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Abstract:

 We discuss a one-parameter family of generalized cross entropy between two distributions with the power index, called the projective power entropy. The cross entropy is essentially reduced to the Tsallis entropy if two distributions are taken to be equal. Statistical and probabilistic properties associated with the projective power entropy are extensively investigated including a characterization problem of which conditions uniquely determine the projective power entropy up to the power index. A close relation of the entropy with the Lebesgue space [image: there is no content] and the dual [image: there is no content] is explored, in which the escort distribution associates with an interesting property. When we consider maximum Tsallis entropy distributions under the constraints of the mean vector and variance matrix, the model becomes a multivariate q-Gaussian model with elliptical contours, including a Gaussian and t-distribution model. We discuss the statistical estimation by minimization of the empirical loss associated with the projective power entropy. It is shown that the minimum loss estimator for the mean vector and variance matrix under the maximum entropy model are the sample mean vector and the sample variance matrix. The escort distribution of the maximum entropy distribution plays the key role for the derivation.
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1. Introduction

In the classical statistical physics and the information theory the close relation with Boltzmann-Shannon entropy has been well established to offer elementary and clear understandings. The Kullback-Leibler divergence is directly connected with maximum likelihood, which is one of the most basic ideas in statistics. Tsallis opened new perspectives for the power entropy to elucidate non-equilibrium states in statistical physics, and these give the strong influence on the research for non-extensive and chaotic phenomenon, cf. [1,2]. There are proposed several generalized versions of entropy and divergence, cf. [3,4,5,6,7]. We consider generalized entropy and divergence defined on the space of density functions with finite mass,



[image: there is no content]








in a framework of information geometry originated by Amari, cf. [8,9].
A functional [image: there is no content] is called a divergence if [image: there is no content] with equality if and only if [image: there is no content]. It is shown in [10,11] that any divergence associates with a Riemannian metric and a pair of conjugate connections in a manifold modeled in [image: there is no content] under mild conditions.

We begin with the original form of power cross entropy [12] with the index β of [image: there is no content] defined by



[image: there is no content]








for all g and f in [image: there is no content], and so the power (diagonal) entropy


[image: there is no content]








See [13,14] for the information geometry and statistical applications for the independent component analysis and pattern recognition. Note that this is defined in the continuous case for probability density functions, but can be reduced to a discrete case, see Tsallis [2] for the extensive discussion on statistical physics. In fact, the Tsallis entropy


[image: there is no content]








for a probability density function [image: there is no content] is proportional to the power entropy to a constant with [image: there is no content], where [image: there is no content]. The power divergence is given by


[image: there is no content]








as, in general, defined by the difference of the cross entropy and the diagonal entropy.
In this paper we focus on the projective power cross entropy defined by



[image: there is no content]



(1)




and so the projective power entropy is


[image: there is no content]



(2)




The log expression for [image: there is no content] is defined by


[image: there is no content]








See [15,16] for the derivation of [image: there is no content], and detailed discussion on the relation between [image: there is no content] and [image: there is no content]. The projective power cross entropy [image: there is no content] satisfies the linearity with respect to g and the projective invariance, that is [image: there is no content] for any constant [image: there is no content]. Note that [image: there is no content] has a one-to-one correspondence with [image: there is no content] as given by


[image: there is no content]








where [image: there is no content]. The projective power divergence is


[image: there is no content]



(3)




which will be discussed on a close relation with the H[image: there is no content]lder’s inequality. The divergence defined by [image: there is no content] satisfies


Dγlog(g,f)=[image: there is no content](g,f)-[image: there is no content](g,g)≥0








for all γ of [image: there is no content] if there exist integrals in [image: there is no content]. The nonnegativity leads to


[image: there is no content]



(4)




We remark that the existence range of the power index γ for [image: there is no content] and [image: there is no content] depends on the sample space on which f and g are defined. If the sample space is compact, both [image: there is no content] and [image: there is no content] are well-defined for all γ∈[image: there is no content]. If the sample space is not compact, [image: there is no content] is defined for [image: there is no content] and [image: there is no content] is for [image: there is no content]. More precisely we will explore the case that the sample space is [image: there is no content]d in a subsequent discussion together with moment conditions. Typically we observe that


