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Abstract:

 The scope of this paper is twofold. First, we use the Kolmogorov-Sinai Entropy to estimate lower bounds for dominant eigenvalues of nonnegative matrices. The lower bound is better than the Rayleigh quotient. Second, we use this estimate to give a nontrivial lower bound for the gaps of dominant eigenvalues of [image: there is no content] and [image: there is no content]+[image: there is no content].
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1. Introduction


The main concern of this paper is to relate eigenvalue estimates to the Kolmogorov-Sinai entropy for Markov shifts. We shall begin with the definition of the Kolmogorov-Sinai entropy. Let [image: there is no content]=([image: there is no content])∈R[image: there is no content] be an irreducible nonnegative matrix. By an irreducible matrix [image: there is no content], we mean for each [image: there is no content], there exists positive integer k such that ([image: there is no content]k)ij≠0. A matrix [image: there is no content] is said to be a stochastic matrix compatible with [image: there is no content], if [image: there is no content] satisfies

	
[image: there is no content] if [image: there is no content],



	
[image: there is no content] if [image: there is no content],



	
[image: there is no content], for all [image: there is no content].





We denote by P[image: there is no content] the set of all stochastic matrices compatible with [image: there is no content]. By Perron-Frobenius Theorem, it is easily seen that every stochastic matrix [image: there is no content] has a unique left eigenvector [image: there is no content] corresponding to eigenvalue 1 with [image: there is no content]. Here we say [image: there is no content] is the stationary probability vector associated with [image: there is no content]. For a transition matrix [image: there is no content], i.e., [image: there is no content] or 0 for each [image: there is no content], the subshift of finite type generated by [image: there is no content] is defined by


Σ[image: there is no content]={i=(i0,i1,…)|ij∈{1,…,N},aij,ij+1=1,j=0,1,2,…}








and the shift map on Σ[image: there is no content] is defined by σ[image: there is no content](i0,i1,…)=(i1,i2,…). A cylinder of Σ[image: there is no content] is the set


Cj0,j1,…,jn={i∈Σ[image: there is no content]|i0=j0,…,in=jn}








for any [image: there is no content]. Disjoint unions of cylinders form an algebra which generates the Borel σ-algebra of Σ[image: there is no content]. For any [image: there is no content]∈P[image: there is no content] and its associated stationary probability vector [image: there is no content], the Markov measure of a cylinder may then be defined by


μ[image: there is no content],[image: there is no content](Cj0,j1,…,jn)=qj0pj0,j1⋯pjn-1,jn








Here μ[image: there is no content],[image: there is no content] is an invariant measure under the shift map σ[image: there is no content] (see e.g., [8]). The Kolmogorov-Sinai entropy (or called the measure theoretic entropy) of σ[image: there is no content] under the invariant measure μ[image: there is no content],[image: there is no content] is defined by


h[image: there is no content],[image: there is no content](σ[image: there is no content])=limn→∞1n∑j0,j1,…,jnH(μ[image: there is no content],[image: there is no content](Cj0,j1,…,jn))








where [image: there is no content] and the convention [image: there is no content] is adopted. The notion of the Kolmogorov-Sinai entropy was first studied by Kolmogorov in 1958 on the problems arising from information theory and dimension of functional spaces, that measures the uncertainty of the dynamical systems (see e.g., [6,7]). It is shown in [8] (p. 221) that


h[image: there is no content],[image: there is no content](σ[image: there is no content])=-∑ijqipijlogpij



(1)




where the summation in (1) is taken over all [image: there is no content] with [image: there is no content]. On the other hand, it is shown by Parry [9] (Theorems 6 and 7) that the Kolmogorov-Sinai entropy of σ[image: there is no content] has an upper bound logλN([image: there is no content]).



Theorem 1.1 (Parry’s Theorem).

Let [image: there is no content] be an [image: there is no content] irreducible transition matrix. Then for any [image: there is no content]∈P[image: there is no content] and its associated stationary probability vector [image: there is no content], we have


h[image: there is no content],[image: there is no content](σ[image: there is no content])≤logλN([image: there is no content])



(2)




where λN([image: there is no content]) denotes the dominant eigenvalue of [image: there is no content]. Moreover, if [image: there is no content] is regular ([image: there is no content]n>0 for some [image: there is no content]), the equality in (2) holds for some unique [image: there is no content]∈P[image: there is no content] and [image: there is no content] the stationary probability vector associated with [image: there is no content].





