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Abstract:

 We perform an asymptotic analysis of the NSB estimator of entropy of a discrete random variable. The analysis illuminates the dependence of the estimates on the number of coincidences in the sample and shows that the estimator has a well defined limit for a large cardinality of the studied variable. This allows estimation of entropy with no a priori assumptions about the cardinality. Software implementation of the algorithm is available.
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1. Introduction


Estimation of functions of a discrete random variable with an unknown probability distribution is one of the simplest problems in statistics. However, the simplicity vanishes in an extremely undersampled regime, where K, the cardinality or the alphabet size of the variable, is much larger than N, the number of the samples. In this case, the average number of samples per possible outcome, or bin, is less than one, and the relative uncertainty about the underlying probability distribution and its various statistics is large. To decrease the posterior error, one may turn to Bayesian statistics and bias the set of a priori admissible distributions. However, finding an optimal bias-variance tradeoff is not easy. For severely undersampled cases, controlling the variance often make an estimator a function of the prior, rather than of the measured data.



This is often the case for inference of the Boltzmann-Shannon entropy, [image: there is no content] (here [image: there is no content] is probability of an event i), an important characteristics of a discrete variable. In this paper, all logarithms are natural, and the unit of entropy is nat. Simple estimators of entropy have low variances but high biases that are difficult to calculate due to the divergence of the logarithm near zero [1]. Developments driven in part by computational biology applications have solved this problem in the moderately undersampled regime, [image: there is no content] and [image: there is no content] [1,2,3,4,5,6,7,8,9]. Interestingly, they also resulted in the understanding that it is impossible to estimate entropy with zero bias uniformly over all distributions for a smaller N. However, Ma has argued [10] that, since coincidences in data start to occur at [image: there is no content], it is possible to estimate entropies even in the deeply undersampled regime, at least for some classes of probability distributions, such as uniform ones. Similar arguments are well-known in the literature on estimation of population sizes from capture-recapture data (see, e.g., [11] for recent developments). There it has been recognized that the population size (and the population entropy) can be estimated long before every possible individual outcome has been sampled with a high probability [12].



In 2002, Nemenman, Shafee and Bialek introduced a method for entropy estimation, hereafter called NSB [13]. While the estimator has proven successful in the Ma square-root regime [14,15], a theoretical basis for the success has not been presented in the literature. Here we review the method and perform its asymptotic analysis. We verify the intuition that the estimator works in the Ma regime by counting coincidences. We point out that the method can be viewed as finding the number of yet unseen bins with nonzero probability given K, the maximum cardinality of the variable. While estimation of K by model selection techniques cannot work (see below), we show that the method has a non-trivial limit as [image: there is no content]. Thus one should be able to calculate entropies of discrete random variables even without knowing their cardinalities. Our analysis allows for an efficient numerical implementation of the NSB estimator, which we have made available from [16].




2. Summary of the NSB Method


We use Bayes rule to expresses the posterior probability of a probability distribution [image: there is no content]≡{[image: there is no content]},i=1⋯K, of a discrete random variable with a help of its a priori probability, [image: there is no content]. Thus if [image: there is no content] i. i. d. samples from [image: there is no content] are observed in bin i, such that ∑i=1K[image: there is no content]=N, then the posterior, P([image: there is no content]|n), is


P([image: there is no content]|n)=P(n|[image: there is no content])P([image: there is no content])P(n)=∏i=1Kqi[image: there is no content]P([image: there is no content])∫01dKq∏i=1Kqi[image: there is no content]P([image: there is no content])



(1)







Following [13], we focus on the popular Dirichlet family of priors, indexed by a hyperparameter β:


Pβ([image: there is no content])=1[image: there is no content]δ1-∑i=1K[image: there is no content]∏i=1Kqiβ-1,[image: there is no content]=ΓK(β)Γ(Kβ)



(2)




Here the δ-function and [image: there is no content] enforce normalizations of [image: there is no content] and Pβ([image: there is no content]), respectively; and Γ stands for Euler’s Γ-function. These priors are common in statistics since they result in an analytically tractable, multinomial posteriors. For example, Wolpert and Wolf [17] calculated posterior averages, here denoted as [image: there is no content], of many interesting quantities, including the distribution itself,


⟨[image: there is no content]⟩β=[image: there is no content]+βN+κ,κ≡Kβ



(3)




and the moments of its entropy, which we will not reprint here.



