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Abstract: The recent development of the theory of fluctuation relations has led to
new insights into the ever-lasting question of how irreversible behavior emerges from
time-reversal symmetric microscopic dynamics. We provide an introduction to fluctuation
relations, examine their relation to dissipation and discuss their impact on the arrow of
time question.
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1. Introduction

Irreversibility enters the laws of thermodynamics in two distinct ways:

Equilibrium Principle An isolated, macroscopic system which is placed in an arbitrary initial state
within a finite fixed volume will attain a unique state of equilibrium.

Second Law (Clausius) For a non-quasi-static process occurring in a thermally isolated system, the
entropy change between two equilibrium states is non-negative.

The first of these two principles is the Equilibrium Principle [1], whereas the second is the Second Law
of Thermodynamics in the formulation given by Clausius [2,3]. Very often the Equilibrium Principle
is loosely referred to as the Second Law of Thermodynamics, thus creating a great confusion in
the literature. So much that proposing to raise the Equilibrium Principle to the rank of one of the
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fundamental laws of thermodynamic became necessary [1]. Indeed it was argued that this Law of
Thermodynamics, defining the very concept of state of equilibrium, is the most fundamental of all the
Laws of Thermodynamics (which in fact are formulated in terms of equilibrium states) and for this
reason the nomenclature Minus-First Law of Thermodynamics was proposed for it.

The Minus-First Law of Thermodynamics and the Second Law of Thermodynamics consider two
very different situations, see Figure 1. The Minus-First Law deals with a completely isolated system that
begins in non-equilibrium and ends in equilibrium, following its spontaneous and autonomous evolution.
In the Second Law one considers a thermally (but not mechanically) isolated system that begins in
equilibrium. A time-dependent mechanical action perturbs the initial equilibrium, the action is then
turned off and a final equilibrium will be reached, corresponding to higher entropy [4]. At variance with
the Minus-First Law, here the system does not evolve autonomously, but rather in response to a driving:
we speak in this case of nonautonomous evolution.

The use of the qualifiers “autonomous” and “nonautonomous” reflects here the fact that the set of
differential equations describing the microscopic evolution of the system are autonomous (i.e., they
do not contain time explicitly) in cases of the type depicted in Figure 1, top, and are nonautonomous
(i.e., they contain time explictely) in cases of the type depicted in Figure 1, bottom. Accordingly the
Hamilton function is time independent in the former cases and time dependent in the latter ones (see
Section 2 below).

Figure 1. Autonomous vs. nonautonomous dynamics. Top: Autonomous evolution of
a gas from a non-equilibrium state to an equilibrium state (Minus-First Law). Bottom:
Nonautonomous evolution of a thermally isolated gas between two equilibrium states. The
piston moves according to a pre-determined protocol specifying its position λt in time. The
entropy change is non-negative (Second Law).

In order to illustrate the necessity of clearly distinguishing between the two prototypical evolutions
depicted in Figure 1, let us analyze one statement which is often referred to as the second law: after
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the removal of a constraint, a thermally isolated system that is initially in equilibrium reaches a
new equilibrium at higher entropy [5]. While, after the removal of the constraint the system evolves
autonomously (hence, in accordance to the equilibrium principle it will eventually reach a unique
equilibrium state), it is often overlooked the fact that the overall process is nevertheless described by
a set of nonautonomous differential equations (because the removal of the constraint is an instance of an
external time-dependent mechanical intervention) with the constrained equilibrium as initial state. Then,
in accordance with Clausius principle the final state is of higher or same entropy. Thus, this formulation
of the second law can be seen as a special case of Clausius formulation that considers only those external
interventions which are called constraint removals.

Both the Minus-First Law and the Second Law have to do with irreversibility and the arrow of time.
While since the seminal works of Boltzmann, the main efforts of those working in the foundations of
statistical mechanics were directed to reconcile the Minus-First Law with the time-reversal symmetric
microscopic dynamics, recent developments in the theory of fluctuation relations have brought new and
deep insights into the microscopic foundations of the Second Law. As we shall see below, fluctuation
theorems highlight in a most clear way the fascinating fact that the Second Law is deeply rooted in the
time-reversal symmetric nature of the laws of microscopic dynamics [6,7].