Parry’s Theorem shows the Kolmogorov-Sinai entropy for a Markov shift is less than or equal to its topological entropy (that is, logλN([image: there is no content])) and exactly one of the Markov measures on Σ[image: there is no content] maximizes the Kolmogorov-Sinai entropy of σ[image: there is no content] provided it is topological mixing. This is also a crucial lemma for showing the Variational Property of Entropy [8] (Proposition 8.1) in the ergodic theory. However, from the viewpoint of eigenvalue problems, combination of (1) and (2) gives a lower bound for the dominant eigenvalue of the transition matrix [image: there is no content]. In this paper, we generalize Parry’s Theorem to general [image: there is no content] irreducible nonnegative matrices. Toward this end, we extend the entropy of irreducible nonnegative matrices by


h[image: there is no content],[image: there is no content],[image: there is no content]=-∑ijqipijlogpij[image: there is no content]








It is easily seen that h[image: there is no content],[image: there is no content],[image: there is no content]=h[image: there is no content],[image: there is no content](σ[image: there is no content]).



Theorem 1.2 (Main Result 1: The Generalized Parry’s Theorem).

Let [image: there is no content]∈R[image: there is no content] an irreducible nonnegative matrix. Let [image: there is no content]∈P[image: there is no content] and [image: there is no content] be a stationary probability vector associated with [image: there is no content], then we have


h[image: there is no content],[image: there is no content],[image: there is no content]≤logλN([image: there is no content])



(3)




where the summation is taken over all [image: there is no content] with [image: there is no content]. Moreover, the equality in (3) holds when


[image: there is no content]=1λN([image: there is no content])diag([image: there is no content])-1[image: there is no content]diag([image: there is no content])








and


[image: there is no content]=[image: there is no content]∘[image: there is no content][image: there is no content]⊤[image: there is no content]








where [image: there is no content] and [image: there is no content] are, respectively, the right and left eigenvectors of [image: there is no content] corresponding to the eigenvalue λN([image: there is no content]). Here, [image: there is no content] denotes the diagonal matrix with [image: there is no content] on its diagonal, [image: there is no content]∘[image: there is no content] denotes the vector [image: there is no content], and [image: there is no content] denotes the transpose of the column vector [image: there is no content].





Lower bound estimates for the dominant eigenvalue of a symmetric irreducible nonnegative matrix play an important role in various fields, e.g., the complexity of a symbolic dynamical system [5], synchronization problem of coupled systems [10], or the ground state estimates of Schrödinger operators [2]. A usual way to estimate the lower bound for λN([image: there is no content]) is the Rayleigh quotient


λN([image: there is no content])≥[image: there is no content]⊤[image: there is no content][image: there is no content][image: there is no content]⊤[image: there is no content]








It is also well-known that (see e.g., [4] (Theorem 8.1.26)),


min1≤i≤N1xi∑j=1N[image: there is no content]xj≤λN([image: there is no content])≤max1≤i≤N1xi∑j=1N[image: there is no content]xj



(4)




provided that [image: there is no content]∈R[image: there is no content] is nonnegative and [image: there is no content]∈RN is positive. Comparing the lower bound estimate (3) with (4) as well as with the Rayleigh quotient, we have the following result.



Corollary 1.3.

Let [image: there is no content]∈R[image: there is no content] be a symmetric, irreducible nonnegative matrix. Suppose [image: there is no content]∈RN be positive. Then the matrix [image: there is no content]=diag([image: there is no content][image: there is no content])-1[image: there is no content]diag([image: there is no content]) is in P[image: there is no content] and [image: there is no content]=[image: there is no content]∘([image: there is no content][image: there is no content])[image: there is no content]⊤[image: there is no content][image: there is no content] is the stationary probability vector associated with [image: there is no content]. In addition,


h[image: there is no content],[image: there is no content],[image: there is no content]≥logmin1≤i≤N1xi∑j=1N[image: there is no content]xj








and


h[image: there is no content],[image: there is no content],[image: there is no content]≥log[image: there is no content]⊤[image: there is no content][image: there is no content][image: there is no content]⊤[image: there is no content]








Here, each equality holds if and only if [image: there is no content] is the eigenvector of [image: there is no content] corresponding to the eigenvalue λN([image: there is no content]).





