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Abstract: Over the last couple of decades nonextensive Tsallis entropy has shown

remarkable applicability to describe nonequilibrium physical systems with large variability

and multifractal structure. Herein, we review recent results from the application of Tsallis

statistical mechanics to the detection of dynamical changes related with the occurrence of

magnetic storms. We extend our review to describe attempts to approach the dynamics of

magnetic storms and solar flares by means of universality through Tsallis statistics. We also

include a discussion of possible implications on space weather forecasting efforts arising

from the verification of Tsallis entropy in the complex system of the magnetosphere.
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1. Introduction

Nonextensive statistical mechanics through Tsallis entropy provides a solid theoretical basis

for describing and analyzing complex systems out of equilibrium, systems exhibiting long-range

correlations, memory, or fractal properties [1–3]. Nowadays, mounting evidence of experimental,

observational and computational verifications and applications of the Nonextensive Statistical Mechanics

and Thermodynamics [4] as well as theoretical verifications and applications of the theory [5] exist. The

reader is referred to [6] for a complete list of publications (∼3500) related to the topic. Among the works

listed there are papers on the heliosphere [7,8], solar wind [9,10] and magnetospheric dynamics [11–14].

For instance, Leubner and Vörös [9,10] approached solar wind turbulence and intermittency based on

nonextensive Tsallis entropy concepts. The nonextensive approach assured for experimental studies

of solar wind intermittency independence from influence of a priori model assumptions [9,10]. It

was argued that the intermittency of the turbulent fluctuations should be related physically to the

nonextensive character of the interplanetary medium counting for nonlocal interactions via the entropy

generalization [9,10]. Moreover, the nonextensive Tsallis entropy has been recently introduced [11–14]

as an appropriate information measure to investigate dynamical complexity in the magnetosphere.

The method has been employed for analyzing Dst time series and gave promising results, detecting

the complexity dissimilarity among different physiological and pathological magnetospheric states

(i.e., pre-storm activity and intense magnetic storms, respectively).

The hourly Disturbance storm-time (Dst) geomagnetic activity index is computed from an average

over 4 mid-latitude magnetic observatories [15], and hence serves as a proxy for the magnetospheric

ring current, and thus magnetic storm occurrence. Magnetic storms are the most prominent global

phenomenon of geospace dynamics, interlinking the solar wind, magnetosphere, ionosphere, atmosphere

and occasionally the Earth’s surface [16–18]. Magnetic storms occur when the accumulated input power

from the solar wind exceeds a certain threshold.

Herein, we consider one year of Dst data (2001) including two intense magnetic storms, which

occurred on 31 March 2001 and 6 November 2001 with minimum Dst values −387 nT and −292 nT

respectively, as well as a number of weaker events (e.g., May and August 2001 with Dst ∼ −100 nT in

both cases). We employ the time-dependent Tsallis entropy as a measure of dynamical complexity in

Dst time series, thus quantifying the degree of predictability in magnetospheric evolution. Our analysis

reveals that Tsallis entropy detects the pattern of alterations in Dst time series prior to the intense storm

events and is able to discriminate between the different states of the magnetosphere.

2. Principles of Tsallis Entropy

The term “entropy” is used in both physics and information theory to describe the amount of

uncertainty or information inherent in an object or system. Clausius introduced the notion of entropy into

thermodynamics in order to explain the irreversibility of certain physical processes in thermodynamics.

In statistical thermodynamics the most general formula for the thermodynamic entropy S of a

thermodynamic system is the Boltzmann-Gibbs-Shannon entropy,

SBGS = −k
∑

pi ln pi (1)
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where k is the Boltzmann constant and pi are the probabilities associated with the microscopic

configurations.

Shannon recognized that a similar approach to Boltzmann-Gibbs-Shannon entropy could be applied

to information theory. In his famous 1948 paper [19], he introduced a probabilistic entropy measure HS:

HS(X) = −
n∑

i=1

p(xi) logb p(xi) (2)

where b is the base of the logarithm used and p denotes the probability mass function of a discrete random

variable X with possible values {x1, ..., xn}.

The aim of statistical mechanics is to establish a direct link between the mechanical laws and classical

thermodynamics. One of the crucial properties of the SBGS in the context of classical thermodynamics

is extensivity, namely proportionality with the number of elements of the system. The SBGS satisfies

this prescription if the subsystems are statistically (quasi-) independent, or typically if the correlations

within the system are essentially local. In such cases the system is called extensive.