This connection is best seen if one considers the Second Law in the formulation given by Kelvin,
which is equivalent to Clausius formulation [8]:

Second Law (Kelvin) No work can be extracted from a closed equilibrium system during a cyclic
variation of a parameter by an external source.

The field of fluctuation theorems has recently gained much attention. Many fluctuation theorems have
been reported in the literature, referring to different scenarios. Fluctuation theorems exist for classical
dynamics, stochastic dynamics, and for quantum dynamics; for transiently driven systems, as well as
for non-equilibrium steady states; for systems prepared in canonical, micro-canonical, grand-canonical
ensembles, and even for systems initially in contact with “finite heat baths” [9]; they can refer to
different quantities like work (different kinds), entropy production, exchanged heat, exchanged charge,
and even information, depending on different set-ups. All these developments including discussions of
the experimental applications of fluctuation theorems have been summarized in a number of reviews
[6,7,10,11].

In Section 2 we will give a brief introduction to the classical work Fluctuation Theorem of Bochkov
and Kuzovlev [12], which is the first fluctuation theorem reported in the literature. The discussion of
this theorem suffices for our purpose of highlighting the impact of fluctuation theory on dissipation
(Section 3) and on the arrow of time issue (Section 4). Remarks of the origin of time’s arrow in this
context are collected in Section 5.
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2. The Fluctuation Theorem

2.1. Autonomous Dynamics

Consider a completely isolated mechanical system composed of f degrees of freedom. Its dynamics
are dictated by some time independent Hamiltonian H(q,p), which we assume to be time reversal
symmetric; i.e.,

H(q,p) = H(q,−p) (1)

Here (q,p) = (q1 . . . qf , p1 . . . pf ) denotes the conjugate pairs of coordinates and momenta describing
the microscopic state of the system.

The assumption of time-reversal symmetry implies that if [q(t),p(t)] is a solution of Hamilton
equations of motion, then, for any τ , [q(τ − t),−p(τ − t)] is also a solution of Hamilton equations
of motion. This is the well known principle of microreversibility for autonomous systems [13].

We assume that the system is at equilibrium described by the Gibbs ensemble:

%(q,p) = e−βH(q,p)/Z(β) (2)

where Z(β) =
∫
dpdqe−βH(q,p) is the canonical partition function, and β−1 = kBT , with kB being the

Boltzmann constant and T denotes the temperature.
We next imagine to be able to observe the time evolution of all coordinates and momenta within

some time span t ∈ [0, τ ]. Fluctuation theorems are concerned with the probability [14] P [Γ] that
the trajectory Γ is observed. We will reserve the symbol Γ to denote the whole trajectory (that is,
mathematically speaking, to denote a map from the interval [0, τ ] to the 2f dimensional phase space),
whereas the symbol Γt will be used to denote the specific point in phase space visited by the trajectory Γ

at time t. The central question is how the probability P [Γ] compares with the probability P [Γ̃] to observe
Γ̃, the time-reversal companion of Γ: Γ̃t = εΓτ−t where ε(q,p) = (q,−p) denotes the time reversal
operator. The answer is given by the microreversibility principle which implies:

P [Γ] = P [Γ̃] (3)

To see this, consider the Hamiltonian dynamics but for the case that the trajectory Γ is not a solution
of Hamilton equations, then Γ̃ is also not a solution, and both the probabilities P [Γ] and P [Γ̃] are trivially
zero. Now consider the case when Γ is solution of Hamilton equations, then also Γ̃ is a solution. Since
the dynamics are Hamiltonian, there is one and only one solution passing through the point Γ0 at time
t = 0, then the probability P [Γ] is given by the probability to observe the system at Γ0 at t = 0. By
our equilibrium assumption this is given by %(Γ0) [15]. Likewise the P [Γ̃] is given by %(Γ̃0). Due
to time-reversal symmetry and energy conservation we have H(Γ̃0) = H(εΓτ ) = H(Γτ ) = H(Γ0)

implying %(Γ̃0) = %(Γ0), hence Equation (3).
To summarize, the microreversibility principle for autonomous systems in conjunction with the

hypothesis of Gibbsian equilibrium implies that the probability to observe a trajectory and its
time-reversal companion are equal. There is no way to distinguish between past and future in an
autonomous system at equilibrium. Obviously, this is no longer so when the system is prepared out
of equilibrium, as in Figure 1, top.
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2.2. Nonautonomous Dynamics