Here we remark that for any arbitrary irreducible nonnegative matrix [image: there is no content], the entropy h[image: there is no content],[image: there is no content],[image: there is no content] involves the left eigenvector [image: there is no content] of [image: there is no content]. Hence, the lower bound estimate (3) is merely a formal expression. However, for a symmetric irreducible nonnegative matrix [image: there is no content] and [image: there is no content] chosen as in Corollary 1.3, the vector [image: there is no content] can be explicitly expressed. Therefore, h[image: there is no content],[image: there is no content],[image: there is no content] can be written in an explicit form. We shall further show in Proposition 2.6 that h[image: there is no content],[image: there is no content],[image: there is no content]=-1[image: there is no content]⊤[image: there is no content]∑i=1Nxiyilog[image: there is no content] where [image: there is no content]=[image: there is no content][image: there is no content].



Considering symmetric nonnegative [image: there is no content] and its perturbation [image: there is no content]+[image: there is no content], it is easily seen that λN([image: there is no content]+[image: there is no content])-λN([image: there is no content])≥[image: there is no content]⊤[image: there is no content][image: there is no content], where [image: there is no content] is the normalized eigenvector of [image: there is no content] corresponding to λN([image: there is no content]). This gives a trivial lower bound for the gap of λN([image: there is no content]+[image: there is no content]) and λN([image: there is no content]). Upper bound estimates for the gap are well studied in the perturbation theory [4,11]. By considering [image: there is no content]+[image: there is no content] as a low rank perturbation of [image: there is no content], the interlace structure of eigenvalues of [image: there is no content]+[image: there is no content] and of [image: there is no content] is studied by [1,3]. In the second result of this paper, we give a nontrivial lower bound for λN([image: there is no content]+[image: there is no content])-λN([image: there is no content]).



Theorem 1.4 (Main Result 2).

Let [image: there is no content]∈R[image: there is no content] be an irreducible nonnegative matrix and [image: there is no content] be the eigenvector of [image: there is no content] corresponding to λN([image: there is no content]) with ∥[image: there is no content]∥2=1. Suppose [image: there is no content] is symmetric. Then for any nonnegative [image: there is no content], we have


λN([image: there is no content]+[image: there is no content])-λN([image: there is no content])≥f(1/λN([image: there is no content]))-11/λN([image: there is no content])



(5)




where


[image: there is no content]








Here (f(1/λN([image: there is no content]))-1)λN([image: there is no content])≥[image: there is no content]⊤[image: there is no content][image: there is no content]. Furthermore, the equality in (5) holds if and only if [image: there is no content].





This paper is organized as follows. In Section 2, we prove the generalized Parry’s Theorem in three steps. First, we prove the case in which the matrix [image: there is no content] has only integer entries. Next we show that Theorem 1.2 is true for nonnegative matrices with rational entries. Finally we show that it holds true for all irreducible nonnegative matrices. The proof of Corollary 1.3 is given at the end of this section. In Section 3, we give the proof of Theorem 1.4. We conclude this paper in Section 4.



Throughout this paper, we use the boldface alphabet (or symbols) to denote matrices (or vectors). For [image: there is no content], the Hadamard product of [image: there is no content] and [image: there is no content] is their elementwise product which is denoted by [image: there is no content]∘[image: there is no content]=(uivi)1≤i≤N. The notation diag([image: there is no content]) denotes the [image: there is no content] diagonal matrix with [image: there is no content] on its diagonal. A matrix [image: there is no content]=([image: there is no content])∈R[image: there is no content] is said to be a transition matrix if [image: there is no content] or 0 for all [image: there is no content]. λ1([image: there is no content])≤⋯≤λN([image: there is no content]) denotes the dominant eigenvalue of a nonnegative matrix [image: there is no content].




2. Proof of the Generalized Parry’s Theorem and Corollary 1.3


In this section, we shall prove the generalized Parry’s Theorem and Corollary 1.3. To prove inequality (3), we proceed in three steps.



Step 1: Inequality (3) is true for all irreducible nonnegative matrices with integer entries.