In general, however, the situation is not of this type and correlations may be far from negligible

at all scales. In such cases the SBGS is nonextensive. Tsallis [1,2] introduced an entropic expression

characterized by an index q which leads to a nonextensive statistics

Sq = k
1

q − 1

(
1−

W∑
i=1

pqi

)
(3)

where pi are the probabilities associated with the microscopic configurations, W is their total number and

q is a real number. The value of q is a measure of the nonextensivity of the system: q → 1 corresponds

to the standard extensive Boltzmann-Gibbs-Shannon statistics.

This is the basis of the so-called nonextensive statistical mechanics, which generalizes the

Boltzmann-Gibbs-Shannon theory. The entropic index q characterizes the degree of nonadditivity

reflected in the following pseudo-additivity rule, which is a consequence of Equation (3): Sq(A+ B) =

Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B), where k is set to 1.

The cases q > 1 and q < 1 correspond to sub-additivity or super-additivity respectively. For

subsystems that have special probability correlations, SBGS corresponds and is the extensive case where

q = 1. Such systems are sometimes referred to as nonextensive [20]. The parameter q itself is not a

measure of the complexity of the system but measures the degree of nonextensivity of the system. It

is the time variations of the Tsallis entropy for a given q (Sq) that quantify the dynamic changes of the

complexity of the system. Lower Sq values characterize the portions of the signal with lower complexity.

3. Calculation of Tsallis Entropy through Symbolic Dynamics

3.1. Symbolic Dynamics

The discovery that simple deterministic systems can show a vast richness of behaviors in response

to variations of initial conditions and/or control parameters has been the motivation for an intense

interdisciplinary research activity since the 1950s [21–23]. One of the outcomes of this work has been

the realization that for an appropriate description of such complex systems, one needs to resort to a
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probabilistic approach [24]. It is well known since the pioneering work of Gibbs and Einstein that we

can describe dynamics from two points of view. On the one hand, we have the individual description in

terms of trajectories in classical dynamics, or of wave-functions in quantum theory. On the other hand,

we have the description in terms of ensembles described by a probability distribution (called the density

matrix in quantum theory) [25]. Now, once one leaves the description in terms of trajectories, a basic

question that must be dealt with concerns the amount of information one may have access to on the

temporal evolution of the system in the course of time.

One of the approaches developed in this context is “coarse-graining”, whereby a complex system is

viewed as an “information generator” producing messages consisting of a discrete set of symbols defined

by partitioning the full continuous phase space into a finite number of cells. We refer to such a description

as “symbolic dynamics” [22–24,26]. One of its merits is to provide a link between dynamical systems

and information theory [22,27].

From the initial dynamical system we can generate a sequence of symbols, where the dynamics of the

original (under analysis) system has been projected. This symbolic sequence can be analyzed by terms

of information theory such as entropy estimations, information loss, automaticity and other prominent

properties.

There exist some canonical ways for generating symbolic dynamics out of a given dynamical system

[22,23,26–28]. To produce symbolic dynamics out of the evolution of a given system, we set up a

coarse-grained description incorporating from the very beginning the idea that a physically accessible

state corresponds to a finite region rather than to a single point of phase space. Let Ci (i = 1, 2, ...K) be

the set of cells in phase space constituted by these regions, assumed to be connected and non-overlapping.

As time goes on, the phase space trajectory performs transitions between cells thereby generating

sequences of K-symbols, which may be regarded as the letters of an alphabet. We shall require that,

in the course of these transitions, each element of the partition is mapped by the law of evolution on a

union of elements.

In this paper, we restrict ourselves to the simplest possible coarse graining of the magnetospheric

signal. This is given by choosing a threshold C and assigning the symbols “1” and “0” to the signal,

depending on whether it is above or below the threshold (binary partition). The threshold is usually

the mean value of the data considered. In this way, each time window of the original Dst time series

for a given threshold is transformed into symbolic sequences, which contains “linguistic” or “symbolic

dynamics” characteristics. The selection of a two-symbol alphabet satisfies terms of simplicity and

computational convenience.