Imagine now the nonautonomous case of a thermally insulated system driven through the variation
of a parameter λt. Thermal insulation guarantees that the dynamics are still Hamiltonian. At variance
with the autonomous case though, now the Hamiltonian is time dependent. Without loss of generality we
assume that the varying parameter, denoted by λt couples linearly to some system observable Q(q,p),
so that the Hamiltonian reads:

H(q,p;λt) = H0(q,p)− λtQ(q,p) (4)

This is the traditional form employed in the study of the fluctuation-dissipation theorem [16,17]. In the
following we shall reserve the symbol λ (without subscript) to denote the whole parameter variation
protocol, and use the symbol λt, to denote the specific value taken by the parameter at time t. The
succession of parameter values is assumed to be pre-specified (the system evolution does not affect the
parameter evolution).

We assume that λt = 0 for t = 0 and that the system is prepared at t = 0 in the equilibrium Gibbs state

%0(q,p) = e−βH0(q,p)/Z0(β) (5)

where Z0(β) =
∫

dqdqe−βH0(q,p). We further assume that at any fixed value of the parameter the
Hamiltonian is time reversal symmetric:

H(q,p;λt) = H(q,−p;λt) (6)

Note here the fact that energy is not conserved in the nonautonomous case because the Hamiltonian
is time-dependent in this case. Microreveresibility, as we have described it above, also does not hold:
Given a protocol λ, if Γ is a solution of the Hamilton equations of motion, in general Γ̃ is not. However Γ̃

is a solution of the equations of motion generated by the time-reversed protocol λ̃, where λ̃t = λτ−t. This
is the microreversibility principle for nonautonmous systems [6]. It is illustrated in Figure 2. Despite its
importance we are not aware of any textbooks in classical (or quantum) mechanics that discusses it. A
classical proof appears in [18] (Section 1.2.3). Corresponding quantum proofs were given in [19] and in
Appendix B of [6].

As with the autonomous case we can ask how the probability distribution P [Γ, λ] that the trajectory
Γ is realized under the protocol λ, compares with the probability distribution P [Γ̃, λ̃] that the reversed
trajectory Γ̃ is realized under the reversed protocol λ̃. The answer to this was first given by Bochkov and
Kuzovlev [12], who showed that

P [Γ, λ] = P [Γ̃, λ̃]eβW0 (7)

where
W0 =

∫ τ

0

dtλtQ̇t (8)

Here, Qt = Q(Γt) denotes the evolution of the quantity Q along the trajectory Γ and W0 is the so called
“exclusive work”. As discussed in [6,20–22] yet another definition of work is possible, the so called
“inclusive work” W = −

∫
dtλ̇tQt, leading to a different and equally important fluctuation theorem

involving free energy differences [6,23,24]. Without entering the question about the physical meaning of
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the two quantities W and W0, it suffices for the present purpose to notice that for a cyclic transformation
W0 = W [25]. In the remaining of this section we will restrict our analysis to cyclic transformations
(λ0 = λτ ) in order to make contact with Kelvin postulate and to avoid any ambiguity regarding the usage
of the word “work”.

Figure 2. Microreversibility for nonautonomous classical (Hamiltonian) systems. The initial
condition Γ0 evolves to Γτ under the protocol λ, following the path Γ. The time-reversed
final condition εΓτ evolves to the time-reversed initial condition εΓ0 under the protocol λ̃,
following the path Γ̃.