Let [image: there is no content] be an irreducible nonnegative matrix with integer entries. To adopt Parry’s Theorem, we shall construct a transition matrix [image: there is no content]¯ corresponding to [image: there is no content] for which λN([image: there is no content]¯)=λN([image: there is no content])1/2. To this end, we define the sets of indexes:


I={1,…,N}E={[image: there is no content]|[image: there is no content]≠0,1≤k≤[image: there is no content]}








Let [image: there is no content] and [image: there is no content]. The transition matrix [image: there is no content]¯∈RN¯×N¯ corresponding to [image: there is no content] with index set [image: there is no content] is defined as follows


(1)a¯i,[image: there is no content]=1,forall1≤k≤[image: there is no content]if[image: there is no content]≠0,



(6a)






(2)a¯[image: there is no content],j=1,forall1≤k≤[image: there is no content]if[image: there is no content]≠0,



(6b)






(3)therestentriesaresettobezero



(6c)




It is easily seen that [image: there is no content]¯ can be written in the block form:


[image: there is no content]¯=0[image: there is no content][image: there is no content]¯IE[image: there is no content]¯EI[image: there is no content]



(7)




where 0[image: there is no content] and [image: there is no content] are, respectively, the zero matrices in R[image: there is no content] and [image: there is no content], [image: there is no content]¯IE∈RN×N˜ and [image: there is no content]¯EI∈RN˜×N.



Proposition 2.1.

λN¯([image: there is no content]¯)=λN([image: there is no content])1/2.





Proof.

From (7), we see that


[image: there is no content]¯2=[image: there is no content]¯IE[image: there is no content]¯EI0N×N˜0N˜×N[image: there is no content]¯EI[image: there is no content]¯IE








From (6a) and (6b), for each [image: there is no content] with [image: there is no content], we have


[image: there is no content]



(8)




Using (8), together with (6c), we have


([image: there is no content]¯IE[image: there is no content]¯EI)ij=∑α∈Ea¯iαa¯αj










=∑ka¯i,[image: there is no content]a¯[image: there is no content],j=[image: there is no content]if[image: there is no content]≠00=[image: there is no content]if[image: there is no content]=0



(9)




From (9) we see that [image: there is no content]¯IE[image: there is no content]¯EI=[image: there is no content]. Hence λN¯([image: there is no content]¯2)=λN([image: there is no content]¯IE[image: there is no content]¯EI)=λN˜([image: there is no content]¯EI[image: there is no content]¯IE)=λN([image: there is no content]). On the other hand, [image: there is no content]¯ is a nonnegative matrix. From Perron-Frobenius Theorem, its dominant eigenvalue is nonnegative. The assertion follows. ☐





Remark 2.1. In the language of graph theory, [image: there is no content] represents the number of directed edges from vertex i to vertex j. Hence ∑ij[image: there is no content]nij equals to the number of all possible routes of length [image: there is no content], i.e.,


#{allpossibleroutesoflength[image: there is no content]}=∑ij[image: there is no content]nij=O(λN([image: there is no content])n)








For the construction of [image: there is no content]¯, we add an additional vertex on every edge from vertex i to vertex j (See Figure 2.1 for the illustration). Hence, each route that obeys the rule defined by [image: there is no content],


(i1,i2,…,ij,ij+1,…,in-1,in),providedaijij+1>0forallj=1,⋯,n-1



(10)




now becomes one of the following routes according to the rule defined by [image: there is no content]¯:


[image: there is no content]



(11)




where [image: there is no content], [image: there is no content]. However, a route of the form in (11) is equivalent to the form in (10) but its length is doubled. Hence O(λN([image: there is no content]¯)2n)=O(λN([image: there is no content])n).





[image: Entropy 13 02036 g001 1024]





Figure 1. Illustration for Remark 2.1 with the example [image: there is no content]=1210. 






Figure 1. Illustration for Remark 2.1 with the example [image: there is no content]=1210.



[image: Entropy 13 02036 g001 1024]





Now, let [image: there is no content]∈P[image: there is no content] be given and [image: there is no content] be its associated stationary probability vector. We shall accordingly define a stochastic matrix [image: there is no content]¯∈P[image: there is no content]¯ and its associated stationary probability vector [image: there is no content]¯. The stochastic matrix [image: there is no content]¯ is defined as follows:


(1)p¯i,[image: there is no content]=pij[image: there is no content]forall1≤k≤[image: there is no content]provided[image: there is no content]>0



(12a)






(2)p¯[image: there is no content],j=1forall1≤k≤[image: there is no content]provided[image: there is no content]>0



(12b)






(3)therestentriesaresettozero



(12c)




From (6) and (12), it is easily seen that [image: there is no content]¯ is a stochastic matrix compatible with [image: there is no content]¯. Let the vector [image: there is no content]¯∈RN+N˜ be defined by


q¯i=qi2,1≤i≤N



(13a)




and


q¯[image: there is no content]=qipij2[image: there is no content],forall1≤k≤[image: there is no content]with[image: there is no content]>0



(13b)







Proposition 2.2.