[image: there is no content]



(5)




where [image: there is no content] denotes the Kullback-Leibler divergence,


D0(g,f)=∫g(x)log[image: there is no content][image: there is no content]dx



(6)




See Appendix 1 for the derivation of (5).
Let [image: there is no content] be a random sample from a distribution with the probability density function [image: there is no content]. A statistical model [image: there is no content] with parameter θ is assumed to sufficiently approximate the underlying density function [image: there is no content], where Θ is a parameter space. Then the loss function associated with the projective power entropy [image: there is no content] based on the sample is given by



[image: there is no content]








in which we call


[image: there is no content]



(7)




the γ-estimator, where


[image: there is no content]








We note that


[image: there is no content]








where [image: there is no content] denotes the statistical expectation with respect to g. It is observed that the 0-estimator is nothing but the maximum likelihood estimator (MLE) since the loss [image: there is no content] converges to the minus log-likelihood function,


[image: there is no content]








in the sense that


[image: there is no content]








If the underlying density function [image: there is no content] belongs to a Gaussian model with mean μ and variance [image: there is no content], then the MLEs for μ and [image: there is no content] are the sample mean and sample variance. The reverse statement is shown in [17,18]. We will extend this theory to a case of the γ-estimator under γ-model.
In Section 2 we discuss characterization of the projective power entropy. In Section 3 the maximum entropy distribution with the Tsallis entropy [image: there is no content] with [image: there is no content] under the constraints of mean vector μ and variance matrix Σ is considered. We discuss the model of maximum entropy distributions, called the γ-model, in which 0-model and 2-model equal Gaussian and Wigner models, respectively. Then we show that the γ-estimators for μ and Σ under the γ-model are the sample mean and sample variance. Section 4 gives concluding remarks and further comments.



2. Projective Invariance

Let us look at a close relation of [image: there is no content] with Lebesgue’s space



[image: there is no content]=f(x):∫|f(x)|pdx<∞








where [image: there is no content] and the [image: there is no content]-norm ∥∥p is defined by


[image: there is no content]








Let q be the conjugate index of p satisfying [image: there is no content], in which p and q can be expressed as functions of the parameter [image: there is no content] such that [image: there is no content] and [image: there is no content]. We note that this q is equal to the index q in Tsallis entropy [image: there is no content] in the relation [image: there is no content]. For any probability density function [image: there is no content] we define the escort distribution with the probability density function,


[image: there is no content]








cf. [2] for extensive discussion. We discuss an interesting relation of the projective cross entropy (1) with the escort distribution. By the definition of the escort distribution,


[image: there is no content]



(8)




We note that [image: there is no content] is in the unit sphere of [image: there is no content] in the representation. The projective power diagonal entropy (2) is proportional to the [image: there is no content]-norm, that is,


[image: there is no content](f)=-1γ(1+γ)∥f∥q








from which the H[image: there is no content]lder’s inequality


∫g(x)f(x)γdx≤∥g∥q∥fγ∥p



(9)




claims that [image: there is no content](g,f)≥[image: there is no content](g), or equivalently


[image: there is no content]



(10)




for all f and g in [image: there is no content], which is also led by [image: there is no content]. The equality in (10) holds if and only if [image: there is no content] for almost everywhere x, where λ is a positive constant. The power transform suggests an interplay between the space [image: there is no content] and [image: there is no content] by the relation,


[image: there is no content]








Taking the limit of γ to 0 in the H[image: there is no content]lder’s inequality (9) yields that


[image: there is no content]








since


[image: there is no content]








and


[image: there is no content]



(11)