According to Equation (3), Dirichlet priors add extra β samples (pseudocounts) to each bin. Thus for [image: there is no content], the data are unimportant, on average, and P([image: there is no content]|n) is dominated by almost uniform distributions, [image: there is no content]≈1/K. Then the posterior mean of the entropy is strongly biased upward to its maximum possible value of [image: there is no content]. Similarly, for [image: there is no content], distributions in the vicinity of the frequentist’s maximum likelihood estimate, [image: there is no content]=n/N, are important, and [image: there is no content] is biased downward [1].



[13] traced this problem to properties of the Dirichlet family. Its members encode reasonable a priori assumptions about [image: there is no content], but not about H([image: there is no content]). Instead, a priori assumptions about the entropy are strongly biased, as seen from the a priori moments:


[image: there is no content]≡⟨H[image: there is no content]⟩β=ψ0(κ+1)-ψ0(β+1)



(4)






σ2(β)≡⟨(δH)2[image: there is no content]⟩β=β+1κ+1ψ1(β+1)-ψ1(κ+1)



(5)




Here [image: there is no content] are the polygamma functions. [image: there is no content] varies smoothly from 0 for [image: there is no content], through 1 for [image: there is no content], and to [image: there is no content] for [image: there is no content]. [image: there is no content] for almost all β [13], which is negligibly small for large K. Thus [image: there is no content] that is typical in Pβ([image: there is no content]) has the entropy extremely close to some predetermined β-dependent value. This bias persists even when [image: there is no content] data are collected.



One should strive for the a priori distribution of entropy, P(H([image: there is no content])), to be approximately uniform to have a chance for an unbiased estimator. NSB achieves the uniformity (but not necessarily zero bias) by noting that, following Equations (4) and (5), for large K, [image: there is no content] is almost a δ-function. Thus a prior that averages over all non-negative values of β (and, correspondingly, over all a [image: there is no content]) may reduce the bias in the entropy estimation even for [image: there is no content]. [13] proposed the following infinite mixture of Dirichlet priors [18] for the averaging:


P([image: there is no content];β)=1Zδ1-∑i=1K[image: there is no content]∏i=1Kqiβ-1dξ(β)dβP(β)



(6)




Here Z is again a normalizing coefficient, and [image: there is no content] ensures uniformity for ξ, rather than for β. A non-constant prior on β, [image: there is no content], may be used if needed, but we will not focus on this term from now on. Such Dirichlet mixture results in P([image: there is no content])≠const, introducing biases in estimation of [image: there is no content] as a tradeoff for a possibly accurate estimation of H.



Inference with the prior, Equation (6), involves additional averaging over β (or, equivalently, ξ). The a posteriori moments of the entropy are


Hm^=∫0[image: there is no content]dξρ(ξ,n)⟨Hm⟩β(ξ)∫0[image: there is no content]dξρ(ξ|n)



(7)




where the unnormalized posterior density is


ρ(ξ|n)=PβξΓ(κ(ξ))Γ(N+κ(ξ))∏i=1KΓ([image: there is no content]+β(ξ))Γ(β(ξ))



(8)




Note that, for [image: there is no content], [image: there is no content]. Thus if we choose [image: there is no content], then the a priori assumptions about ξ are exactly uniform, as we had hoped to achieve. We note again that the uniformity of the prior is not equivalent to zero posterior bias.



