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Abstract: The scope of this paper is twofold. First, we use the Kolmogorov-Sinai Entropy

to estimate lower bounds for dominant eigenvalues of nonnegative matrices. The lower bound

is better than the Rayleigh quotient. Second, we use this estimate to give a nontrivial lower

bound for the gaps of dominant eigenvalues of A and A+V.
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1. Introduction

The main concern of this paper is to relate eigenvalue estimates to the Kolmogorov-Sinai entropy for

Markov shifts. We shall begin with the definition of the Kolmogorov-Sinai entropy. Let A = (aij) ∈
R

N×N be an irreducible nonnegative matrix. By an irreducible matrix A, we mean for each 1 ≤ i, j ≤ N ,

there exists positive integer k such that (Ak)ij �= 0. A matrix P = (pij) ∈ R
N×N is said to be a stochastic

matrix compatible with A, if P satisfies

1. 0 < pij ≤ 1 if aij > 0,

2. pij = 0 if aij = 0,

3.

N∑
j=1

pij = 1, for all i = 1, . . . , N .

We denote by PA the set of all stochastic matrices compatible with A. By Perron-Frobenius Theorem,

it is easily seen that every stochastic matrix P has a unique left eigenvector q > 0 corresponding to

eigenvalue 1 with
∑N

i=1 qi = 1. Here we say q is the stationary probability vector associated with P.



Entropy 2011, 13 2037

For a transition matrix A, i.e., aij = 1 or 0 for each 1 ≤ i, j ≤ N , the subshift of finite type generated by

A is defined by

ΣA = {i = (i0, i1, . . .)| ij ∈ {1, . . . , N}, aij ,ij+1
= 1, j = 0, 1, 2, . . .}

and the shift map on ΣA is defined by σA(i0, i1, . . .) = (i1, i2, . . .). A cylinder of ΣA is the set

Cj0,j1,...,jn = {i ∈ ΣA|i0 = j0, . . . , in = jn}

for any n ≥ 0. Disjoint unions of cylinders form an algebra which generates the Borel σ-algebra of ΣA.

For any P ∈ PA and its associated stationary probability vector q, the Markov measure of a cylinder

may then be defined by

μP,q(Cj0,j1,...,jn) = qj0pj0,j1 · · · pjn−1,jn

Here μP,q is an invariant measure under the shift map σA (see e.g., [8]). The Kolmogorov-Sinai entropy
(or called the measure theoretic entropy) of σA under the invariant measure μP,q is defined by

hP,q(σA) = lim
n→∞

1

n

∑
j0,j1,...,jn

H(μP,q(Cj0,j1,...,jn))

where H(x) = −x log x and the convention 0 log 0 = 0 is adopted. The notion of the Kolmogorov-Sinai

entropy was first studied by Kolmogorov in 1958 on the problems arising from information theory and

dimension of functional spaces, that measures the uncertainty of the dynamical systems (see e.g., [6,7]).

It is shown in [8] (p. 221) that

hP,q(σA) = −
∑
ij

qipij log pij (1)

where the summation in (1) is taken over all i, j with aij = 1. On the other hand, it is shown by

Parry [9] (Theorems 6 and 7) that the Kolmogorov-Sinai entropy of σA has an upper bound log λN(A).

Theorem 1.1 (Parry’s Theorem). Let A be an N × N irreducible transition matrix. Then for any
P ∈ PA and its associated stationary probability vector q, we have

hP,q(σA) ≤ log λN(A) (2)

where λN(A) denotes the dominant eigenvalue of A. Moreover, if A is regular (An > 0 for some
n > 0), the equality in (2) holds for some unique P ∈ PA and q the stationary probability vector
associated with P.