This limit regarding p associates with another space rather than the [image: there is no content] space, which is nothing but the space of all density functions with finite Boltzmann-Shannon entropy, say [image: there is no content]. The power index γ reparameterizes the Lebesgue space [image: there is no content] and the dual space [image: there is no content] with the relation [image: there is no content], however, to take the power transform [image: there is no content] is totally different from the ordinary discussion of the Lebesgue space, so that the duality converges to ([image: there is no content],L1) as observed in (11). In information geometry the pair ([image: there is no content],L1) corresponds to that of mixture and exponential connections, cf. [9]. See also another one-parameterization of [image: there is no content] space [19].
We now discuss a problem of the uniqueness for [image: there is no content] as given in the following theorem. A general discussion on the characterization is given in [16], however, the derivation is rather complicated. Here we assume a key condition that a cross entropy [image: there is no content] is linear in g to give an elementary proof. The Riesz representation theorem suggests



[image: there is no content]








where [image: there is no content] is a constant that depends on f. Thus we observe the following theorem when we make a specific form for [image: there is no content] to guarantee the scale invariance.
Theorem 1.. Define a functional Γ:[image: there is no content]×[image: there is no content]↦[image: there is no content] by



[image: there is no content]



(12)




where φ, ρ and ψ are differentiable and monotonic functions. Assume that
(i). Γ(g,g)=minf∈[image: there is no content]Γ(g,f) for all g∈[image: there is no content],

and that

(ii). [image: there is no content] for all [image: there is no content] and all g,f∈[image: there is no content].

Then there exists γ such that [image: there is no content] up to a constant factor, where [image: there is no content] is the projective power cross entropy defined by (1).

Proof.. The requirement (ii) means that



[image: there is no content]








which implies that, if f is absolutely continuous and g is the Dirac measure at [image: there is no content], then


ψ˙(λf([image: there is no content]))ψ(λf([image: there is no content]))λf([image: there is no content])=c(λ)








where


[image: there is no content]








Since we can take an arbitrary value f([image: there is no content]) for any fixed λ,


[image: there is no content]








which is uniquely solved as [image: there is no content] where [image: there is no content]. Next let us consider a case of a finite discrete space, [image: there is no content]. Then, since [image: there is no content], we can write


[image: there is no content]








where [image: there is no content] and [image: there is no content]. The requirement (i) leads that [image: there is no content] for all [image: there is no content], which implies that


[image: there is no content]



(13)




where


[image: there is no content]



(14)




It follows from (13) that [image: there is no content] must be a constant in [image: there is no content], say C, so that we solve (13) as [image: there is no content]. Therefore, Equation (14) is written by


[image: there is no content]








which leads to [image: there is no content]. We conclude that [image: there is no content], which completes the proof.□
Remark 1.. The proof above is essentially applicable for the case that the integral (11) is given by the summation just for a binary distributions. In this sense the statement of Theorem 1 is not tight, however, statistical inference is discussed in a unified manner such that the distribution is either continuous or discrete. In a subsequent discussion we focus on the case for continuous distributions defined on [image: there is no content]d.

Remark 2. We see the multiplicative decomposition for [image: there is no content] for statistical independence. In fact, if f and g are decomposed as [image: there is no content] in the same partition, then



[image: there is no content]








This property is also elemental, but we do not assume this decomposability as the requirement in Theorem 1.


3. Model of Maximum Entropy Distributions

We will elucidate a dualistic structure between the maximum entropy model on [image: there is no content], defined in (2) and the minimum cross entropy estimator on [image: there is no content], defined in (1). Before the discussion we overview the classical case in which the maximum likelihood estimation nicely makes good performance under the maximum entropy model on the Boltzmann-Shannon entropy, that is, a Gaussian model if we consider the mean and variance constraint. We will use conventional notations that X denotes random variable with value x. Let [image: there is no content] be a random sample from a Gaussian distribution with the density function



[image: there is no content]








The Gaussian density function is written by a canonical form


[image: there is no content]



(15)




where Ξ is called the canonical parameter defined by [image: there is no content]. The differentiation of (15) on μ and Ξ yields