Γ0

εΓ0

Γτ

εΓτ

Γ, λ

Γ̃, λ̃

p

q

Just like Equation (3) constitutes a direct expression of the principle of microreversibility for
autonomous systems, so is Equation (7) a direct expression of the more general principle of
microreversibility for nonautonomous systems. Remarkably it expresses the second law in a most clear
and refined way.

In order to see this, it is important to realize that the work W0 is odd under time-reversal. This is so
because W0 is linear in a quantity Q̇t, which is the time derivative of an even observable Q. The theorem
says that the probability to observe a trajectory corresponding to some work W0 > 0 under the driving
λ is exponentially larger than the probability to observe the reversed trajectory (corresponding to −W0)
under the driving λ̃. This provides a statistical formulation of the second law

Second Law (Fluctuation Theorem) Injecting some amount of energy W0 into a thermally insulated
system at equilibrium at temperature T by the cyclic variation of a parameter, is exponentially
(i.e., by a factor eW0/(kBT )) more probable than withdrawing the same amount of energy from it by
the reversed parameter variation.

Multiplying Equation (7) by e−βW0 and integrating over all Γ-trajectories leads to the relation [12]:

〈e−βW0〉λ = 1 (9)
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The subscript λ in Equation (9) is there to recall that the average is taken over the trajectories generated
by the protocol λ. In particular, the notation 〈·〉λ denotes a nonequilibrium average [26]. Combining
Equation (9) with Jensen’s inequality, 〈exp(x)〉 ≥ exp(〈x〉) leads to

〈W0〉λ ≥ 0 (10)

which now expresses Kelvin’s postulate as a nonequilibrium inequality [12]. The quantum version of the
fluctuation theorem by Bochkov and Kuzovlev has been given only recently in [22]. This latter reference
in addition reports its microcanonical variant, which applies to the case when the system begins in a state
of well defined energy.

3. Dissipation: Kubo’s Formula

Before we continue with the implications of the fluctuation theorem for the arrow of time question, it
is instructive to see in which way the fluctuation theorem relates to dissipation.

Given the distribution P [Γ, λ], the distribution p[Q, λ] that a trajectory Q of the observable Q(q,p)

occurs in the time span [0, τ ] can be formally expressed as:

p[Q, λ] =

∫
DΓP [Γ, λ]δ(Q−Q[Γ]) (11)

where δ denotes Dirac’s delta in the Q-trajectory space, the integration is a functional integration over
all Γ-trajectories, and Q[Γ] is defined as Q[Γ]t

.
= Q[Γt].

Multiplying Equation (3) by e−β
∫
λsQ̇sdsδ(Q−Q[Γ]) and integrating over all Γ-trajectories, one finds:

p[Q, λ]e−β
∫
λsQ̇sds = p[Q̃, λ̃] (12)

where Q̃ is the time reversal companion of Q: Q̃t = Qτ−t. Now multiplying both sides of Equation (12)
by Qτ and integrating over all Q-trajectories, one obtains:

〈Qτe
−β

∫
λsQ̇sds〉λ = 〈Q̃τ 〉λ̃ (13)

Note that 〈Q̃τ 〉λ̃ = 〈Q0〉λ̃ and that, due to causality, the value taken by the observable Q(q,p) at time
t = 0 cannot be influenced by the subsequent evolution of the protocol λ̃. Therefore, the average
presents a manifest equilibrium average; that is to say that it is an average over the initial canonical
equilibrium %0(q,p). We denote this equilibrium average by the symbol 〈·〉 (with no subscript). Thus,
Equation (13) reads

〈Qτe
−β

∫
λsQ̇sds〉λ = 〈Q0〉 (14)

By expanding the exponential in Equation (14) to first order in λ, one obtains:

〈Qτ 〉λ − 〈Q0〉 = β

〈
Qτ

∫ τ

0

λsQ̇sds

〉

λ

+O(λ2) (15)
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Since the bracketed expression on the rhs is already O(λ) we can replace the non-equilibrium average
〈·〉λ with the equilibrium average 〈·〉 on the rhs. Further, since averaging commutes with time integration
one arrives, up to order O(λ2), at:

