, we must mention the well-known Einstein fluctuation-dissipation relation [88]
which was derived in the context of the theory of Brownian motion. Later, it was generalized in a
series of papers [89–91], where it was shown that there exists a close relation between the dissipation
produced in an irreversible process and the correlation of fluctuations. The dissipation can be related in
a direct way with the transport coefficients in the phenomenological rate equations, which are assumed
to be linear. On the other hand, the correlation of fluctuations are the quantities for which Onsager
has shown to obey the reciprocity relations. Hence we can say that in the linear regime, the matrix of
transport coefficients and the correlation functions matrix are both symmetric, as a consequence of the
microscopic reversibility introduced by Onsager. For the limitations of the Einstein relation and LIT in
the context of swarms of charged particles see [30].

5. Variational Principles

The determination of variational principles in non-equilibrium thermodynamics has been a line of
thought which does not seem to render spectacular results. The main reason for such is the presence
of dissipation—when it is negligible it is possible to construct some variational principles, though
they correspond to idealizations of natural phenomena. However, in the case where the dissipation
is essential there exists a variational approach [92] which has been applied to numerous particular
cases [93–100], which is the goal of the present section. Some emphasis must be made on the fact
that the slow rate in the development of a general variational principle for non-equilibrium processes
is enhanced by the presence of dissipative effects. Rayleigh [101] was the first to establish the basis
for such kind of principles. In fact, he did not formulate a variational principle but instead defined the
so-called dissipation function which was the basis taken by Onsager [19,102] to introduce the Principle
of the Least Dissipation of Energy (LDE). The LDE takes account of the dissipation function and the
entropy production as constructed by Onsager. As we said in the previous section, Onsager’s treatment
in non-equilibrium thermodynamics is under the frame of the local equilibrium hypothesis and the linear
constitutive equations. It is then natural that his variational principle can neither be applied arbitrarily far
from equilibrium nor in the case of nonlinear phenomenological equations. LDE requires the dissipation
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function written in terms of fluxes, and the entropy production is constructed from its balance equation
which can also be written in terms of fluxes. Then, Onsager showed that

σ(J)− Φ(J, J) = maximum (61)

where σ(J) =
∑

k JkXk corresponds to the entropy production and Φ(J, J) is the dissipation function.
The variation is made up in terms of fluxes and fixed thermodynamics forces Xk. In this case the
system boundaries are isolated. Such variational principle assures us that the fluxes adapt themselves
to a situation in which the entropy production and the dissipation function are related by an extremal
principle. The dissipation function is quadratic in the fluxes and the entropy production is consistent
with linear irreversible thermodynamics, implies that it is a product of fluxes and thermodynamic forces,
which leads to the conclusion that the fluxes must be linear functions of the forces. Then, the variational
principle is consistent with the phenomenological constitutive equations proper to this description.

We insist that the development is valid under the assumption that the entropy production has a
well-defined sense, namely, it can be written in the local equilibrium regime.

Gyarmati [11] established a generalization of the Onsager’s variational principle taking into account
the variation for fluxes as well as variation in thermodynamic forces, in such a way that

δ

[
σ(J,X)− Φ(J, J)− ψ(X,X)

]
= 0 (62)

where ψ(X,X) is the dissipation function expressed in terms of the thermodynamic forces. In fact,
he showed that the extremum principle corresponds to a maximum and it is consistent with the linear
phenomenological relations between forces and fluxes. Also, it is possible to show that a global principle
is satisfied. Gyarmati takes into account that the dissipation function written in terms of fluxes as well
as written in term of thermodynamic forces is quadratic and non-negative. Accordingly, the integration
of the local entropy production and the local dissipation function over the entire volume of the system
leads to

Ṡglobal =

∫
V

σdV ≥ 0 (63)

where Ṡglobal contains the internal production of entropy as well as its interchange with the surroundings.
Equation (63) is nothing but the Clausius inequality for the uncompensated heat, hence the development
is consistent with the second law of thermostatics. Further, it is worth noticing that the demonstration
was made under the frame of LIT, so it can not be extrapolated to other regimes.