Ef0(·,μ,Σ)(X)=μandVf0(·,μ,Σ)(X)=Σ








where [image: there is no content] and [image: there is no content] denote the expectation vector and variance matrix with respect to a probability density function [image: there is no content], respectively.
The maximum likelihood estimator is given by



[image: there is no content]



(16)




where [image: there is no content] and S are the sample mean vector and the sample variance matrix,


[image: there is no content]=1n∑i=1n[image: there is no content],S=1n∑i=1n([image: there is no content]-[image: there is no content])([image: there is no content]-[image: there is no content])T



(17)




This is because the minus log-likelihood function is


[image: there is no content]








which is written by


[image: there is no content]








apart from a constant, where


[image: there is no content]



(18)




Hence the estimating system is


∂∂μL0[image: there is no content]∂∂ΞL0[image: there is no content]=Ξ([image: there is no content]-μ)12{S(μ)-Σ}=0O








which concludes the Expression (16) of the MLE since S(μ)=S+([image: there is no content]-μ)([image: there is no content]-μ)T. Alternatively, we have another route to show (16) as follows. The Kullback-Leibler divergence defined in (6) is given by


D0(f0(·,μ,Σ),f0(·,μ1,Σ1))










=12(μ-μ1)TΣ1-1(μ-μ1)+12trace{(Σ-Σ1)Σ1-1}-12logdet(ΣΣ1-1)








Thus, we observe that


L0[image: there is no content]-L0([image: there is no content],S)=D0(f0(·,[image: there is no content],S),f0(·,μ,Σ))



(19)




which is nonnegative with equality if and only if [image: there is no content]=([image: there is no content],S). This implies (16).
Under mild regularity conditions the reverse statement holds, that is, the MLE for a location and scatter model satisfies (16) if and only if the model is Gaussian, cf. [17,18]. However, even if we do not assume anything for the underling distribution [image: there is no content], the statistics [image: there is no content] and S are asymptotically consistent for



μg=[image: there is no content](X)andΣg=Vg(X)








This is a direct result from the strong law of large numbers, and the central limit theorem leads to the asymptotic normality for these two statistics. In this sense, ([image: there is no content],S) is also a nonparametric estimator for [image: there is no content].
We explore a close relation of the statistical model and the estimation method. We consider a maximum entropy distribution with the γ-entropy [image: there is no content] over the space of d-dimensional distributions with a common mean and variance,



[image: there is no content][image: there is no content]={f∈[image: there is no content]:∫f(x)dx=1,[image: there is no content](x)=μ,[image: there is no content](x)=Σ}



(20)




Then we define a distribution with a probability density function written by


fγ(x,μ,Σ)=[image: there is no content]det(2πΣ)121-γ2+dγ+2γ(x-μ)T[image: there is no content](x-μ)+1γ



(21)




where ()+ denotes a positive part and [image: there is no content] is the normalizing factor,


[image: there is no content]=2γ2+dγ+2γd2Γ(1+d2+1γ)Γ(1+1γ)ifγ>0-2γ2+dγ+2γd2Γ(-1γ)Γ(-1γ-d2)if-2d+2<γ<0



(22)




See the derivation for [image: there is no content] in Appendix 2. If the dimension d equals 1, then [image: there is no content] is a q-Gaussian distribution with [image: there is no content]. We remark that


limγ↑0[image: there is no content]=limγ↓0[image: there is no content]=1








in which [image: there is no content] is reduced to a d-variate Gaussian density when [image: there is no content]. The support of [image: there is no content] becomes an ellipsoid defined as


x∈[image: there is no content]d:(x-μ)T[image: there is no content](x-μ)≤2+dγ+2γγ








if [image: there is no content]. On the other hand, if [image: there is no content], the density function (21) is written as


fγ(x,μ,Σ)=det(πτΣ)-12Γ(-1γ)Γ(-1γ-d2)1+1τ(x-μ)T[image: there is no content](x-μ)1γ



(23)




where


[image: there is no content]








The d-variate t-distribution is defined by


[image: there is no content]



(24)




cf. [20] for the extensive discussion. Assume that


ν+d2=-1γandνP=τΣ








Then we observe from (23) and (24) that


[image: there is no content]








Accordingly, the density function [image: there is no content] with [image: there is no content] is a t-distribution. The distribution has elliptical contours on the Euclidean space [image: there is no content]d for any [image: there is no content], as shown in Figure 1 for typical cases of γ.