Parry’s Theorem shows the Kolmogorov-Sinai entropy for a Markov shift is less than or equal to its

topological entropy (that is, log λN(A)) and exactly one of the Markov measures on ΣA maximizes the

Kolmogorov-Sinai entropy of σA provided it is topological mixing. This is also a crucial lemma for

showing the Variational Property of Entropy [8] (Proposition 8.1) in the ergodic theory. However, from

the viewpoint of eigenvalue problems, combination of (1) and (2) gives a lower bound for the dominant

eigenvalue of the transition matrix A. In this paper, we generalize Parry’s Theorem to general N × N
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irreducible nonnegative matrices. Toward this end, we extend the entropy of irreducible nonnegative

matrices by

hP,q,A = −
∑
ij

qipij log
pij
aij

It is easily seen that hP,q,A = hP,q(σA).

Theorem 1.2 (Main Result 1: The Generalized Parry’s Theorem). Let A ∈ R
N×N an irreducible

nonnegative matrix. Let P ∈ PA and q be a stationary probability vector associated with P, then
we have

hP,q,A ≤ log λN(A) (3)

where the summation is taken over all i, j with aij > 0. Moreover, the equality in (3) holds when

P =
1

λN(A)
diag(x)−1Adiag(x)

and

q =
y ◦ x
y�x

where x > 0 and y > 0 are, respectively, the right and left eigenvectors of A corresponding to the
eigenvalue λN(A). Here, diag(x) denotes the diagonal matrix with x on its diagonal, y ◦ x denotes the
vector (y1x1, . . . , yNxN), and y� denotes the transpose of the column vector y.

Lower bound estimates for the dominant eigenvalue of a symmetric irreducible nonnegative matrix

play an important role in various fields, e.g., the complexity of a symbolic dynamical system [5],

synchronization problem of coupled systems [10], or the ground state estimates of Schrödinger

operators [2]. A usual way to estimate the lower bound for λN(A) is the Rayleigh quotient

λN(A) ≥ x�Ax

x�x
It is also well-known that (see e.g., [4] (Theorem 8.1.26)),

min
1≤i≤N

1

xi

N∑
j=1

aijxj ≤ λN(A) ≤ max
1≤i≤N

1

xi

N∑
j=1

aijxj (4)

provided that A ∈ R
N×N is nonnegative and x ∈ R

N is positive. Comparing the lower bound

estimate (3) with (4) as well as with the Rayleigh quotient, we have the following result.

Corollary 1.3. Let A ∈ R
N×N be a symmetric, irreducible nonnegative matrix. Suppose x ∈ R

N

be positive. Then the matrix P = diag(Ax)−1Adiag(x) is in PA and q =
x ◦ (Ax)

x�Ax
is the stationary

probability vector associated with P. In addition,

hP,q,A ≥ log

(
min

1≤i≤N

1

xi

N∑
j=1

aijxj

)

and

hP,q,A ≥ log

(
x�Ax

x�x

)

Here, each equality holds if and only if x is the eigenvector of A corresponding to the eigenvalue λN(A).
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Here we remark that for any arbitrary irreducible nonnegative matrix A, the entropy hP,q,A involves

the left eigenvector q of P. Hence, the lower bound estimate (3) is merely a formal expression. However,

for a symmetric irreducible nonnegative matrix A and P chosen as in Corollary 1.3, the vector q can

be explicitly expressed. Therefore, hP,q,A can be written in an explicit form. We shall further show in

Proposition 2.6 that hP,q,A = −1
x�y

∑N
i=1 xiyi log

xi

yi
where y = Ax.

Considering symmetric nonnegative A and its perturbation A+V, it is easily seen that λN(A+V)−
λN(A) ≥ x�Vx, where x is the normalized eigenvector of A corresponding to λN(A). This gives a

trivial lower bound for the gap of λN(A +V) and λN(A). Upper bound estimates for the gap are well

studied in the perturbation theory [4,11]. By considering A + V as a low rank perturbation of A, the

interlace structure of eigenvalues of A + V and of A is studied by [1,3]. In the second result of this

paper, we give a nontrivial lower bound for λN(A+V)− λN(A).