An additional reason for the choice of averaging over the model families, as in Equation (6), is provided by the theory of Bayesian model selection [13,19,20,21,22,23]. Specifically, families of probabilistic models of data that incorporate more models (have larger volumes in the model space) usually have high explanatory powers and include some models that are very likely a posteriori. However, they also include many extremely unlikely models, and the posterior probability averaged over the entire family is low. Thus the competition between the “goodness of fit” and the volume of the model space (the Occam factor) often attributes much of the posterior weight to model families that are relatively simple, but explain the data well. In the case of the NSB prior, different values of β index different model families. For small β, the estimates in Equation (3) are closer to the frequentist’s maximum likelihood, explaining the data better. However, there is less smoothing, and the space of models is larger. Thus as argued in [13], one expects that the integrals in Equation (7) are dominated by some [image: there is no content] with a small posterior variance, and then ⋯^≈⟨⋯⟩[image: there is no content].



In this work, we start with investigating whether a maximum of the integrand in Equation (7), indeed, exists. We then study its properties. The results of the analysis leads to a deeper understanding of the NSB method.




3. Saddle Point Analysis


We calculate integrals in Equation (7) using the saddle point (a. k. a. Laplace) approximation. Since [image: there is no content] does not depend on N, for [image: there is no content], only the Γ-terms in ρ define the saddle. We write


ρ(ξ|n)=P(β(ξ))exp-LK(n,β)



(9)






LK(n,β)=-∑ilnΓ(β+[image: there is no content])+KlnΓ(β)-lnΓ(κ)+lnΓ(κ+N)



(10)




Differentiating, we obtain the following equation for the saddle point (or the maximum likelihood) value, [image: there is no content]=K[image: there is no content]:


1K∑i[image: there is no content]>0ψ0([image: there is no content]+[image: there is no content])-K1Kψ0([image: there is no content])+ψ0([image: there is no content])-ψ0([image: there is no content]+N)=0



(11)




where [image: there is no content] denotes the number of bins that have, at least, m counts. Note that [image: there is no content].



If [image: there is no content], and if there are many bins with multiple counts, i.e., [image: there is no content], then the (unknown) [image: there is no content] is likely non-uniform. Thus the entropy is significantly smaller than its maximum possible value [image: there is no content]. Since for any [image: there is no content], [image: there is no content]≈[image: there is no content] [13], small entropy estimate is achievable only if [image: there is no content]→0 as [image: there is no content]. Thus we will look for


[image: there is no content]=[image: there is no content]+1Kκ1+1K2κ2+⋯



(12)




where none of [image: there is no content] depends on K. Plugging Equation (12) into Equation (11), we get an equation for [image: there is no content]:


K1[image: there is no content]=ψ0([image: there is no content]+N)-ψ0([image: there is no content])



(13)




The leading terms in the expansion of [image: there is no content] are:


κ1=∑i[image: there is no content]>1ψ0([image: there is no content])-ψ0(1)K1/κ02-ψ1([image: there is no content])+ψ1([image: there is no content]+N)



(14)






κ2=K1κ03+ψ2([image: there is no content])-ψ2([image: there is no content]+N)2κ12+∑i[image: there is no content]>1[image: there is no content]ψ1([image: there is no content])-ψ1(1)K1/κ02-ψ1([image: there is no content])+ψ1([image: there is no content]+N)



(15)




We have calculated additional higher order terms. However, when [image: there is no content], as is common in applications, these terms are rarely needed.



We now solve Equation (13). For [image: there is no content]→0 and [image: there is no content], the r. h. s. of the equation is approximately 1/[image: there is no content][24]. For [image: there is no content]→∞, it is close to N/[image: there is no content]. Thus if [image: there is no content], and the number of coincidences among data, [image: there is no content], is zero, then the l. h. s. majorates the r. h. s., and Equation (13) has no solution. That is, there is no saddle point in the integrand. If there are coincidences, a unique solution exists, and [image: there is no content] means [image: there is no content]→∞. Thus we search for [image: there is no content] of the form [image: there is no content]∼1/Δ+O(Δ0).



It is useful to define:


[image: there is no content](j)≡∑m=0N-1mjNj+1



(16)




where each of [image: there is no content]’s scales as [image: there is no content]. Using properties of polygamma functions [24] and defining [image: there is no content], we rewrite Equation (13) as


1-δ=∑j=0∞(-1)j[image: there is no content](j)([image: there is no content]/N)j



(17)




Combined with the previous observations, Equation (17) suggests that we look for [image: there is no content] of the form


[image: there is no content]=Nb-1δ+b0+b1δ+⋯



(18)




where each of [image: there is no content]’s is independent of δ and scales as [image: there is no content].