Let



[image: there is no content]=fγ(x,μ,Σ):μ∈[image: there is no content]d,Σ∈[image: there is no content]



(25)




which we call γ-model, where [image: there is no content] denotes the space of all symmetric, positive-definite matrices of order d. We confirm the mean and variance of the γ-model as follows.
Lemma. Under the model [image: there is no content] defined in (25) with the index [image: there is no content],



E[image: there is no content](X)=μandV[image: there is no content](X)=Σ








Proof. We need to consider a family of escort distributions. In the model [image: there is no content] we can define the escort distribution as


eq(fγ(x,μ,Σ))=cγ*det(Σ)121-γ2+dγ+2γ(x-μ)T[image: there is no content](x-μ)+1+γγ



(26)




where [image: there is no content] and [image: there is no content] is the normalizing factor. Hence,


eq(fγ(x,μ,Σ))=cγ*det(Σ)-12γ1+γ-γ2+dγ+2γ(x-μ)T{det(Σ)-12γ1+γ[image: there is no content]}(x-μ)+1+γγ



(27)




Here we define alternative parameter [image: there is no content] to the original parameter Σ by the transform


[image: there is no content]=det(Σ)-12γ1+γ[image: there is no content]



(28)




and so that the inverse transform is given by


Σ=det([image: there is no content])γdγ+2γ+2Ξγ-1



(29)




noting that det([image: there is no content])=det(Σ)-12dγ+2γ+21+γ. Thus, we get a canonical form of (26) as


eq(fγ(x,μ,Σ))=cγ*det([image: there is no content])γ2+dγ+2γ-γ2+dγ+2γ(x-μ)T[image: there is no content](x-μ)+1+γγ



(30)




By analogy of the discussion for an exponential family we have the following expression for the braced term in (30) as


-2γ2+dγ+2γ12trace(xxT[image: there is no content])-μT[image: there is no content]x+12μT[image: there is no content]μ-2+dγ+2γ2γdet([image: there is no content])γdγ+2γ+2



(31)




A property of the escort distribution suggests moment formulae for the distribution (25) as follows: We have an identity


∂∂μ∫cγ*det([image: there is no content])γdγ+2γ+2-γ2+dγ+2γ(x-μ)T[image: there is no content](x-μ)+1+γγdx=0








which implies that


∫det([image: there is no content])γdγ+2γ+2-γ2+dγ+2γ(x-μ)T[image: there is no content](x-μ)+1γ[image: there is no content](x-μ)dx=0








which concludes that


E[image: there is no content](X)=μ








Similarly,


∂∂[image: there is no content]∫cγ*det([image: there is no content])γdγ+2γ+2-γ2+dγ+2γ(x-μ)T[image: there is no content](x-μ)+1+γγdx=0








which is


∫cγ*det([image: there is no content])γdγ+2γ+2-γ2+dγ+2γ(x-μ)T[image: there is no content](x-μ)+1γ










×γdγ+2γ+2det([image: there is no content])γdγ+2γ+2Ξγ-1-γ2+dγ+2γ(x-μ)(x-μ)Tdx=0



(32)




which concludes that


V[image: there is no content](X)=Σ








because of the relation of [image: there is no content] and Σ as observed in (29). The proof is complete.  □
Remark 3. The canonical form (30) of the escort distribution (26) plays an important role on the proof of Lemma. Basically we can write the canonical form of (21), however it is not known any link to distributional properties like a case of exponential family.

Remark 4. In Equation (31) the function



[image: there is no content]



(33)




is viewed as a potential function in the Fenchel convex duality, where


[image: there is no content]








cf. [21,22] for the covariance structure model.
From Lemma we observe that fγ(·,μ,Σ)∈[image: there is no content][image: there is no content]. Next we show that the distribution with density [image: there is no content] maximizes the γ-entropy [image: there is no content] over the space [image: there is no content](μ,Σ), where [image: there is no content] is defined in (2).