Theorem 1.4 (Main Result 2). Let A ∈ R
N×N be an irreducible nonnegative matrix and x > 0 be

the eigenvector of A corresponding to λN(A) with ‖x‖2 = 1. Suppose A is symmetric. Then for any
nonnegative V = diag(v1, . . . , vN), we have

λN(A+V)− λN(A) ≥ f(1/λN(A))− 1

1/λN(A)
(5)

where

f(z) =
N∏
i=1

(1 + viz)

(1+viz)x
2
i∑N

j=1
(1+vjz)x

2
i

Here (f(1/λN(A)) − 1)λN(A) ≥ x�Vx. Furthermore, the equality in (5) holds if and only if
v1 = · · · = vN .

This paper is organized as follows. In Section 2, we prove the generalized Parry’s Theorem in three

steps. First, we prove the case in which the matrix A has only integer entries. Next we show that

Theorem 1.2 is true for nonnegative matrices with rational entries. Finally we show that it holds true for

all irreducible nonnegative matrices. The proof of Corollary 1.3 is given at the end of this section. In

Section 3, we give the proof of Theorem 1.4. We conclude this paper in Section 4.

Throughout this paper, we use the boldface alphabet (or symbols) to denote matrices (or vectors).

For u,v ∈ R
N , the Hadamard product of u and v is their elementwise product which is denoted by

u ◦ v = (uivi)1≤i≤N . The notation diag(u) denotes the N ×N diagonal matrix with u on its diagonal.

A matrix A = (aij) ∈ R
N×N is said to be a transition matrix if aij = 1 or 0 for all 1 ≤ i, j ≤ N .

λ1(A) ≤ · · · ≤ λN(A) denotes the dominant eigenvalue of a nonnegative matrix A.

2. Proof of the Generalized Parry’s Theorem and Corollary 1.3

In this section, we shall prove the generalized Parry’s Theorem and Corollary 1.3. To prove

inequality (3), we proceed in three steps.
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Step 1: Inequality (3) is true for all irreducible nonnegative matrices with integer entries.

Let A be an irreducible nonnegative matrix with integer entries. To adopt Parry’s Theorem, we shall

construct a transition matrix Ā corresponding to A for which λN(Ā) = λN(A)1/2. To this end, we

define the sets of indexes:

I = {1, . . . , N}
E = {−→ij (k)| aij �= 0, 1 ≤ k ≤ aij}

Let Ñ =
∑N

i,j=1 aij = #E and N̄ = N + Ñ . The transition matrix Ā ∈ R
N̄×N̄ corresponding to A with

index set I ∪ E is defined as follows

(1) ā
i,
−→
ij (k) = 1, for all 1 ≤ k ≤ aij if aij �= 0, (6a)

(2) ā−→
ij (k),j

= 1, for all 1 ≤ k ≤ aij if aij �= 0, (6b)

(3) the rest entries are set to be zero (6c)

It is easily seen that Ā can be written in the block form:

Ā =

[
0N×N ĀIE
ĀEI 0Ñ×Ñ

]
(7)

where 0N×N and 0Ñ×Ñ are, respectively, the zero matrices in R
N×N and R

Ñ×Ñ , ĀIE ∈ R
N×Ñ and

ĀEI ∈ R
Ñ×N .

Proposition 2.1. λN̄(Ā) = λN(A)1/2.