3.2. Tsallis Entropy Calculation

Symbolic dynamics provides a rigorous way of looking at the invariant, robust properties of the

dynamics [29]. New methods of nonlinear dynamics derived from the symbolic dynamics have been

introduced to distinguish between different states of the system interactions. These methods provide a

detailed description and classification of dynamic changes of various real-world time series [30,31].

Herein, we estimate Sq based on the concept of symbolic dynamics: from the initial measurements

we generate a sequence of symbols, where the dynamics of the original (under analysis) system has been

projected [32]. More precisely, the original Dst time series of length N , (X1, X2, . . . , XN ), is projected
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to a symbolic time series (A1, A2, . . . , AN ) with An from a finite alphabet of λ letters (0, . . . , λ − 1)

(see for example [11]).

After symbolization, the next step in the identification of temporal patterns is the construction

of symbol sequences with size L. We use the technique of lumping. Thus, we stipulate that

the symbolic sequence is to be read in terms of distinct successive “blocks” of length L,

A1, A2, . . . , AL/AL+1, . . . , A2L/AjL+1, . . . , A(j+1)L.

The number of all possible blocks of length L in a λ-letter alphabet is Nλ = λL. We determine the

probabilities of occurrence of each of Nλ different kind of blocks,

p(L)A1,A2,...,AL
=

Number of blocks of the form A1, A2, . . . , AL encountered by lumping

Total number of blocks encountered by lumping
(4)

To be more concrete, the simplest possible coarse graining of the Dst index is given by choosing a

threshold C (usually the mean value of the data considered) and assigning the symbols “1” and “0” to

the signal, depending on whether it is above or below the threshold (binary partition). Thus, we generate

a symbolic time series from a 2-letter (λ = 2) alphabet (0,1), e.g., 0110100110010110 . . .. Reading the

sequence by lumping of length L = 2 one obtains 01/10/10/01/10/01/01/10/ . . .. The number of all

possible kinds of blocks is λL = 22 = 4, namely 00, 01, 10, 11. Thus, the required probabilities for the

estimation of the Tsallis entropy p00, p01, p10, p11 are the fractions of the blocks 00, 01, 10, 11 in the

symbolic time series.

The Sq for the word length L is

Sq(L) = k
1

q − 1

⎛
⎝1−

∑
(A1,A2,...,AL)

[p(L)A1,A2,...,AL
]q

⎞
⎠ (5)

Broad symbol-sequence frequency distributions produce high entropy values, indicating a low degree

of organization. Conversely, when certain sequences exhibit high frequencies, lower entropy values are

produced, indicating a high degree of organization.

4. Results

A way to examine transient phenomena is to divide their outputting time series into shorter time

intervals, related with different activity levels of the corresponding natural systems, and consequently

analyze these time windows separately. If this analysis yields different results for time windows

associated to an intense magnetic storm, for instance, in comparison to time windows associated to

the regular state of the magnetosphere, then a transient behavior can be extracted.

In Figure 1 the Dst time series is presented. The one year Dst data (2001) include 13 major

geomagnetic storms, i.e., with Dst ≤ −100 nT (among them 2 storms had “second wave”, thus, in

total 15 major storms) and 23 moderate storms (−100 < Dst < −50 nT). The original time series was

divided into 5 shorter time series (see triangles denoting 5 distinct time windows in Figure 1). The

second and fourth time windows include the Dst variations associated to the 2 intense magnetic storms

of 31/3/2001 and 6/11/2001, respectively. Within each of the 5 time windows, the Tsallis entropy Sq

is calculated for different values of the entropic index q (1, 1.2, 1.5, 1.76, 1.84, 2, 2.5, 3, 4, 5) using the

technique of lumping.
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Figure 1. From top to bottom are shown Dst time series along with time variations

of Shannon entropies and Tsallis entropies, Sq. Tsallis entropies were derived using a q

parameter value of 1.84. The 31 March and 6 November 2001 magnetic storms are marked

with red. The triangles denote the time intervals corresponding to the five time windows

used for the calculations presented in Figure 2. The red dashed line in the Sq plot marks a

possible boundary value (0.7) for the transition of the system to the lower complexity, which

is characteristic of the different state of the magnetosphere.
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Figure 2 shows the normalized Sq values for the 5 different windows. The entropies have been

normalized with respect to the entropies given in Equation (5) for a uniform distribution of probabilities.