Theorem 2.

(i). If [image: there is no content], then



fγ(·,μ,Σ)=argmaxf∈[image: there is no content][image: there is no content][image: there is no content](f)



(34)




where [image: there is no content][image: there is no content] is defined in (20).
(ii). If [image: there is no content], then



fγ(·,μ,Σ)=argmaxf∈[image: there is no content][image: there is no content](γ)[image: there is no content](f)



(35)




where


[image: there is no content][image: there is no content](γ)={f∈[image: there is no content][image: there is no content]:f(x)=0 for almost everywhere  x∈B[image: there is no content]}








with [image: there is no content] being {x∈[image: there is no content]d:(x-μ)T[image: there is no content](x-μ)>2+dγ+2γγ}.
Proof. By the definition of [image: there is no content][image: there is no content], we see from Lemma that fγ(·,μ,Σ)∈[image: there is no content][image: there is no content] for any [image: there is no content]. This leads to



E[image: there is no content]{fγ(X,μ,Σ)γ}=[image: there is no content]{fγ(X,μ,Σ)γ}








for any f in [image: there is no content][image: there is no content], which implies that


[image: there is no content](fγ(·,μ,Σ))=[image: there is no content](f,fγ(·,μ,Σ))








Hence


[image: there is no content](fγ(·,μ,Σ))-[image: there is no content](f)=[image: there is no content](f,fγ(·,μ,Σ))



(36)




which is nonnegative as discussed in (4). This concludes (34). Similarly, we observe that (36) holds for any [image: there is no content] and any f in [image: there is no content][image: there is no content](γ) since the support of f includes that of [image: there is no content]. This concludes (35). □
We would like to elucidate a similar structure for the statistical inference by the minimum projective cross entropy in which the data set [image: there is no content] is assumed to follow the model [image: there is no content]. We recall (8) from the relation of the projective cross entropy with the escort distribution



[image: there is no content](g,f)=-1γ(1+γ)∫eq(f(x))γ1+γg(x)dx








When we have got data [image: there is no content] to be fitted to the model [image: there is no content], the loss function is


[image: there is no content]








where [image: there is no content] defined in (21). The γ-estimator is defined by


[image: there is no content]








see the general definition (7). It follows from the canonical form defined in (30) with the canonical parameter [image: there is no content] defined in (28) that


Lγ[image: there is no content]=-1γ(1+γ)(cγ*)γγ+1det([image: there is no content])ω-ω{trace([image: there is no content]S)+(μ-[image: there is no content])T[image: there is no content](μ-[image: there is no content])}



(37)




where ([image: there is no content],S) and ω are defined in (17) and (33), and [image: there is no content] is the normalizing factor defined in (27). Here we note that if [image: there is no content], then the parameter [image: there is no content] must be assumed to be in [image: there is no content], where


[image: there is no content]={[image: there is no content]∈[image: there is no content]d×[image: there is no content]:([image: there is no content]-μ)T[image: there is no content]([image: there is no content]-μ)<ω-1(∀i=1,⋯,n)}



(38)




We note that Lγ[image: there is no content]=[image: there is no content](f(·,[image: there is no content],S),f(·,μ,Σ)) and Lγ([image: there is no content],S)=[image: there is no content](f(·,[image: there is no content],S)) since


Ef(·,[image: there is no content],S)(X)=[image: there is no content],andVf(·,[image: there is no content],S)(X)=S








Accordingly, we observe the argument similar to (19) for the MLE. The projective divergence [image: there is no content] defined in (3) equals the difference of the γ-loss functions as


Lγ[image: there is no content]-Lγ([image: there is no content],S)=[image: there is no content](fγ(·,[image: there is no content],S),fγ(·,μ,Σ)),



(39)




which is nonnegative with equality if and only if [image: there is no content]=([image: there is no content],S). See the discussion after equation (10). In this way, we can summarize the above discussion as follows:
Theorem 3. Let [image: there is no content] be a random sample from a γ-model defined in (21). Then the γ-estimator defined in (7) for [image: there is no content] is ([image: there is no content],S), where ([image: there is no content],S) is defined in (17).