Proof. From (7), we see that

Ā2 =

[
ĀIEĀEI 0N×Ñ

0Ñ×N ĀEIĀIE

]

From (6a) and (6b), for each i, j with aij �= 0, we have

aij∑
k=1

ā
i,
−→
ij (k) ā−→ij (k),j

= aij (8)

Using (8), together with (6c), we have

(ĀIEĀEI)ij =
∑
α∈E

āiαāαj

=

⎧⎨
⎩
∑

k āi,−→ij (k) ā−→ij (k),j
= aij if aij �= 0

0 = aij if aij = 0
(9)

From (9) we see that ĀIEĀEI = A. Hence λN̄(Ā
2) = λN(ĀIEĀEI) = λÑ(ĀEIĀIE) = λN(A). On

the other hand, Ā is a nonnegative matrix. From Perron-Frobenius Theorem, its dominant eigenvalue is

nonnegative. The assertion follows. �
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Remark 2.1. In the language of graph theory, aij represents the number of directed edges from vertex i

to vertex j. Hence
∑

ij (A
n)ij equals to the number of all possible routes of length n+ 1, i.e.,

#{all possible routes of length n+ 1} =
∑
ij

(An)ij = O(λN(A)n)

For the construction of Ā, we add an additional vertex on every edge from vertex i to vertex j (See

Figure 2.1 for the illustration). Hence, each route that obeys the rule defined by A,

(i1, i2, . . . , ij, ij+1, . . . , in−1, in), provided aijij+1
> 0 for all j = 1, . . . , n− 1 (10)

now becomes one of the following routes according to the rule defined by Ā:

(i1,
−→
i1i2

(k1), i2, . . . ij,
−−−→
ijij+1

(kj)ij+1, . . . , in−1,
−−−→
in−1in

(kn−1), in) (11)

where 1 ≤ kj ≤ aijij+1
, j = 1, . . . , n− 1. However, a route of the form in (11) is equivalent to the form

in (10) but its length is doubled. Hence O(λN(Ā)2n) = O(λN(A)n).

Figure 1. Illustration for Remark 2.1 with the example A =

[
1 2

1 0

]
.

1 2

11 1a = 12 2a =

21 1a =

1 2

(1)
12
���

(2)
12
���

(1)
21
���

(1)
11
���

(a) (b)

Now, let P ∈ PA be given and q be its associated stationary probability vector. We shall accordingly

define a stochastic matrix P̄ ∈ PĀ and its associated stationary probability vector q̄. The stochastic

matrix P̄ is defined as follows:

(1) p̄
i,
−→
ij (k) =

pij
aij

for all 1 ≤ k ≤ aij provided aij > 0 (12a)

(2) p̄−→
ij (k),j

= 1 for all 1 ≤ k ≤ aij provided aij > 0 (12b)

(3) the rest entries are set to zero (12c)

From (6) and (12), it is easily seen that P̄ is a stochastic matrix compatible with Ā. Let the vector

q̄ ∈ R
N+Ñ be defined by

q̄i =
qi
2
, 1 ≤ i ≤ N (13a)

and

q̄−→
ij (k) =

qipij
2aij

, for all 1 ≤ k ≤ aij with aij > 0 (13b)
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Proposition 2.2. q̄ is the stationary probability vector associated with P̄.

Proof. We first show that q̄ is a left eigenvector of P̄ with the corresponding eigenvalue 1. For any

1 ≤ j ≤ N , using (12b), (13b), and the fact that q�P = q�, we have

(q̄�P̄)j =
∑
i,k

q̄−→
ij (k) p̄−→ij (k),j

=
∑

i,aij>0

aij∑
k=1

1

2
qi
pij
aij

· 1

=
∑
i

1

2
qipij =

1

2
qj = q̄j (14a)

On the other hand, using (12a) and (13a), for all
−→
ij (k) with aij > 0 and 1 ≤ k ≤ aij , we have

(q̄�P̄)−→
ij (k) = q̄ip̄i,−→ij (k)

=
1

2
qi
pij
aij

= q̄−→
ij (k) (14b)

In (14), we have proved q̄�P̄ = q̄�. Now we show that the total sum of entries of q̄ is 1. Using the fact