In the literature the Maximum Entropy Production Principle (MEPP) proposed by Ziegler [37]
has been discussed, which tells us that the entropy production written as the product of fluxes and
thermodynamic forces must be a maximum. It has been applied in several examples concerning a variety
of systems [103] and gives some hope about the possibility of formulating a general principle in this
subject. Though this variational principle has remained somewhat hidden in the literature, it can be seen
as a clue to have a new insight on some old problems. A remark on its validity is essential to give the
correct perspective in the applications. Up to now, it seems to us that this principle is restricted by the
same difficulties pointed out for all other principles. In fact, the proposal was made under the frame of
local equilibrium thermodynamics, meaning that it is based on the entropy production written in terms of
fluxes and thermodynamic forces. However, the assumption of the existence of the entropy production
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in non-equilibrium processes is taken without any question. As it was noted several times in previous
sections, such an assumption assures us that it is possible to define the entropy and of course its time rate
of change. If we assume that such concepts have a well defined meaning, then the proposal of having a
maximal rate for the entropy production may be a useful tool to study some problems.

It should be mentioned that in the case of stationary states, a variational principle assuring that the
entropy production is a minimum has been shown. In the literature there are several discussions about
its extent and its general validity [38,102,104–106], in fact, mostly implying that it is valid only for
stationary states under severe restrictions. Nevertheless it has been useful in several applications as well
as the maximum entropy production principle [107–112].

6. Stochastic Thermodynamics and Entropy Production

When talking about thermodynamic behavior we usually refer to macroscopic and aged systems and,
in fact, thermodynamics concepts were conceived for those cases. The corresponding microscopic
treatments attempt to give support through microscopic quantities, an alternative to understand the
macroscopic behavior. To achieve this goal, we usually consider systems in which the number of particles
is very large (N ∼ 1023) and times which are larger than microscopic ones, such as collision times.
These requirements allow us to define a few macroscopic variables. Though they may be space and time
dependent, we do not need the systems to have detailed description in terms of positions and velocities
of particles. Macroscopic variables change in space and time slowly enough to make the knowledge of
constituent particle coordinates unnecessary. The fluctuations of macroscopic variables have an effect on
thermodynamic properties and can be measured when the system is in its equilibrium state [113–115].
Also, their spatial and temporal evolution can be followed when the system undergoes a process out of
equilibrium. On the other hand, we notice that the approaches to non-equilibrium processes suffer the
need of some hypothesis which so far restrict themselves to consider the problem near equilibrium. In
fact, they are valid in local equilibrium but not far from it.

So, several questions arise when we consider small systems, short times and processes arbitrarily
far from equilibrium [115,121,122]. We have two options, the first one will tell us that in such cases
thermodynamic concepts have no meaning at all. Second, we can try to explore the application of
thermodynamic concepts even for those cases. The interest to consider these situations arises due to
the growing applications in several fields of knowledge, such as the nanotechnology. This kind of
technological developments has improved the access to interesting systems such as proteins, molecular
motors, colloids, etc. It is clear that the understanding of such systems not only involves the adaptation
of experimental devices but also compels ourselves to revisit concepts and theoretical techniques.

Before considering the subject of fluctuations theorems as have been used to describe a
thermodynamic like approach to examine their properties, a note of caution must be given. Over fifty
years ago Terrel L. Hill [116–119] formulated a very precise and conventional theory to undertake the
study of the thermodynamics of small systems. Such theory is based on the principles of classical
thermodynamics sustained in the fundamental ideas of statistical mechanics. This is not the place to enter
a detailed discussion of the theory itself nor in its various achievements, but it is worth mentioning that its
various applications encompassed a wealth of systems such as colloid particles, the ideal lattice gas, the
helix–coil transition and even contains a treatment of first order phase transitions. For non-equilibrium
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situations, consistent with thermodynamics, the theory is applicable for local equilibrium states. This
implies that the methods for obtaining the entropy production in irreversible processes are the same as
those available for large systems. Nevertheless it appears to be somewhat strange that very few efforts
have been made to relate this theory to others labelled under the rather strange name of “stochastic
thermodynamics”, which so far pretend to describe the “thermodynamics behavior” of single “small”
systems by using averaging procedures that in some way we feel ought to be equivalent to ordinary
“ensemble” averages. An example of a connection of Hill’s theory with the Jarzynski equality (see
below) is available [120]. We leave the interested reader to consult the broad set of ideas and applications
of Hill’s method fully discussed in References [116,118,119].