We study the temporal evolution of the Sq as the global instability is approaching. Time windows 1, 3

and 5 are referred to the normal state of magnetosphere. Their Sq values are lower in respect to that

given in Equation (5) for a uniform distribution of probabilities. This evidence indicates the existence

of an organization in the magnetosphere even in this normal state. The entropies in windows 2 and

4 drop to rather significantly lower values suggesting the appearance of a new distinct state in the

magnetosphere, which is characterized by a lower complexity in comparison to that of the normal epoch

of the magnetosphere. This is the case for all qs.

As expected, our results depend upon the Tsallis q value. Figure 2 clearly illustrates the superiority of

the q values restricted in the range 1 < q < 2 to magnify differences of the Sq and thus of the complexity

as the global instability is approaching. It is worth mentioning that the nonextensive q parameters that

clearly quantify the temporal evolution of the complexity in the Dst time series are in full agreement with

the upper limit q < 2 obtained from several studies involving the Tsallis nonextensive framework ([33]

and references therein). Moreover, they are in harmony with an underlying sub-extensive system, q > 1,
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verifying the emergence of strong interactions in the magnetosphere, especially during the occurrence of

an intense magnetic storm.

Figure 2. The normalized Tsallis entropies Sq calculated at the five time windows,

derived after the initial Dst time series was divided into five shorter time intervals

as shown in Figure 1, for ten different values of the entropic index q (q =

[1, 1.2, 1.5, 1.76, 1.84, 2, 2.5, 3, 4, 5]). On abscissa it is noted the central day of each time

window. The arrows point to the Tsallis entropies corresponding to q = 1.84.
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It is worth mentioning that the case q = 1 (Figure 2) seems to provide a hint for two different

patterns in the evolution of the system under study. However, the magnetosphere, due to the appearance

of strong interactions across its system, especially immediate before the magnetic storm occurrence,

clearly violates the Boltzmann-Gibbs-Shannon statistics. Therefore the result for this particular case has

absolutely no physical meaning.

As mentioned, the results depend upon the entropic index q. Therefore the appropriate choice of

the q index is significant and needs to be examined [34]. It is expected that, for every specific system,

better discrimination will be achieved with appropriates ranges of q values [3]. Thus, a challenge will be

to estimate the appropriate value of q which is associated with the generation of magnetic storms. We

attempt an estimation of the appropriate value of the q index based on ideas rooted in the areas of scale

invariance and universality [14] in Section 5.

Various tests have been performed with different lengths of word (L) for the purposes of symbolic

dynamics analysis (see Section 3.2), as well as with different candidate lengths of time windows of the

initial time series. We managed to achieve, by gradually varying both kinds of length, the optimal values

in order to best describe and resolve the transition from the normal magnetospheric state to intense

magnetic storms. Because of space limitations, only the results for the optimal length values are given

in this paper, which are also the most interesting from the physical point of view.
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5. Estimation of the Appropriate Entropic Index q

Different values of the entropic index q lead to different Tsallis entropies Sq. Therefore, a crucial

question is now arising. How is the appropriate value for the entropic index q calculated in order to

derive optimum Tsallis entropies Sq for our time series with respect to better characterization of the state

of the system under study?

Empirical evidence has been mounting that supports the possibility that a number of systems arising

in disciplines as diverse as physics, biology, engineering, and economics may have certain quantitative

features that are intriguingly similar. These properties can be conveniently grouped under the headings

of “scale invariance” and “universality” [35].

A model for earthquake dynamics coming from a nonextensive Tsallis formalism, starting from first

principles, has been recently introduced by Sotolongo-Costa and Posadas [36]. Based on this model, an

energy distribution function, which gives the Guttenberg-Richter empirical law [37] as a particular case,

has been analytically deduced in the framework of Tsallis statistical mechanics (see Equation (8) in [36]).