∑
ij

aij∑
k=1

q̄−→
ij (k) =

∑
ij

aij∑
k=1

qipij
2aij

=
∑
ij

1

2
qipij =

1

2

∑
i

qi

we conclude that

∑
α∈I∪E

(q)α =
∑
i

q̄i +
∑
ij

aij∑
k=1

q̄−→
ij (k)

=
1

2

∑
qi +

1

2

∑
i

qi = 1

The proof is complete. �

From the construction of the transition matrix Ā, it is easily seen that Ā is irreducible. In (12) and

Proposition 2.2, we show that P̄ ∈ PĀ and the vector q̄ defined by (13) is its associated stationary

probability vector. Hence the Kolmogorov-Sinai entropy hP̄,q̄(σĀ) is well-defined. Now we give the

relationship between the quantities hP̄,q̄(σĀ) and hP,q,A defined in Equation (3).
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Proposition 2.3.

hP̄,q̄(σĀ) =
1

2
hP,q,A

Proof. We note that by (12b), log p̄−→
ij (k),j

= 0 if aij > 0. Using the definition of P̄ and q̄ in (12)

and (13), as well as the entropy formula (1), we have

hP̄,q̄(σĀ) = −
∑

ij,aij>0

aij∑
k=1

q̄ip̄i,−→ij (k) log p̄i,−→ij (k)

= −
∑

ij,aij>0

aij∑
k=1

1

2
qi
pij
aij

log
pij
aij

= −
∑

ij,aij>0

1

2
qipij log

pij
aij

=
1

2
hP,q,A

The proof is complete. �

Using Proposition 2.3, 2.1, and Parry’s Theorem 1.1, it follows that

1

2
hP,q,A = hP̄,q̄(σĀ)

≤ log λN(Ā) =
1

2
log λN(A) (15)

Step 2: Inequality (3) is true for all irreducible nonnegative matrices with rational entries.

Any N × N nonnegative matrix with all entries that are rational can be written as A/n where A

is a nonnegative matrix with integer entries and n is an positive integer. Suppose A is irreducible and

P ∈ PA/n. Note that PA/n = PA. Letting q be a stationary probability vector associated with P,

inequality (3) for A/n follows from the following proposition.

Proposition 2.4.

hP,q,A/n ≤ log λN(A/n)

Proof. From the definition of hP,q,A/n, we see that

hP,q,A/n = −
∑

ij,aij>0

qipij log
pijn

aij
= −

∑
ij,aij>0

qipij log
pij
aij

−
∑
ij

qipij log n

= hP,q,A −
∑
ij

qipij log n (16)

On the other hand, since q�P = q� and
∑

qi = 1, we have∑
ij

qipij log n = log n (17)
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Substituting (17) into (16) and using the result (15) in Step 1, we have

hP,q,A/n = hP,q,A − log n ≤ log λN(A)− log n = log λN(A/n)

�

Step 3: Inequality (3) is true for all irreducible nonnegative matrices.

It remains to show (3) holds for all nonnegative A with irrational entries. The assertion follows from

Step 2 and the continuous dependence of eigenvalues with respect to the matrix.

Now, we give the proof of the second assertion of Theorem 1.2.

Proposition 2.5. The equality in (3) holds when one chooses

P =
1

λN(A)
diag(x)−1Adiag(x)

and

q =
y ◦ x
y�x

where x > 0 and y > 0 are, respectively, the right and left eigenvectors of A corresponding to eigenvalue
λN(A).

Proof. By setting y�x = 1, we may write

pij =
aijxj

λN(A)xi

and qi = xiyi

To ease the notation, set λN = λN(A). Hence, we have

hP,q,A = −
∑
ij

xiyi
aijxj

λNxi

log
xj

λNxi

=
∑
ij

yi
λN

(aijxj) log(λNxi)−
∑
ij

xj

λN

(yiaij) log xj

=
∑
i

yixi log(λNxi)−
∑
j

xjyj log xj

(
Use the facts

∑
j

aijxj = λNxi and
∑
i

yiaij = λNyj

)

=
∑
i

xiyi log λN

= log λN

The proof of Theorem 1.2 is complete. �

In the following, we give the proof of Corollary 1.3. We first prove the following useful proposition.