[image: there is no content]¯ is the stationary probability vector associated with [image: there is no content]¯.





Proof.

We first show that [image: there is no content]¯ is a left eigenvector of [image: there is no content]¯ with the corresponding eigenvalue 1. For any [image: there is no content], using (12b), (13b), and the fact that [image: there is no content]⊤[image: there is no content]=[image: there is no content]⊤, we have


([image: there is no content]¯⊤[image: there is no content]¯)j=∑i,kq¯[image: there is no content]p¯[image: there is no content],j=∑i,[image: there is no content]>0∑k=1[image: there is no content]12qipij[image: there is no content]·1










=∑i12qipij=12qj=q¯j



(14a)




On the other hand, using (12a) and (13a), for all [image: there is no content] with [image: there is no content] and 1≤k≤[image: there is no content], we have


([image: there is no content]¯⊤[image: there is no content]¯)[image: there is no content]=q¯ip¯i,[image: there is no content]










=12qipij[image: there is no content]=q¯[image: there is no content]



(14b)




In (14), we have proved [image: there is no content]¯⊤[image: there is no content]¯=[image: there is no content]¯⊤. Now we show that the total sum of entries of [image: there is no content]¯ is 1. Using the fact


∑ij∑k=1[image: there is no content]q¯[image: there is no content]=∑ij∑k=1[image: there is no content]qipij2[image: there is no content]=∑ij12qipij=12∑iqi








we conclude that


∑α∈I∪E([image: there is no content])α=∑iq¯i+∑ij∑k=1[image: there is no content]q¯[image: there is no content]=12∑qi+12∑iqi=1








The proof is complete. ☐





From the construction of the transition matrix [image: there is no content]¯, it is easily seen that [image: there is no content]¯ is irreducible. In (12) and Proposition 2.2, we show that [image: there is no content]¯∈P[image: there is no content]¯ and the vector [image: there is no content]¯ defined by (13) is its associated stationary probability vector. Hence the Kolmogorov-Sinai entropy h[image: there is no content]¯,[image: there is no content]¯(σ[image: there is no content]¯) is well-defined. Now we give the relationship between the quantities h[image: there is no content]¯,[image: there is no content]¯(σ[image: there is no content]¯) and h[image: there is no content],[image: there is no content],[image: there is no content] defined in Equation (3).



Proposition 2.3.



h[image: there is no content]¯,[image: there is no content]¯(σ[image: there is no content]¯)=12h[image: there is no content],[image: there is no content],[image: there is no content]













Proof.

We note that by (12b), logp¯[image: there is no content],j=0 if [image: there is no content]. Using the definition of [image: there is no content]¯ and [image: there is no content]¯ in (12) and (13), as well as the entropy formula (1), we have


h[image: there is no content]¯,[image: there is no content]¯(σ[image: there is no content]¯)=-∑ij,[image: there is no content]>0∑k=1[image: there is no content]q¯ip¯i,[image: there is no content]logp¯i,[image: there is no content]=-∑ij,[image: there is no content]>0∑k=1[image: there is no content]12qipij[image: there is no content]logpij[image: there is no content]=-∑ij,[image: there is no content]>012qipijlogpij[image: there is no content]=12h[image: there is no content],[image: there is no content],[image: there is no content]








The proof is complete. ☐





Using Proposition 2.3, 2.1, and Parry’s Theorem 1.1, it follows that


12h[image: there is no content],[image: there is no content],[image: there is no content]=h[image: there is no content]¯,[image: there is no content]¯(σ[image: there is no content]¯)










≤logλN([image: there is no content]¯)=12logλN([image: there is no content])



(15)








Step 2: Inequality (3) is true for all irreducible nonnegative matrices with rational entries.


Any [image: there is no content] nonnegative matrix with all entries that are rational can be written as [image: there is no content]/n where [image: there is no content] is a nonnegative matrix with integer entries and n is an positive integer. Suppose [image: there is no content] is irreducible and [image: there is no content]∈P[image: there is no content]/n. Note that P[image: there is no content]/n=P[image: there is no content]. Letting [image: there is no content] be a stationary probability vector associated with [image: there is no content], inequality (3) for [image: there is no content]/n follows from the following proposition.