Recently, there has been plenty of work to undertake the problem we have just outlined, and several
developments have been made to describe small systems in short times when they evolve out of
equilibrium. As far as we know, the genesis of the so-called “Fluctuation theorems”was the work by
Evans et al. [123] and a number of papers exploring new directions emerged soon. Before going
into the details, we provide a brief survey of main ideas related to such fluctuation theorems. One
direction is the work followed by Gallavotti and Cohen [124,125] who enforced the “chaotic hypotheses”
(also referred as strong chaocity or strong hyperbolicity) stating that many-particle systems behave like
Anosov systems. The mathematical theory of dynamical systems was then used by Ruelle [126] to
prove the Gallavotti–Cohen fluctuation theorem using Sinai–Ruelle–Bowen measures [127,128] where
the emphasis is on non-equilibrium steady states. In order to keep the system in the steady state a
thermostat is needed. Thermostats in non-equilibrium were introduced by Hoover et al. [129] and
Evans et al. [130] and was an ingredient considered in the original work by Evans, Cohen, and
Morris [123]. Evans and Searles [131,132] explored a different route than strong hyperbolicity and
were able to prove the so-called Evans–Searles fluctuation theorem. Inspired by the experiment of
Wang et al. [121], van Zon and Cohen [133,134] used Langevin dynamics to establish several
work fluctuations theorems for time-dependent forces. Their work generalized the pioneering results
by Kurchan [135] on the Gallavotti-Cohen fluctuation theorem for stochastic dynamics and the
generalization of Kurchan’s results for Markov processes by Lebowitz and Spohn [136]. Further
generalizations of van Zon and Cohen’s work for electromagnetic fields are available [137]. At about the
same time other important lines of research were also explored, notably by Jarzynski on the one hand
and Crooks on the other. Jarzynski [138] studied Hamiltonian dynamics using protocols (a specific way
to drive the system from and initial to a final state) and established the so-called Jarzynski equality that
relates the difference of the free energy of two equilibrium states in terms of an average that includes
the work realized by the system subject to the protocol. The other is the so-called Crooks’ fluctuation
theorem [139] that gives the quotient of probabilities for a forward and reverse paths in terms of the
difference between the work performed on the system and the free energy difference between the initial
an final equilibrium states. Thus, he obtained the results assuming that the system is Markovian and
microscopically reversible and from his fluctuation theorem he obtained Jarzynski’s equality. Later
on Crooks [140] derived a generalization of the fluctuation theorems, referring to these theorems as
entropy production fluctuation theorems, and showed that the Jarzynski equality and the fluctuation
theorems are connected. A comparison of the Crooks’ fluctuation theorem and the one obtained by
Bochkov and Kuzolev in 1977 (see [141]) has been given by Horowitz and Jarzynski [142]. There are
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other important results but their description will deviate us from the objectives of this section, so we
refer the interested reader to Table 1 for more information. The concept of entropy production is an
essential ingredient in some of the works just described but we think it is important to keep in mind the
following remark by Dhar [143]: “An important point to note is that the definition of entropy production
in small (nonthermodynamic) systems and in a non-equilibrium situation is somewhat ad hoc and various
definitions have been used.”

Table 1. Fluctuations theorems and related research. ESFT ≡ Evans–Searles fluctuation
theorem, JEQ ≡ Jarzynski equality, CFT ≡ Crooks fluctuation theorem, BKFR ≡
Bochkov–Kuzolev fluctuation relation, CWFT≡ Callen–Welton fluctuation theorem, HSEQ
≡ Hatano–Sasa equality, QFT ≡ Quantum fluctuation theorem, MAXENT ≡ Maximum
Entropy, IFT≡ Integral fluctuation theorem, GCFT≡Gallavotti–Cohen fluctuation theorem,
GSL ≡ Generalization of the Second Law, MEP ≡ Minimum entropy principle, ST ≡
stochastic thermodynamics,

Evans–Searles Jarzynski Crooks Bochkov–Kuzolev Callen–Welton
Reference ESFT JEQ CFT BKFR CWFT

Experiment [131,132] [138,144] [139] [141] [89]
[121] [152–154] [156]

Hatano–Sasa Hänggi Dewar Seifert Gallavotti–Cohen
Reference HSEQ QFT MAXENT IFT GCFT

GSL MEP
Experiment [145,146] [147] [148] [149] [123–126,135,136]

[155]
Reviews [122] [157] [158] [159]

and Books
Subjects ESFT, CFT JEQ, BKFR ST GCFT

According to the goal of this paper, we turn our attention to stochastic thermodynamics (a name
which at least sounds somewhat curious), which is a theoretical attempt to extrapolate thermodynamic
concepts to single particle trajectories [135,150,151,158]. Several papers report results along this line
of thought, which seems to be fruitful in the applications and interpretation of experimental results
mainly in nano-systems. To begin with the description made by the stochastic thermodynamics, let us
first of all recall that thermodynamic quantities such as the internal energy, the entropy, etc., are state
functions in equilibrium states or, slow functions of spatial coordinates and time when the system is in
local equilibrium. Their fluctuations also manifest themselves through other macroscopic measurable
properties. Secondly, when we see the microscopic counterpart through statistical physics, we consider
ensemble averages and those averages become the quantities with a sound physical meaning. It is in
this sense that stochastic thermodynamics extrapolates the usual concepts to a particle trajectory, so the
trajectory quantities acquire a clear physical meaning only when averaged over the ensemble.