It will be used in Section 3 as well.

Proposition 2.6. Let A ∈ R
N×N be an irreducible nonnegative matrix. Suppose A is symmetric and

x ∈ R
N be positive. If P = diag(Ax)−1Adiag(x) and q = x◦y

x�y
, where y = Ax, then

hP,q,A =
−1

x�y

N∑
i=1

xiyi log
xi

yi
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From Proposition 2.5, we see that the matrix P in Proposition 2.5 is a stochastic matrix compatible

with A and q is its associated stationary probability vector. Hence, the entropy hP,q,A is well defined.

Now, we give the proof of this Proposition.

Proof. Since A ≥ 0 is irreducible and x > 0, it follows Ax > 0, and hence, diag(Ax)−1 is

well-defined. It is easily seen that pij = 0 if and only if aij = 0. However, Pe = diag(Ax)−1(Ax) = e.

This shows that P ∈ PA. On the other hand, since A is symmetric, we see that y� = x�A. Hence

q�P = (x ◦ (Ax))�diag(Ax)−1Adiag(x)/x�Ax = q�

We have proved the first assertion of this proposition. By the definition of hP,q,A in (3), we have

hP,q,A = −
∑
ij

aijxixj

x�y
log

xj

yi
=

1

x�y

[
N∑
i=1

xiyi log yi −
N∑
i=1

xjyj log xj

]

=
−1

x�y

N∑
i=1

xiyi log
xi

yi

This completes the proof. �

Now, we are in a proposition to give the proof of Corollary 1.3.

Proof of Corollary 1.3. For convenience, we let y = Ax. Hence q =
x ◦ y
x�y

and pij =
aijxj

yi
. Using

Proposition 2.6, we have

hP,q,A =
−1

x�y

N∑
i=1

xiyi log
xi

yi
(18)

≥ − log
x�x
x�y

(19)

= log
x�Ax

x�x
Here inequality (19) follows from Jensen’s inequality (see e.g., [12] (Theorem 7.35)) for − log and the

fact that
∑N

i=1
1

x�y
xiyi = 1. Similarly, using Proposition 2.6 and the monotonicity of log, we also

see that

hP,q,A =
−1

x�y

N∑
i=1

xiyi log
xi

yi

≥ 1

x�y

N∑
i=1

xiyi log

(
min

1≤i≤N

yi
xi

)
(20)

= log

(
min

1≤i≤N

yi
xi

)

This proves the first assertion of Corollary 1.3. It is easily seen that if x is an eigenvector corresponding

to λN(A), then both equalities in (19) and (20) hold. From the assumption that A ≥ 0 is irreducible

and x > 0, it follows that y > 0 also. This implies there are N terms in (18). Hence equality in (19)

or in (20) holds only if xi

yi
, for all i = 1, . . . , N , are constant. That is, y = Ax = λx. Here λ is some

eigenvalue of A. However, x > 0. From Perron-Frobenius Theorem it follows λ = λN(A). The proof

is complete. �
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3. Proof of Theorem 1.4

In this section, we shall give the proof of Theorem 1.4. We first prove (5).

Proposition 3.1. Let A, V and x be as defined in Theorem 1.4. Then we have

λN(A+V)− λN(A) ≥ f(1/λN(A))− 1

1/λN(A)
(21)

where

f(z) =
N∏
i=1

(1 + viz)

(1+viz)x
2
i∑N

j=1
(1+vjz)x

2
i

The equality holds in (21) if and only if v1 = · · · = vN .