Their equation provides an excellent fit to seismicities generated in various large geographic areas usually

identified as seismic regions. Silva et al. [38] have subsequent revised this model considering the current

definition of the mean value, i.e., the so-called q-expectation value. They also suggested an energy

distribution function that also provides an excellent fit to seismicities

log(N>m) = logN +

(
2− q

1− q

)
log

[
1−

(
1− q

2− q

)(
102m

α2/3

)]
(6)

where N is the total number of earthquakes, N>m the number of earthquakes with magnitude larger than

m, and m ≈ log ε. α is the constant of proportionality between the earthquake energy, ε, and the size of

fragment, r (ε ∼ r3). Importantly, the associated q-values with the aforementioned Gutenberg-Richter

type law [Equation (6)] for 3 different regions (faults) in the world and by considering a threshold (m)

equal to earthquake magnitude 3 are 1.6, 1.63 and 1.71, respectively.

The primary question we can ask in the context of complex systems theory is whether the

aforementioned nonextensive laws not only successfully describe the magnitude distribution of

earthquakes in the Earth but also magnetic storms occurred in the terrestrial magnetosphere [13,14]. We

note that this model for earthquake generation mechanism was also applied successfully to pre-seismic

electromagnetic emissions [39,40] and just recently to Southern California seismicity [41].

We now examine whether the energy distribution function (Equation 6) corresponding to a

nonextensive Tsallis statistics is able to describe the Dst time series. Figure 3 shows that Equation (6)

provides an excellent fit to the experimental data, incorporating the characteristics of nonextensivity

statistics into the distribution of the magnetospheric events. Herein, N is the total number of Dst data,

N>m the number of Dst values with magnitude larger than m, G>m = N>m/N the relative cumulative

number of events with magnitude larger than m, and α a proportionality constant. The magnitude m

is approximately logε, where ε is the squared Dst value. (In the case of Dst index the square of the

amplitude of the magnetic field is proportional to energy). The best-fit for this analysis is given by a

q parameter value equal (within a confidence limit of 95%) to 1.84, whereas the threshold m is taken

−30 nT. (The associated with the model parameters minimize the χ2 merit function given by the sum of

the squared residuals.)
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Figure 3. We use the Gutenberg-Richter (G-R) type law for the nonextensive Tsallis statistics

(Equation 6) to calculate the relative cumulative number of Dst data, N(> m)/N (upper

panel). There is an excellent agreement of the aforementioned formula with the Dst time

series. The threshold is −30 nT which results in 164 events, and the associated Tsallis

entropic parameter is q =1.84.
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We clarify that we consider a sequence of N consecutive values that surpass the threshold to constitute

an “event” and measure its energy by integrating (summing) the individual data-point energies that

comprise it. Though this method better captures the system dynamics, it tends to unify near-concurrent

events when they both exceed the corresponding threshold, thus attributing lower probabilities to very

energetic events. This “merging” explains the divergence from the theoretical curve at the far right of

the graph in the lower part of the curve in Figure 3.

Figure 1 shows the temporal evolution of Shannon and Tsallis entropy for the Dst time series. The

calculation of Tsallis entropy values is based on the use of Tsallis parameter q found when applying

Equation (6) to the data, i.e., 1.84. Figure 1 shows that generally in time intervals around extreme

magnetospheric events (i.e., intense magnetic storms of 31/3/2001 and 6/11/2001) the corresponding

Tsallis entropies of Dst data attain lower values than for the rest of the time series. Lower entropy

means lower complexity or a higher degree of organization for the corresponding natural system

(i.e., magnetosphere) around the particular extreme event.

Figure 1 further demonstrates that Tsallis entropy yields superior results in comparison to Shannon

entropy regarding the detection of dynamical complexity in the Earth’s magnetosphere (i.e., offer a

clearer picture of the transition from normal state to magnetic storms). A possible explanation for this

is that Tsallis is an entropy obeying a nonextensive statistical theory, which is different from the usual
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Boltzmann-Gibbs-Shannon statistical mechanics obeyed by Shannon entropy. Therefore, it is expected to

better describe the dynamics of the magnetosphere, which is a nonequilibrium physical system with large

variability. Next, we further demonstrate the universality of Equation (6) by showing its applicability to

other extreme events of the solar-terrestrial system as in the case of solar flares, for instance [14].

6. Nonextensive Tsallis Analysis of Solar Flares

Solar flares are highly energetic explosions from active regions of the Sun in the form of EM radiation,

particle and plasma flows powered by strong and twisted magnetic fields. A solar flare occurs when

magnetic energy that has built up in the solar atmosphere is suddenly released. In particular, radiation is

emitted across virtually the entire EM spectrum, from radio waves at the long-wavelength end, through

optical emission to X-rays and γ-rays at the short-wavelength end.