The simplest way to present this subject was reviewed by Seifert [158], where he considers a system
formed by one particle moving in one dimension. Two kinds of forces act on the particle, one of them
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fc(x, λ) = −∂V
∂x

is derived from a potential V (x, λ) and an external force f(x, λ), both of which may
be dependent on an externally driven time-dependent protocol λ(t). The particle is embedded in a
thermal bath at temperature T , and the particle characteristic size is bigger than the size of the particles
in the bath. Because of such conditions, it is generally assumed that the particle feels a Gaussian
white noise ζ(t), with an intensity 2D related to the friction γ by means of the Einstein relation,
i.e., the fluctuation-dissipation theorem is considered as a granted piece in the treatment. Hence, the
bath temperature is introduced in some parts along the scheme by a relation which is valid only near
equilibrium.

As mentioned by Seifert, to describe such system there are several alternatives giving equivalent
descriptions. As a first approach, the particle can be described by the one dimensional overdamped
Langevin equation,

ẋ =µF (x, λ) + ζ,

< ζ(t)ζ(t′) > = 2Dδ(t− t′), D = kBTµ (64)

where µ is the mobility and kB the Boltzmann constant and F (x, λ) = fc(x, λ) + f(x, λ).
Alternatively, the problem can be posed in the Fokker–Planck approach to obtain a probability density

p(x, t) to find the particle at position x at time t, for a given protocol. The Fokker–Planck solution will
depend on the initial distribution p(x, 0) = p0(x) and presumably there exists a stationary distribution
ps(x, λ) for which the protocol is fixed.

∂p(x, t)

∂t
= − ∂

∂x

(
µF (x, λ)p(x, t)−D∂p(x, t)

∂x

)
(65)

Also, the dynamical description of the particle behavior can be made in terms of a weight given
to each stochastic trajectory [135]. The weight is assigned according to the Langevin dynamics. It is
important to mention that the weight becomes Gaussian due to the Gaussian character assigned to the
noise,

P (x(t)|x0) = exp

[
−
∫ t

0

(
(ẋ− µF )2/4D + µF ′/2

)
dt′

]
(66)

All properties which depend on the trajectory can be averaged with this weight to obtain the macroscopic
variables.

This last alternative is the way chosen by stochastic thermodynamics to define the extrapolation of
thermodynamic quantities. In order to give a brief description, let us consider a trajectory followed by
a particle when acted by the forces, the external protocol and a given noise realization. The change in
potential energy caused by a change dx and a change dλ is dV = ∂V

∂x
dx + ∂V

∂λ
λ̇dt, and the work applied

to the system dw = ∂V
∂λ
λ̇dt+ fdx. Now, the formal and somewhat arbitrary extrapolation of the first law

of thermodynamics to the trajectory will tell us that

dw = dV + dq (67)

where dq plays the role of the instantaneous heat transferred along the trajectory. The direct substitution
of dV and the work dw leads to dq =

(
fc + f

)
dx = Fdx. When it is integrated along the trajectory
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q(x(t)) =
∫ t

0
F (x, t′)ẋdt′ it gives the so-called heat transferred along the trajectory. This expression after

the integration along the trajectory essentially contains the work done by the total force acting on the
particle. It considers the work done by the conservative force fc (derived from a potential) and the work
done by the external force f , in the presence of dissipative effects which are taken from the beginning
through the overdamped Langevin equation. It is generally called as the “dissipative work”; however we
must notice that it is purely mechanical work performed under dissipative effects. On the other hand,
the equivalent of the change in internal energy is given by dV which is also a mechanical contribution,
due to the fact that the particle does not have internal degrees of freedom to account for the real internal
energy (as usually understood in thermodynamics).