Substituting Equation (18) into Equation (17), we find the series expansion self-consistent, and


b-1=[image: there is no content](1)=N-12N



(19)






b0=-[image: there is no content](2)[image: there is no content](1)=-2N+13N



(20)






b1=-fN2(2)fN3(1)+[image: there is no content](3)fN2(1)=N2-N-29(N2-N)



(21)




Again, more terms have been calculated and are used in the software implementation of the estimator.



The obtained expressions present the saddle point value [image: there is no content] (or [image: there is no content], or [image: there is no content]) as a power series in [image: there is no content] and δ. To complete the evaluation of Equation (7), we now calculate the curvature at this saddle point:


∂2L∂[image: there is no content]ξ([image: there is no content])=∂2L∂β21(dξ/dβ)2[image: there is no content]=Δ+NO(δ2)



(22)




Notice that the curvature does not scale as a power of N as was suggested in [13]. The uncertainty in [image: there is no content] is determined to the first order only by coincidences. One can understand this by considering [image: there is no content] with [image: there is no content]≪1 for most of the bins. Then counts of [image: there is no content]=1 are not informative for entropy estimation since they can correspond to massive bins, as well as to some random bins from the sea of the negligible ones. However, coinciding counts likely corresponds to high-probability bins, which should influence the entropy estimation. Note also that, to the first order in [image: there is no content], the exact positioning of coincidences does not matter: for a fixed Δ, a few coincidences in many bins or many coincidences in a single one produce the same saddle point and the same curvature around it. While this is an artifact of the specific choice of the prior P(H([image: there is no content])), the similarity to Ma’s coincidence counting [10] is intriguing.



In summary, if the number of coincidences [image: there is no content], then the saddle point analysis is self-consistent. A specific value [image: there is no content] is selected a posteriori, and the variance of the entropy is small.



Numerical Implementation


The series expansions calculated above form the basis for a numerical implementation of the NSB algorithm. To calculate the posterior mean and variance of the NSB entropy estimator using Equation (7), evaluation of three integrals is required numerically (normalization, the first, and the second moments of H). The algorithm for this is as follows. When [image: there is no content], the integrands are not peaked, and the integrals can be evaluated by simple Gaussian quadratures or other user-selected methods. If instead [image: there is no content], the integrands will be peaked, strongly if [image: there is no content]. Identification of the location of the peaks is then essential before numerical integration is done. We proceed as follows:

	
The saddle point (the maximum of [image: there is no content]) is found numerically by:

	(a)

	
evaluating an approximation for [image: there is no content] using the first few terms of the series, Equation (18);




	(b)

	
using the approximate value as a starting point for the Newton-Raphson iterative algorithm to solve for [image: there is no content] from Equation (13);




	(c)

	
plugging the solution into the series expansion for the saddle [image: there is no content], Equation (12);




	(d)

	
and, finally, using the latter solution as a starting point for the Newton-Raphson search of a more accurate value of [image: there is no content] in Equation (11).









	
Each of the integrands in Equation (7) is divided by the value of [image: there is no content] at the saddle point, so that the maximum of the integrands is [image: there is no content].



	
Curvature around the saddle point (and hence the posterior variance) is evaluated numerically.



	
The integrals are evaluated numerically over the range that spans a few standard deviations on both sides of the saddle point; the range is controlled by the user-specified desired accuracy.








The above algorithm has been implemented in Octave/Matlab and C++. It is available from [16]. The input to the routines is either the histogram of counts (Octave/Matlab and C++), or a series of samples (C++ only). The output of the routines is either the posterior mean and the standard deviation of the entropy, and the position of the saddle point, or a variety of diagnostics information if the integration fails for any reason. The C++ version is implemented specifically to allow estimation of entropies on alphabets with arbitrary large cardinalities. It is limited only by the ability of the data series to fit in the computer memory.