The X-ray flux data presented in Figure 4 (upper panel) include 6 X-class, 27 M-class, 138 C-class

and 197 B-class solar flares that took place from 1 December 2004 to 28 February 2005 (for an event list

see [42]). In particular, a series of M- and X-class flares occurred in the single extensive active region

AR0720 between 10 and 23 January 2005. Moreover, between January 15th and 19th, this sunspot

produced four powerful solar flares. When it exploded a fifth time on January 20th released the highest

concentration of protons ever directly measured, taking only 15 minutes after observation to reach Earth,

indicating a velocity of approximately one-half light speed.

We now examine whether the Tsallis-based energy distribution function [Equation (6)] is also able to

describe the X-ray fluxes. Figure 4 (lower panel) shows that Equation (6) provides an excellent fit to the

experimental data, incorporating the characteristics of nonextensivity statistics into the distribution of the

solar events. Herein, N is the total number of X-ray fluxes, N>m the number of X-ray flux values with

magnitude larger than m, G>m = N>m/N the relative cumulative number of events with magnitude

larger than m, and α a proportionality constant. The magnitude m is approximately logε, where ε is

the integrated X-ray flux value. (In the case of X-ray flux we take the integral of fluxes for calculating

energy). The best-fit for this analysis is given by a q parameter value equal (within a confidence limit of

95%) to 1.82, whereas the threshold m is taken 10−6 W/m2.

The aforementioned result indicates that solar flares and magnetic storms obey nonextensive laws

which are scale invariant, and that these laws are universal in the sense that they do no depend on details

concerning the actual species. The aforementioned finding could be considered as a further indication

of the universality of fractal properties among a large number of various geophysical processes. This

is not a surprising result. Previously, de Arcangelis et al. [43] also demonstrated that the stochastic

processes underlying apparently different phenomena such as solar flares and earthquakes have universal

properties.
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Figure 4. GOES-12 5-minute averages X-ray flux, Xl (1-8 Angstrom) time series (upper

panel). The 20 January 2005 solar flare is marked with red. We use the Gutenberg-Richter

(G-R) type law for the nonextensive Tsallis statistics (Equation 6) to calculate the relative

cumulative number of X-ray flux data, N(> m)/N (lower panel). There is an excellent

agreement of the aforementioned formula with the X-ray flux time series. The threshold is

10−6 W/m2 which results in 141 events, and the associated parameter is q =1.82.
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7. Conclusions and Discussion

Accumulated evidence points to the complex character of magnetosphere dynamics. For instance,

Baker et al. [57], Vassiliadis et al. [45] and Sharma et al. [46] studied the occurrence of low

dimensional chaos in magnetospheric activity, while Klimas et al. [47] discussed the nonlinear character

of magnetosphere dynamics. Other studies [48,49] witnessed several aspects of the complex character

of the plasma sheet. Thus, recent advances in the study of complexity and complex systems open new

research perspectives to the investigation of the magnetospheric dynamics [50].

Our analysis reveals that Tsallis entropy detects the pattern of alterations in Dst time series prior to the

intense storm events and is able to discriminate between the different states of the magnetosphere. The

Tsallis entropy sensitively shows the complexity dissimilarity among different “physiological” (normal)

and “pathological” states (intense magnetic storms). The Tsallis entropy implies the emergence of two

distinct patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a

higher degree of organization, and (ii) a pattern associated with normal periods, which is characterized

by a lower degree of organization.
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In a series of papers, examining the applicability of various information measures to investigate

dynamical complexity in the magnetosphere, it has been found that the application of Tsallis entropy

to the analysis of the Dst time series yields superior results for detecting dynamical complexity changes

associated with magnetic storms in comparison to other entropy measures [12,51,52].

Magnetic storms and solar flares follow the same Tsallis-based energy distribution function previously

derived for earthquakes. Thus, the property of universality in solar flare, magnetic storm and earthquake

dynamics arise naturally in the framework of Tsallis statistical mechanics [14].

The conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that

can influence the performance and reliability of space-borne and ground-based technological systems

and endanger human life or health are termed as space weather. Space weather research addresses a

large number of physical processes in space, ranging from solar activity to its influence on interplanetary

space and geospace and its effects encountered at the surface of the Earth. Physical understanding of

this chain is based on a combination of observations, data analysis and interpretation, and theoretical and

empirical modeling [53].

Accurate detection of the dissimilarity of complexity between normal and abnormal states

(e.g., pre-storm activity and magnetic storms) can vastly improve space weather diagnosis and,

consequently, the mitigation of space weather hazards. Moreover, the convergence of the results

presented in this paper from the application of nonextensive Tsallis entropy to the Dst time series

with other information measures [11,12,52,54,55] can potentially increase the reliability of forecasting

techniques and can therefore improve space weather forecasting and modeling. For instance, the

application of Hurst exponent, H , analysis [52,54] to the Dst time series showed the existence of two

different patterns: (i) a pattern associated with the intense magnetic storms, which is characterized

by a fractional Brownian persistent behavior (0.5 < H < 1); (ii) a pattern associated with normal

periods, which is characterized by a fractional Brownian anti-persistent behavior (0 < H < 0.5).

The anti-persistent time windows correspond to the time windows of high Tsallis entropies, while the

persistent time windows correspond to the time windows of low Tsallis entropies. It is worth noting

that Balasis et al. [55] recently applied the typical formula for log-periodicity in time, which was

previously used for examining log-periodicity observed in the seismic precursors of the 1989 Loma Prieta

earthquake [56], to the Dst time series and achieved a successful prediction of a major magnetic storm.

This is another example of transferring ideas from seismology to magnetospheric physics, similar to the

use of Equation (6), which was originally derived to describe earthquake dynamics in the framework of

Tsallis statistical mechanics, for fitting the Dst data as presented in this paper.

Herein, we also show results from the application of nonextensive Tsallis statistics to solar flare

events. Solar flares have been a field of intense complexity studies since 2 decades ago. In the

late 1980s, Bak et al. [57] introduced the concept of self-organized criticality (SOC) in order to describe

slowly-driven nonequilibrium complex systems with extended degrees of freedom and a high level of

nonlinearity. In the early 1990s, Lu and Hamilton [58] were the first to applied SOC theory to solar flares.

They suggested that the behavior of the coronal magnetic field corresponds to that of a conservative

sandpile model where the random twisting of the solar magnetic field by the photospheric convective

motion plays the part of the addition of sand grains. Next, Georgoulis et al. [59] showed that cellular
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automata SOC models are able to reproduce efficiently most of the statistical properties of solar flares,

at least those seen in hard X-ray wavelengths.

Hamon et al. [60] applied an established SOC model for earthquakes, i.e., the

Olami-Feder-Christensen (OFC) model [61], to the problem of solar flares. They showed that the

probability density of event magnitudes given by the OFC model was in good agreement with most of

the flare observations and provided evidence of correlation in time between flares in the OFC model.

They found that the system, which is usually not in a SOC state, can be described as being on the edge

of SOC. The critical features of the system depend on the system bulk dissipation and driving rates,

and, thus, they suggested that the concept of universality must be used with care. However, they also

pointed out that the driven model shows many similarities and correspondences with observations from

the physics of stellar flares suggesting they may be considered a manifestation of general behaviors of

complex system dynamics. In this context, it is not surprising the fact that the Tsallis-based energy

distribution function, previously derived to describe earthquake dynamics, is also applicable to the field

of solar flare dynamics, as suggested here. The SOC and OFC models previously applied to fit solar

flare data by Lu and Hamilton [58] and Hamon et al. [60], respectively, fit the data at least as well as the

nonextensive model fits the X-ray flux data in this paper.

The universal character of various extreme events and associated critical phenomena is an outstanding

scientific challenge. Transferring ideas, concepts, and results between investigators from hitherto

disparate areas will cross-fertilize and lead to important new results. The evidence of a universal

statistical behavior suggests the possibility of a common approach to forecasting of space weather and

earthquakes [14]. Thus, the transfer of ideas and methods of seismic forecasting to the prediction of

solar flares and magnetic storms could improve space weather forecasting. In a similar way, a better

comparison and possibly combination of results with other well-established models [58,60] associated

with extreme space events will be gained, which is of paramount importance for understanding the

emergence of criticality in disparate areas of research such as geophysics, space and solar physics.
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