〈Qτ 〉λ − 〈Q0〉 = β

∫ τ

0

〈Qτ Q̇s〉λsds (16)

= −β
∫ τ

0

〈Q̇τ−sQ0〉λsds (17)

In the second line we made use of the time-homogeneous nature of the equilibrium correlation
function. This is the celebrated Kubo formula [16] relating the non-equilibrium linear response of the
quantity Q to the equilibrium correlation function φ(s, τ) = 〈Qτ Q̇s〉. As Kubo showed it implies the
fluctuation-dissipation relation [27], linking, for example, the mobility of a Brownian particle to its
diffusion coefficient [28], and the resistance of an electrical circuit to its thermal noise [29,30].

This classical derivation of Kubo’s formula from the fluctuation theorem is a simplified version of the
derivation given by Bochkov and Kuzovlev [12]. The corresponding quantum derivation was reported
by Andrieux and Gaspard [19].

4. Implications for the Arrow of Time Question

Jarzynski has analyzed in a transparent way how the fluctuation theorem for the inclusive work, W ,
may be employed to make guesses about the direction of time’s arrow [7]. Here we adapt his reasoning to
the case of the exclusive work, W0, which appears in the fluctuation relation of Bochkov and Kuzovlev,
Equation (7).

Just imagine we are shown a movie of an experiment in which a system starting at temperature
T = (kBβ)−1 is driven by a protocol, and we are asked to guess whether the movie is displayed in the
same direction as it was filmed or in the backward direction, knowing that tossing of an unbiased coin
decided the direction of the movie. When the outcome is +(−), the movie is shown in the same(opposite)
direction as it was filmed. Imagine next that we can infer from the analysis of each single frame t
the instantaneous values λt and Qt taken by the parameter and its conjugate observable, respectively.
With these we can evaluate the work W0 for the displayed process using Equation (8). Envision that
we find, for the shown movie that βW0 � 1. If the film was shown in the “correct” direction it
means that a process corresponding to βW0 � 1 occurred. If the film was shown backward then it
means that a process corresponding to βW0 � −1 occurred (recall that W0 is odd under time-reversal).
The fluctuation theorem tells us that the former case occurs with an overwhelmingly higher probability
relative to the probability of the latter case. Then we can be very much confident that the film was running
in the correct direction. Likewise if we observe βW0 � −1, then we can say with very much confidence
the the film depicts the process in the opposite direction as it happened. Clearly when intermediate
values of βW0 are observed we can still make well informed guesses about the direction of the movie,
but with less confidence. The worst scenario arises when we observe W0 = 0, in which case we cannot
make any reliable guess. The question then arises of how to quantify the confidence of our guesses. This
is a typical problem of Bayesian inference. Before we are shown the movie our degree of belief of the
outcome + is given by the prior, P (+) = 1/2 (likewise, P (−) = 1−P (+) = 1/2). After we have seen
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the movie the prior is updated to the posterior, P (+|W0), which is the degree of belief that the outcome
+ occurred, given the observed work W0. Using Bayes theorem, the posterior is given by

P (+|W0) =
P (W0|+)

P (W0)
P (+) (18)

where P (W0|+) is the conditional probability to observe W0 given that + occurred, and P (W0) is
the probability to observe W0; i.e., P (W0) = P (W0|+)P (+) + P (W0|−)P (−). According to the
fluctuation theorem P (W0|+)/P (−W0|+) = eβW0 and sinceW0 is odd under time reversal, P (W0|−) =

P (−W0|+). Using these relations together with Equation (18) one obtains:

P (+|W0) =
1

e−βW0 + 1
(19)

Figure 3. Degree of belief P (+|W0) that a movie showing the nonautonomous evolution of
a system is shown in the same temporal order as it was filmed, given that the work W0 was
observed and that the direction of the movie was decided by the tossing of an unbiased coin.
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Figure 3 displays P (+|W0) as a function of W0. As it should be P (+|W0) is larger than 1/2 for
positive W0 (and vice versa) and is an increasing function of W0. If W0 is large compared to β−1, then
P (+|W0) ' 1, and we can be almost certain that the movie was shown in the forward direction. Vice
versa, if βW0 � −1, then we can say with almost certainty that the movie has been shown backward.
The transition to certainty of guess occurs quite rapidly (in fact exponentially) around |βW0| ' 5. Note
that for an autonomous system W0 = 0, implying P (+|W0) = P (−|W0) = 1/2, meaning that, as we
have elaborated above, there is no way to discern the direction of time’s arrow in an autonomous system
at equilibrium.