4. Choosing a Value for K?


We are interested in the regime [image: there is no content], when the number of pseudocounts in occupied bins, [image: there is no content], is negligible compared to their number in empty bins, [image: there is no content]. Then Equation (3) and Equation (8) show that selecting β (i.e., integrating over it) means balancing N, the number of actual counts versus [image: there is no content], the number of pseudocounts, or, equivalently, the scaled number of unoccupied bins. K is often unknown in real-life applications, or the number of possible outcomes is a countable infinity. Estimation of K from data has proven to be a hard problem, only solved completely for uniform distributions [10,11]. One can consider varying K (instead of β) to find its maximum a posteriori value when performing Bayesian integration over κ.



To see that this will not work, we note that smaller K leads to a higher maximum likelihood since the total number of pseudocounts is less. Unfortunately, since there are fewer bins (degrees of freedom) available, smaller K also means smaller volume in the distribution space. Thus Bayesian averaging over K is trivial: the smallest possible number of bins (i.e., no empty bins) dominates. This can be seen from Equation (8): only the first ratio of Γ-functions in the posterior density depends on K, and it is maximized for [image: there is no content]. Thus straightforward selection of the value of K is not an option. However, the next section suggests a way around this hurdle.




5. Unknown or Infinite K


Often the true value of K is unknown because its simple estimate is intolerably large. For example, consider measuring entropy of ℓ-gramms in printed English [25] using an alphabet with 29 characters: 26 different letters, one symbol for digits, one space, and one punctuation mark. Then for [image: there is no content], a naive estimate of K is [image: there is no content]. Only very few of all possible 10-gramms are allowed by the grammar, but one does not know how many exactly. Thus one has to work in the space of full cardinality, which is ridiculously undersampled.



As shown in Section 3, NSB is well defined even for finite N and extremely large K, provided [image: there is no content]. Moreover, if [image: there is no content], then the expressions simplify since only the first term in Equation (12) needs to be kept. Even more interestingly, for an increasing K and [image: there is no content], [image: there is no content] becomes closer to a delta function since the a priori variance of entropy drops to zero as [image: there is no content], Equation (5). Thus NSB becomes more “certain” as K increases. Correspondingly, a possible solution to the problem of unknown cardinality is to use an upper bound estimate for K. It is better to overestimate K than to underestimate it. Even [image: there is no content] can be used. Insensitivity of the method to the value of K was explored empirically in [14].



Which assumptions allow NSB to use a few data points to specify entropy of a variable with even an infinite cardinality? A typical distribution in the Dirichlet family has a specific rank ordered (Zipf) plot [13]: the number of bins with the probability less than some q is given by an incomplete B-function, I,


[image: there is no content]



(23)




where B is the usual complete B-function. NSB estimates the best value for β using bins with coincidences, the head of the rank ordered plot. But knowing β defines the tails, where no data has been observed yet, allowing entropy estimation. Thus NSB relies on the rank-ordered tail of the studied distribution to be not too far away from the form in Equation (23). If the Zipf plot of the studied distribution has a substantially longer tail, then one should not trust the results of the method. An empirical procedure for detecting this case has been suggested in [14,15].



With this warning in mind, we can analytically calculate the entropy estimate and its variance for a very large K. We want the results that hold even if the saddle point analysis, Section 3, fails when [image: there is no content]. Following Equation (12) and Equation (18), [image: there is no content]→0, but [image: there is no content]=K[image: there is no content]∼N2/Δ≫N≫1. The range of entropies is [image: there is no content], so the prior on H produced by P([image: there is no content];β) is (almost) uniform over a semi-infinite range and thus is ill-defined. Similarly, there is a problem normalizing Pβ([image: there is no content]). However, both problems are resolved by an appropriate limiting procedure, and we disregard them in what follows.