Proposition 2.4.



h[image: there is no content],[image: there is no content],[image: there is no content]/n≤logλN([image: there is no content]/n)













Proof.

From the definition of h[image: there is no content],[image: there is no content],[image: there is no content]/n, we see that


h[image: there is no content],[image: there is no content],[image: there is no content]/n=-∑ij,[image: there is no content]>0qipijlogpijn[image: there is no content]=-∑ij,[image: there is no content]>0qipijlogpij[image: there is no content]-∑ijqipijlogn










=h[image: there is no content],[image: there is no content],[image: there is no content]-∑ijqipijlogn



(16)




On the other hand, since [image: there is no content]⊤[image: there is no content]=[image: there is no content]⊤ and [image: there is no content], we have


[image: there is no content]



(17)




Substituting (17) into (16) and using the result (15) in Step 1, we have


h[image: there is no content],[image: there is no content],[image: there is no content]/n=h[image: there is no content],[image: there is no content],[image: there is no content]-logn≤logλN([image: there is no content])-logn=logλN([image: there is no content]/n)











☐






Step 3: Inequality (3) is true for all irreducible nonnegative matrices.


It remains to show (3) holds for all nonnegative [image: there is no content] with irrational entries. The assertion follows from Step 2 and the continuous dependence of eigenvalues with respect to the matrix.



Now, we give the proof of the second assertion of Theorem 1.2.



Proposition 2.5.

The equality in (3) holds when one chooses


[image: there is no content]=1λN([image: there is no content])diag([image: there is no content])-1[image: there is no content]diag([image: there is no content])








and


[image: there is no content]=[image: there is no content]∘[image: there is no content][image: there is no content]⊤[image: there is no content]








where [image: there is no content] and [image: there is no content] are, respectively, the right and left eigenvectors of [image: there is no content] corresponding to eigenvalue λN([image: there is no content]).





Proof.

By setting [image: there is no content]⊤[image: there is no content]=1, we may write


pij=[image: there is no content]xjλN([image: there is no content])xiandqi=xiyi








To ease the notation, set λN=λN([image: there is no content]). Hence, we have


h[image: there is no content],[image: there is no content],[image: there is no content]=-∑ijxiyi[image: there is no content]xjλNxilogxjλNxi=∑ijyiλN([image: there is no content]xj)log(λNxi)-∑ijxjλN(yi[image: there is no content])logxj=∑iyixilog(λNxi)-∑jxjyjlogxjUsethefacts∑j[image: there is no content]xj=λNxiand∑iyi[image: there is no content]=λNyj=∑ixiyilogλN=logλN








The proof of Theorem 1.2 is complete. ☐





In the following, we give the proof of Corollary 1.3. We first prove the following useful proposition. It will be used in Section 3 as well.



Proposition 2.6.

Let [image: there is no content]∈R[image: there is no content] be an irreducible nonnegative matrix. Suppose [image: there is no content] is symmetric and [image: there is no content]∈RN be positive. If [image: there is no content]=diag([image: there is no content][image: there is no content])-1[image: there is no content]diag([image: there is no content]) and [image: there is no content]=[image: there is no content]∘[image: there is no content][image: there is no content]⊤[image: there is no content], where [image: there is no content]=[image: there is no content][image: there is no content], then


h[image: there is no content],[image: there is no content],[image: there is no content]=-1[image: there is no content]⊤[image: there is no content]∑i=1Nxiyilog[image: there is no content]













From Proposition 2.5, we see that the matrix [image: there is no content] in Proposition 2.5 is a stochastic matrix compatible with [image: there is no content] and [image: there is no content] is its associated stationary probability vector. Hence, the entropy h[image: there is no content],[image: there is no content],[image: there is no content] is well defined. Now, we give the proof of this Proposition.