Once an analog of the first law is written for a trajectory, it is natural to go into what one would
understand as the definition of entropy for this system. In this case it is important to take into account
the environment and its change in entropy, which is assumed to be given as ∆ηenv = q(x(t))

T
, where T is

the bath temperature. Notice that ∆ηenv is now defined through the trajectories, since q(x(t)) is, hence it
is also a stochastic quantity. It is therefore somewhat arbitrary and misleading to refer to it as “entropy”.
The system’s (particle) pseudo entropy which we shall denote by η is defined through the probability
density

η(t) = −kB ln p(x(t), t) (68)

which depends on the initial conditions contained in p(x(t), t) and it is a stochastic quantity. Obviously
its average over the ensemble can be written as

Ξ(t) = −kB
∫

p(x, t) ln p(x, t)dx =< η(t) > (69)

and the total entropy change along a given realization of the trajectory is ∆ηtot = q(x(t),t)
T

+∆η(t), where
∆η(t) = − ln p(x(t), λ(t)) + ln p(x0, λ0).

The definition of the system’s “entropy” through the probability density allows the calculation of
the pseudo entropy production [149]. It can be done directly by means of the Fokker–Planck equation
recalling that q̇(t) = F (x, t)ẋ = T ṡenv [158] and η̇tot(t) = η̇env + η̇(t), then

η̇tot(t) = − 1

p(x, t)

∂p(x, t)

∂x

∣∣∣∣∣
x(t)

+
j(x, t)

Dp(x, t)

∣∣∣∣∣
x(t)

ẋ (70)

where j(x, t) = µF (x, λ)p(x, t)−D ∂p(x,t)
∂x

is the current. The average over all trajectories which are at
time t at a given x and the integration over all positions x gives the total entropy production

Ξ̇tot(t) =< η̇tot >=

∫
j(x, t)2

Dp(x, t)
dx ≥ 0 (71)

which is positive and the equality holds in equilibrium. This expression deserves emphasis and some
comments. First of all, Equation (68) defines a trajectory dependent “entropy” which is a stochastic
quantity and it contains the information about the initial distribution. Second, the averaged “entropy”
given in Equation (69) recalls us the usual Shannon’s entropy definition. Third, the total entropy
takes into account the heat transfer to the environment through the dissipative work as well as the
entropy associated to the system itself. Fourth, the total entropy time rate, calculated according to the
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Fokker–Planck dynamics and the heat transfer with the environment is always positive or it vanishes in
equilibrium. Fifth, the bath temperature plays a role in the relation between the environment entropy
and the heat transfer, however it comes to the entropy production in Equation (70) when we substitute
µ
D

= kBT , to recognize the environment entropy production. This last comment means that such a
relation is valid only as far as we can apply the fluctuation-dissipation theorem. It seems that this
treatment can not be applied arbitrarily far from equilibrium. Further, all these quantities referred to as
heat, entropy, etc., are debatable. To relate stochastic thermodynamics with the “fluctuation theorems”,
it is necessary to go further and consider again a trajectory realization. Now in the first step, consider
the forward trajectory which begins in an initial position (x0, t = 0) and ends (x(t), t), for a given
protocol λ(t). The weight associated with it is given as p(x(t)|x0) as written in Equation (66), where the
initial condition appears explicitly to emphasize the trajectory initial point. As a second step consider
the backward trajectory x̃(τ) = x(t − τ) which begins at x(t) and ends in x(t − τ) with a protocol
λ̃(τ) = λ(t−τ). Notice that the forward and backward trajectories coincide. According to the expression
of weights and the definition of forward and backward trajectories, it is possible to find the following
expression,

p(x(t)|x0)

p̃(x̃(t)|x̃0)
= exp

[
−
∫ t

0

µ

D
Fẋ dt′

]
(72)

when the mobility µ and the noise intensity D are constants. Equation (72) leads to

q(x(t)) =
µ

D
ln

p(x(t)|x0)

p̃(x̃(t)|x̃0)
(73)

which relates the so-called heat transfer, i.e., the dissipative work, with a quotient of probability
densities in the forward and backward trajectories. Now, it becomes clear that the use of the Einstein
relation µ

D
= kBT allows the introduction of the bath temperature to find the entropy production in the

environment related to the dissipative work and the quotient of weights associated with the trajectories.
It has been shown in the literature that this so-called entropy change satisfies the “integral fluctuation
theorem”(IFT) [158],

< exp−∆ηtot >= 1 (74)

which represents a mathematical generalization of the Clausius inequality [149,158,163–166].
In the case of a steady state under special conditions [158], it can be shown that
p(−∆ηtot)/p(∆ηtot) = exp(−∆ηtot), which tells us that the probability density decreases exponentially
to observe a situation in which it appears that the second law can be violated. Taking into account that the
entropy change must be an extensive quantity, the quotient of probability densities can be non-negligible
for a small system and it can be measured. In fact, when we consider small systems and short scales of
time, we can expect such effects, however they cannot be interpreted as violations of the second law, as
usually understood [114].