Proof. Let us give another proof. The estimating system is given by



∂∂μLγ[image: there is no content]∂∂[image: there is no content]Lγ[image: there is no content]=[image: there is no content]([image: there is no content]-μ)ω{det([image: there is no content])ωΞγ-1-S(μ)}=0O



(40)




which is equivalent to


μ-[image: there is no content]Σ-S(μ)=0O








because of the relation of [image: there is no content] into Σ as given in (29). Thus, we also attain the conclusion (μ^γ,Σ^γ)=[image: there is no content],S. In this way, we obtain the solution of the system defined by (40) via the parameter [image: there is no content] using the relation of the escort distribution with the loss function (37). □
Remark 5. Consider the location model [image: there is no content] with the location parameter μ, where Σ is known in Theorem 3. Then we easily see that the γ-estimator for μ is [image: there is no content]. What about the reverse statement? We observe that if the γ-estimator for μ is [image: there is no content] with the sample size [image: there is no content], then the model is the γ-model, [image: there is no content] with the known Σ. The proof is parallel to that of Theorem 2 given in [17]. In fact, we conclude that the model density function [image: there is no content] satisfies that



{f(x-μ)}γ=a+b(x-μ)T[image: there is no content](x-μ)








where a and b are constants.
Remark 6. If we look at jointly Theorem 2 and 3, then



min[image: there is no content]∈[image: there is no content]d×SdLγ[image: there is no content]=maxf∈[image: there is no content]([image: there is no content],S)[image: there is no content](f)



(41)




since Lγ([image: there is no content],S)=[image: there is no content](fγ(·,[image: there is no content],S)). Both sides of (41) associate with inequalities (39) and (36) on γ-divergence in separate discussion.
Remark 7. The derivation of the γ-estimator in Theorem 3 is provided by the canonical parameter [image: there is no content] of the escort distribution as given in (28). Here we directly calculate the gradient of the loss with respect to Σ as follows:



∂∂ΣLγ[image: there is no content]=-12(1+γ)2det(Σ)-12γ1+γ(1-ωtrace{S(μ)[image: there is no content]})[image: there is no content]










+γ(1+γ)ωdet(Σ)-12γ1+γ[image: there is no content]S(μ)[image: there is no content]










=-12(1+γ)2det(Σ)-12γ1+γ










×(1-ωtrace{S(μ)[image: there is no content]})[image: there is no content]-1+γ1+12dγ+γ[image: there is no content]S(μ)[image: there is no content]








Therefore we observe that if we put μ=[image: there is no content] and Σ=αS([image: there is no content]), then


∂∂ΣLγ([image: there is no content],αS([image: there is no content]))=-12γ1+γdet(αS([image: there is no content]))-12γ1+γ(αS([image: there is no content]))-1










×(1-ωtrace{S([image: there is no content])(αS([image: there is no content]))-1})αS([image: there is no content])-1+γ1+12dγ+γS([image: there is no content])(αS([image: there is no content]))-1



(42)




The bracketed term of (42) is given by


α(1-ωtrace{S([image: there is no content])(αS([image: there is no content]))-1})-1+γ1+12dγ+γS([image: there is no content])










=α-dγ2+dγ+2γ-1+γ1+12dγ+γS([image: there is no content])








which concludes that if [image: there is no content], then (∂/∂Σ)Lγ([image: there is no content],αS([image: there is no content]))=0. This is a direct proof for Theorem 3, but it would accompany with a heuristic discussion for the substitution of [image: there is no content] into ([image: there is no content],αS([image: there is no content])).