Proof. Since [image: there is no content]≥0 is irreducible and [image: there is no content], it follows [image: there is no content][image: there is no content]>0, and hence, diag([image: there is no content][image: there is no content])-1 is well-defined. It is easily seen that [image: there is no content] if and only if [image: there is no content]. However, [image: there is no content]e=diag([image: there is no content][image: there is no content])-1([image: there is no content][image: there is no content])=e. This shows that [image: there is no content]∈P[image: there is no content]. On the other hand, since [image: there is no content] is symmetric, we see that [image: there is no content]⊤=[image: there is no content]⊤[image: there is no content]. Hence


[image: there is no content]⊤[image: there is no content]=([image: there is no content]∘([image: there is no content][image: there is no content]))⊤diag([image: there is no content][image: there is no content])-1[image: there is no content]diag([image: there is no content])/[image: there is no content]⊤[image: there is no content][image: there is no content]=[image: there is no content]⊤








We have proved the first assertion of this proposition. By the definition of h[image: there is no content],[image: there is no content],[image: there is no content] in (3), we have


h[image: there is no content],[image: there is no content],[image: there is no content]=-∑ij[image: there is no content]xixj[image: there is no content]⊤[image: there is no content]logxjyi=1[image: there is no content]⊤[image: there is no content]∑i=1Nxiyilogyi-∑i=1Nxjyjlogxj=-1[image: there is no content]⊤[image: there is no content]∑i=1Nxiyilog[image: there is no content]








This completes the proof. ☐



Now, we are in a proposition to give the proof of Corollary 1.3.



Proof of Corollary 1.3.

For convenience, we let [image: there is no content]=[image: there is no content][image: there is no content]. Hence [image: there is no content]=[image: there is no content]∘[image: there is no content][image: there is no content]⊤[image: there is no content] and pij=[image: there is no content]xjyi. Using Proposition 2.6, we have


h[image: there is no content],[image: there is no content],[image: there is no content]=-1[image: there is no content]⊤[image: there is no content]∑i=1Nxiyilog[image: there is no content]



(18)






≥-log[image: there is no content]⊤[image: there is no content][image: there is no content]⊤[image: there is no content]



(19)






=log[image: there is no content]⊤[image: there is no content][image: there is no content][image: there is no content]⊤[image: there is no content]








Here inequality (19) follows from Jensen’s inequality (see e.g., [12] (Theorem 7.35)) for [image: there is no content] and the fact that ∑i=1N1[image: there is no content]⊤[image: there is no content]xiyi=1. Similarly, using Proposition 2.6 and the monotonicity of log, we also see that


h[image: there is no content],[image: there is no content],[image: there is no content]=-1[image: there is no content]⊤[image: there is no content]∑i=1Nxiyilog[image: there is no content]










≥1[image: there is no content]⊤[image: there is no content]∑i=1Nxiyilogmin1≤i≤Nyixi



(20)






=logmin1≤i≤Nyixi








This proves the first assertion of Corollary 1.3. It is easily seen that if [image: there is no content] is an eigenvector corresponding to λN([image: there is no content]), then both equalities in (19) and (20) hold. From the assumption that [image: there is no content]≥0 is irreducible and [image: there is no content], it follows that [image: there is no content] also. This implies there are N terms in (18). Hence equality in (19) or in (20) holds only if [image: there is no content], for all [image: there is no content], are constant. That is, [image: there is no content]=[image: there is no content][image: there is no content]=λ[image: there is no content]. Here λ is some eigenvalue of [image: there is no content]. However, [image: there is no content]. From Perron-Frobenius Theorem it follows λ=λN([image: there is no content]). The proof is complete. ☐







3. Proof of Theorem 1.4


In this section, we shall give the proof of Theorem 1.4. We first prove (5).



Proposition 3.1.

Let [image: there is no content], [image: there is no content] and [image: there is no content] be as defined in Theorem 1.4. Then we have


λN([image: there is no content]+[image: there is no content])-λN([image: there is no content])≥f(1/λN([image: there is no content]))-11/λN([image: there is no content])



(21)




where


[image: there is no content]








The equality holds in (21) if and only if [image: there is no content].





Proof.