To perform the integrals in Equation (7), we point out that, for [image: there is no content], [image: there is no content], and κ→[image: there is no content], we have [image: there is no content]∼N2/Δ, and then [image: there is no content]-ξ(β)|κ≈[image: there is no content]=O(δ)+O(1/K)≡O(δ,1/K). A similar relation holds for [image: there is no content]. That is, the posterior averages of the entropy and its square are almost indistinguishable from ξ and [image: there is no content], their respective a priori averages. Since now we are interested in small Δ (otherwise we can use the saddle point analysis), we replace [image: there is no content] by [image: there is no content] in Equation (7). The error of this approximation is [image: there is no content].



We transform the Lagrangian in Equation (10). First, we drop terms that do not depend on κ since they appear in the numerator and denominator of Equation (7) and thus cancel. Second, we expand around [image: there is no content]. This gives


LK(n,κ)=-∑i[image: there is no content]>1lnΓ([image: there is no content])-K1lnκ-lnΓ(κ)+lnΓ(κ+N)+O1K



(24)




We note that κ is large in the vicinity of the saddle if δ is small and N is large, cf. Equation (18). Thus by definition of ψ-functions, [image: there is no content]. Further, [image: there is no content], and [image: there is no content] [24]. Finally, since [image: there is no content], where [image: there is no content] is the Euler’s constant, Equation (4) says that ξ-[image: there is no content]≈lnκ. Combining all of these expressions, we get


LK(n,κ)≈-∑i[image: there is no content]>1lnΓ([image: there is no content])+Δ(ξ-[image: there is no content])+N22exp([image: there is no content]-ξ)



(25)




where ≈ means the precision of [image: there is no content].



We write:


H^≈[image: there is no content]-∂∂Δln∫0[image: there is no content]e-Ldξ



(26)






(δH)2^≈∂∂Δ2ln∫0[image: there is no content]e-Ldξ



(27)




The integrals in these expressions are calculated by substituting exp([image: there is no content]-ξ)=τ and replacing the limits of integration 1/Kexp([image: there is no content])≤τ≤exp([image: there is no content]) by [image: there is no content]. This introduces errors of [image: there is no content] at the lower limit and [image: there is no content] at the upper limit. Both errors are within the precision of interest [image: there is no content] if there is, at least, one coincidence. Thus


∫0[image: there is no content]e-Ldξ≈Γ(Δ)N22-Δ



(28)




Finally, substituting Equation (28) into Equation (26) and (27), we get


H^≈([image: there is no content]-ln2)+2lnN-ψ0(Δ)



(29)






(δH)2^≈ψ1(Δ)



(30)




These equations are valid to zeroth order in [image: there is no content] and [image: there is no content]. They provide a simple, yet nontrivial, estimate of the entropy that can be used even if the cardinality of the variable is unknown. However, one always must analyze for a possible bias when using the estimator. Note that Equation (30) agrees with Equation (22) since, for large Δ, [image: there is no content]. The similarity between the coincidence counting in Equations (29) and (30) and in Ma’s analysis [10] is also clear.




6. Conclusions


We have calculated various asymptotic properties of the NSB estimator for estimation of entropies of discrete random variables. First, the posterior expectations have been evaluated in terms of power series in [image: there is no content] and [image: there is no content], but for the number of coincidences [image: there is no content]. Evaluation is done using the saddle point expansion. Convergence of the series depends on the number of coincidences rather than on the total number of samples. This elucidates the similarity to Ma’s argument [10] and verifies the intuition of [13,14] that counting coincidence is what makes the method work in the severely undersampled regime. We have then discussed the limit when [image: there is no content], and the saddle point analysis is not applicable. Here we have shown that the estimator has a finite asymptote for the case of infinitely many bins, [image: there is no content], or of an unknown number of bins. We obtained a closed form solutions for the estimate of the entropy and its variance in this regime. As for [image: there is no content], to the first order, both depend on the number of coincidences rather than on the total number of samples.



The NSB estimator has been implemented in software, using the current asymptotic analysis as one of the steps in numerical evaluation of posterior integrals. Armed with empirical tests for the absence of bias in the estimator suggested in [14,15], the software brings us one step closer to a reliable, model independent estimation of entropy of discrete probability distributions in the severely undersampled Ma regime. The method is proving to be particularly powerful in a variety of biological applications.
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