Figure 1. t-distribution [image: there is no content], Gaussian [image: there is no content] and Wigner [image: there is no content] distributions.
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4. Concluding Remarks

We explored the elegant property (39), the empirical Pythagoras relation between the γ-model and γ-estimator, in the sense that (39) directly shows Theorem 3 without any differential calculus. Another elegant expression is in the minimax game between Nature and a decision maker, see [23]. Consider the space [image: there is no content](μ,Σ) defined in (20). The intersection of the γ-model (21) and [image: there is no content](μ,Σ) is a singleton [image: there is no content], which is the minimax solution of



maxg∈[image: there is no content](μ,Σ)minf∈[image: there is no content][image: there is no content](g,f)=[image: there is no content](fγ(·,μ,Σ),fγ(·,μ,Σ))








Consider different indices γ and [image: there is no content] which specify the γ-model and [image: there is no content]-estimator, respectively. Basically the [image: there is no content]-estimator is consistent under the γ-model for any choice of γ and [image: there is no content]. If we specifically fix [image: there is no content] for the model, that is, a Gaussian model, then the [image: there is no content]-estimator is shown to be qualitatively robust for any [image: there is no content]>0, see [16]. The degree of robustness is proportional to the value of [image: there is no content] with a trade for the efficiency. The [image: there is no content]-estimator for [image: there is no content] of the Gaussian model is given by the solution of



[image: there is no content]










Σ=(1+[image: there is no content])∑i=1nf0([image: there is no content],μ,Σ)γ*([image: there is no content]-μ)([image: there is no content]-μ)T∑i=1nf0([image: there is no content],μ,Σ)γ*








The weight function [image: there is no content] for the i-th observation [image: there is no content] becomes almost 0 when [image: there is no content] is an outlier. Alternatively, the classical robust method employs [image: there is no content]=0, that is, the MLE for the misspecified model [image: there is no content] or t-distribution model, see [24,25]. Thus, the different indices γ and [image: there is no content] work robust statistics in a dualistic manner.
This property is an extension of that associated between the exponential model and MLE, however, it is fragile in the sense that (19) does not hold if the indices in the γ-model and [image: there is no content]-estimator are slightly different. In practice, we find some difficulties for a numerical task for solving the MLE under the γ-model with [image: there is no content] because the support of the density depends on the parameter and the index γ. We discussed statistical and probabilistic properties on the model and estimation associated with the specific cross entropy. A part of properties discussed still holds for any cross entropy in a much wider class, which is investigated from the point of the Fenchel duality in [13,26].
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Appendix 1

We show (5). It follows from l’H[image: there is no content]pital’s rule that



limγ→0[image: there is no content](g,f)=∂∂γ∫g(x)1+γdx11+γ-∫g(x)f(x)γdx∫f(x)1+γdxγ1+γ[image: there is no content]








which is written as


[image: there is no content]










+γ1+γ∫g(x)f(x)γdx∫f(x)1+γdx1+2γ1+γ∫f(x)1+γlogf(x)dx[image: there is no content]








which is reduced to


[image: there is no content]








This completes the proof of (5). □


Appendix 2

First, we give the formula for [image: there is no content] in (22) when [image: there is no content]. Let



I=1det(2πΣ)12∫1-ω(x-μ)T[image: there is no content](x-μ)+1γdx








where [image: there is no content] The integral is rewritten as


[image: there is no content]








where [image: there is no content]. It is expressed in polar coordinates as


[image: there is no content]



(43)




where [image: there is no content] is the surface area of the unit sphere of [image: there is no content] dimension, that is,


[image: there is no content]=2πd2Γ(d2)








Since the integral in (43) is expressed by a beta function, we have


[image: there is no content]=I-1=(2ω)d2Γ(1+d2+1γ)Γ(1+1γ)








Second, we give the formula when [image: there is no content] The argument similar to the above



[image: there is no content]








where [image: there is no content]. It is expressed in polar coordinates as


I=(-2πω)-d2[image: there is no content]∫0∞(1+r2)1γr[image: there is no content]dr








which leads that


[image: there is no content]=(-2ω)d2Γ(-1γ)Γ(-1γ-d2)
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