Since the fluctuation theorem (7) holds as a general law regardless of the size of the system, it appears
that our ability to discern the direction of time’s arrow does not depend on the system size. It is also
worth mentioning the role played by thermal fluctuations in shaping our guesses. Particularly, with a
given observed value W0, the lower the temperature, the higher is the confidence (and vice versa).

5. Remarks

It emerges from our discussion regarding the arrow of time (Section 4) that the statistical character of
the Second Law becomes visible when the energies injected in a system, W0, are of the same order of
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magnitude as the thermal fluctuations, kBT , regardless of the system size. This means, that, in contrast to
what is sometimes believed, work fluctuations happen and are experimentally observable in microscopic
and macroscopic systems alike. As a matter of fact, experimental verifications of the fluctuation theorem
have been performed involving both microscopic systems, e.g., a single macromolecule [31,32], and
macroscopic systems, e.g., a torsional pendulum [33].

As we have mentioned in the introduction, traditionally the question of the emergence of the arrow
of time from microscopic dynamics have been addressed within the framework of the Minus-First Law.
In all existing approaches the arrow of time emerges from the introduction of some extra ingredient
which in turn then dictates the time direction. Typically, one resorts to a coarse-graining procedure of
the microscopic phase space to describe some state variables. For example, this is so in the theory of
Gibbs and related approaches, see, e.g., in [34]. The time arrow is then generated via the observation
that such coarse grained quantities no longer obey time-reversal symmetric Hamiltonian dynamics. More
frequently, one resorts to additional assumptions which are of a probabilistic nature: Typical scenarios
that come to mind are (i) the use of Boltzmann Stoßahlansatz in the celebrated Boltzmann kinetic theory,
(ii) the assumption of initial molecular chaos in more general kinetic theories that are in the spirit of
Bogoliubov, or, likewise, with Fokker-Planck and master equation dynamics that no longer exhibit an
explicit time-reversal invariant structure [34,35]. All such additional elements then induce the result of
a direction in time with future not being equivalent with past any longer.

Having stressed the too often overlooked fact that the Second Law does not refer to the traditionally
considered scenario of autonomously evolving systems, but rather to the case of nonautonomous
dynamics, here we have focussed on the emergence of time’s arrow in a driven system starting
at equilibrium. Having based our derivation on the principle of nonautonomous microreversibility,
Figure 2, the question arises naturally regarding the origin of the time asymmetry in this case. It
originates from the combination of the following two elements: (i) The introduction of an explicit
time dependence of the Hamiltonian, Equation (4), (ii) The particular shape of the initial equilibrium
state, Equation (5). The first breaks time homogeneity, thus determining the emergence of an arrow of
time, while the second determines its direction. It is in particular the fact that the initial equilibrium
is described by a probability density function which is a decreasing function of energy that determines
the ≥ sign in Equation (10). An increasing probability density function would result in the opposite
sign [8,36,37]. With regard to breaking time homogeneity, it is worth commenting that the assumption
of nonautonomous evolution has to be regarded itself as a convenient and often extremely good
approximation in which the evolution λ of the external parameter influences the system dynamics without
being influenced minimally by the system [38]. This indeed presupposes the intervention of a sort
of Maxwell Demon (i.e., the experimentalist), who predisposes things in such a way that the wanted
protocol actually occurs. This in turn evidences the phenomenological nature of the Second Law. It is
not a law that dictates how things go by themselves, but rather how they go in response to particular
experimental investigations.
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