Proof. To ease the notation, we shall denote λ = λN(A). Let y = (A+V)x = λx+Vx, q = x◦y
x�y

,

and P = diag(y)−1(A+V)diag(x) ∈ PA+V. From Theorem 1.2 and Proposition 2.6, we have

log λN(A+V) ≥ hP,q,A+V

=
1

x�(A+V)x

N∑
i=1

(λ+ vi)x
2
i log(λ+ vi) (22)

We note that

log λN(A) =
1

x�(A+V)x

N∑
i=1

(λ+ vi)x
2
i log λ (23)

Subtracting (23) from (22), we have

log
λN(A+V)

λN(A)
≥ 1∑N

i=1(1 + vi/λ)x2
i

N∑
i=1

(1 + vi/λ)x
2
i log(1 + vi/λ)

and hence,

λN(A+V)− λN(A)

λN(A)
≥ f(1/λN(A))− 1

This proves (21). Now we prove the second assertion of this proposition. It is easily seen that v1 = · · · =
vN implies the equality in (21) holds. Conversely, suppose the equality in (21) holds. It is equivalent to

the equality in (22) holds. Now, we write (22) in an alternative form

1

x�(A+V)x

N∑
i=1

(λ+ vi)x
2
i log(λ+ vi) ≤ log

(
1

x�(A+V)x

N∑
i=1

(λ+ vi)
2x2

i

)
(24)

= log
x�(A+V)2x

x�(A+V)x

≤ log λN(A+V) (25)
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Here (24) follows from the convexity of log and Jensen’s inequality. Hence, if the equality in (22) holds,

then the equality in (25) also holds. This means x is also an eigenvector of A+V. However, since x > 0

is the eigenvector of A corresponding to λN(A), we conclude that v1 = · · · = vN . This completes the

proof. �

The following proposition can be obtained from a standard calculation.

Proposition 3.2. Let f be the real-valued function in Proposition 3.1. Then we have

f ′(z) =
(

b

1 + bz
+

g(z)

(1 + bz)2

)
f(z) (26a)

f ′′(z) =
(

g′(z)
(1 + bz)2

+
g(z)2

(1 + bz)4

)
f(z) (26b)

where b =
∑N

i=1 x
2
i vi and

g(z) =
N∑
i=1

x2
i

N∑
j=1

x2
j(vi − vj) log(1 + viz), (27a)

g′(z) =
1

2

N∑
i,j=1

x2
ix

2
j(vi − vj)

2 1

(1 + viz)(1 + vjz)
, (27b)

In the following, we show that the lower bound estimate (5) for λN(A+V)− λN(A) is greater than

x�Vx.

Proposition 3.3. Let f be the real-valued function in Proposition 3.1. Then we have

f(1/λN(A))− 1

1/λN(A)
≥ x�Vx

Proof. It is easily seen from the definition of f(z) that f(0) = 1. Hence, using the Mean Value

Theorem follows that there exists a ζ ∈ (0, 1/λN(A)) such that

f(1/λN(A))− 1

1/λN(A)
= f ′(ζ). (28)

From (26a) and (27a), we see that f ′(0) = b = x�Vx. From (26b), (27a) and (27b), we also see that

f ′′(z) ≥ 0 for all z ≥ 0. This implies

f ′(ζ) ≥ f ′(0) = x�Vx (29)

The assertion of this proposition follows from (28) and (29) directly. �

4. Conclusions

In this paper, we first generalize Parry’s Theorem to general nonnegative matrices. This can be treated

as an estimation for the lower bound for a nonnegative matrix. Second, we use the generalized Parry’s

Theorem to estimate a nontrivial lower bound of λN(A+V)−λN(A), provided that A ≥ 0 is symmetric

and V ≥ 0 is a diagonal matrix. The bound is optimal but implicit that can be applied when λN(A) and
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its corresponding eigenvector are known. As an interesting topic to be explored in the future, rather than

a nonnegative matrix eigenvalue problem, one may wish to derive a similar inequality to (3) for a general

square matrix or for a generalized eigenvalue problem Ax = λBx.
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