To ease the notation, we shall denote λ=λN([image: there is no content]). Let [image: there is no content]=([image: there is no content]+[image: there is no content])[image: there is no content]=λ[image: there is no content]+[image: there is no content][image: there is no content], [image: there is no content]=[image: there is no content]∘[image: there is no content][image: there is no content]⊤[image: there is no content], and [image: there is no content]=diag([image: there is no content])-1([image: there is no content]+[image: there is no content])diag([image: there is no content])∈P[image: there is no content]+[image: there is no content]. From Theorem 1.2 and Proposition 2.6, we have


logλN([image: there is no content]+[image: there is no content])≥h[image: there is no content],[image: there is no content],[image: there is no content]+[image: there is no content]










=1[image: there is no content]⊤([image: there is no content]+[image: there is no content])[image: there is no content]∑i=1N(λ+vi)xi2log(λ+vi)



(22)




We note that


logλN([image: there is no content])=1[image: there is no content]⊤([image: there is no content]+[image: there is no content])[image: there is no content]∑i=1N(λ+vi)xi2logλ



(23)




Subtracting (23) from (22), we have


logλN([image: there is no content]+[image: there is no content])λN([image: there is no content])≥1∑i=1N(1+vi/λ)xi2∑i=1N(1+vi/λ)xi2log(1+vi/λ)








and hence,


λN([image: there is no content]+[image: there is no content])-λN([image: there is no content])λN([image: there is no content])≥f(1/λN([image: there is no content]))-1








This proves (21). Now we prove the second assertion of this proposition. It is easily seen that [image: there is no content] implies the equality in (21) holds. Conversely, suppose the equality in (21) holds. It is equivalent to the equality in (22) holds. Now, we write (22) in an alternative form


1[image: there is no content]⊤([image: there is no content]+[image: there is no content])[image: there is no content]∑i=1N(λ+vi)xi2log(λ+vi)≤log1[image: there is no content]⊤([image: there is no content]+[image: there is no content])[image: there is no content]∑i=1N(λ+vi)2xi2



(24)






=log[image: there is no content]⊤([image: there is no content]+[image: there is no content])2[image: there is no content][image: there is no content]⊤([image: there is no content]+[image: there is no content])[image: there is no content]










≤logλN([image: there is no content]+[image: there is no content])



(25)




Here (24) follows from the convexity of log and Jensen’s inequality. Hence, if the equality in (22) holds, then the equality in (25) also holds. This means [image: there is no content] is also an eigenvector of [image: there is no content]+[image: there is no content]. However, since [image: there is no content] is the eigenvector of [image: there is no content] corresponding to λN([image: there is no content]), we conclude that [image: there is no content]. This completes the proof. ☐





The following proposition can be obtained from a standard calculation.



Proposition 3.2.

Let f be the real-valued function in Proposition 3.1. Then we have


[image: there is no content]



(26a)






[image: there is no content]



(26b)




where [image: there is no content] and


[image: there is no content]



(27a)






[image: there is no content]



(27b)









In the following, we show that the lower bound estimate (5) for λN([image: there is no content]+[image: there is no content])-λN([image: there is no content]) is greater than [image: there is no content]⊤[image: there is no content][image: there is no content].



Proposition 3.3.

Let f be the real-valued function in Proposition 3.1. Then we have


f(1/λN([image: there is no content]))-11/λN([image: there is no content])≥[image: there is no content]⊤[image: there is no content][image: there is no content]













Proof.

It is easily seen from the definition of [image: there is no content] that [image: there is no content]. Hence, using the Mean Value Theorem follows that there exists a ζ∈(0,1/λN([image: there is no content])) such that


f(1/λN([image: there is no content]))-11/λN([image: there is no content])=f′(ζ).



(28)




From (26a) and (27a), we see that f′(0)=b=[image: there is no content]⊤[image: there is no content][image: there is no content]. From (26b), (27a) and (27b), we also see that [image: there is no content] for all [image: there is no content]. This implies


f′(ζ)≥f′(0)=[image: there is no content]⊤[image: there is no content][image: there is no content]



(29)




The assertion of this proposition follows from (28) and (29) directly. ☐






4. Conclusions


In this paper, we first generalize Parry’s Theorem to general nonnegative matrices. This can be treated as an estimation for the lower bound for a nonnegative matrix. Second, we use the generalized Parry’s Theorem to estimate a nontrivial lower bound of λN([image: there is no content]+[image: there is no content])-λN([image: there is no content]), provided that [image: there is no content]≥0 is symmetric and [image: there is no content]≥0 is a diagonal matrix. The bound is optimal but implicit that can be applied when [image: there is no content] and its corresponding eigenvector are known. As an interesting topic to be explored in the future, rather than a nonnegative matrix eigenvalue problem, one may wish to derive a similar inequality to (3) for a general square matrix or for a generalized eigenvalue problem [image: there is no content][image: there is no content]=λB[image: there is no content].
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