Several fluctuation relations have been demonstrated experimentally, mainly for colloidal particles
trapped by an optical device, some examples are given in references [121,140,152,163,164,168–171].

As it was mentioned before, the literature concerning fluctuation theorems has grown enormously,
the review of such advances is out of the scope in this work and some review and recent papers are
available [113,115,122,158,172–174]. Moreover, we think that it is a great mistake to borrow the
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conventional language of thermostatics to describe processes which are of an entirely different nature. It
gives rise to confusion and misinterpretations.

7. Concluding Remarks

The main objective of this paper has been to discuss the physical meaning of the concept of entropy
production in non-equilibrium processes. Introduced by De-Donder over eighty years ago it was
adopted as a substitute of the more meaningful idea of non-compensated heat due to Clausius. Setting
this difference aside, the question that arises is if one considers irreversible phenomena concerning
how they should be dealt with. When such phenomena occur within the realm of Linear Irreversible
Thermodynamics which rests in the local equilibrium assumption there are no ambiguities. The problem
appears when phenomena take place “far from equilibrium”, where not only this concept but also the
definition of entropy itself is rather blurry. Attempts to account for this shortcoming are discussed in
the paper, both macroscopically and through kinetic theory. The outcome is that in neither case we can
obtain a satisfactory unique answer.

Different efforts made to cope with this situation extending Onsager’s variational principle are also
found in the literature but once more, all known efforts are restricted to situations in which processes
occur close to equilibrium. Here we should mention the old effort set forth by Biot but no one has used
it in realistic, practical phenomena.

Finally the whole body of what people now call Stochastic Thermodynamics has been critically
assessed. Focused on the behavior of small systems and short times, a language has been developed
extending or importing concepts from ordinary thermodynamics to situation which hardly support them.
Notwithstanding the fact that the examples so far examined in the literature are of importance per se,
what is very confusing is the way they are associated with ordinary thermodynamic quantities. For
instance, in the case of small systems, a very powerful and solid theory based on thermodynamic and
statistical mechanical principles was developed over fifty years ago. In modern literature it has been
completely ignored.

Far away from equilibrium processes are still waiting for a solid theoretical framework into which
they can fit. We deeply feel that such framework cannot be based in ordinary thermodynamic concepts.
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36. Županović, P.; Juertié, D.; Botrić, S. Kirchhoff’s loop law and the maximum entropy production

principle. Phys. Rev. E 2004, 70, 056108.
37. Martyushev, L.M.; Seleznev, V.D. Maximum entropy production principle in physics, chemistry

and biology. Phys. Rep. 2006, 426, 1–45.
38. Jaynes, E.T. The Minimum Entropy Production Principle. Ann. Rev. Phys. Chem. 1980, 31,

579–601.
39. Jaynes, E.T. Where do we stand on Maximum Entropy. In The Maximum Entropy Principle;

Levine, R., Tribus, M., Eds.; MIT Press: Cambridge, MA, USA, 1978; p. 1.
40. Hoover, Wm.G. Time Reversibility, Computer Simulation, and Chaos; World Scientific:

Singapore, 1999.
41. Our source is the book by Chapman and Cowling [42] and in particular the historical summary

that appears in the third edition. More detailed information can be found in the preface by S. G.
Brush to the english translation of the book by Boltzmann originally entitled “Vorlesungen über
Gastheorie” [43] and the works by Brush referred therein like reference [44].

42. Chapman, S.; Cowling, T.G. The Mathematical Theory of Non-Uniform Gases; Cambridge
University Press: Cambridge, UK, 1970.

43. Boltzmann, L. Lectures on Gas Theory; Brush, S.G., trans.; Dover: New York, NY, USA, 1995.
44. Brush, S.G. Statistical Physics and the Atomic Theory of Matter from Boyle and Newton to Landau

and Onsager; Princeton University Press; Princeton, NJ, USA, 1983.
45. Hirschfelder, J.O.; Curtiss, C.F.; Bird, R.B. Molecular Theory of Gases and Liquids; John Wiley

and Sons: New York, NY, USA, 1954.
46. Grad, H. Principles of the kinetic theory of gases. In Handbuch der Physik; Flügge, D., Ed.;
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