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Abstract: This paper presents a maximum entropy approach to Rain Drop Size Distribution

(RDSD) modelling. It is shown that this approach allows (1) to use a physically consistent

rationale to select a particular probability density function (pdf) (2) to provide an alternative

method for parameter estimation based on expectations of the population instead of sample

moments and (3) to develop a progressive method of modelling by updating the pdf as new

empirical information becomes available. The method is illustrated with both synthetic and

real RDSD data, the latest coming from a laser disdrometer network specifically designed to

measure the spatial variability of the RDSD.
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1. Introduction

The Raindrop Size Distribution (RDSD) represents the mean number of raindrops (N) with equivalent

spherical diameters between D and D+dD per unit of volume of air. It is usually formalized as a

distribution function and noted as N(D). Its importance stems from the fact that many remote-sensing

variables (such as reflectivity Z), and hydrological quantities (such as rainfall R) require prior knowledge
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on the RDSD. The RDSD is central to radar meteorology, as it is needed to calculate the Z vs. R

relationship. Regarding numerical weather prediction models (NWP) and regional climate models

(RCM), both contain parameterization schemes for processes below the spatial resolution at which an

analytical form of RDSD is required. For instance, in NWP models, parameterization is relevant to

correctly estimate precipitation amount and localisation of severe weather events. In the case of RCMs,

the physical process of condensation is closely related to the presence of natural and artificially-produced

aerosols, which implies that the correct characterisation of RDSD is also relevant for climate change

studies [1].

On site measurements of RDSD are carried out through disdrometers. Those instruments report the

distribution of drops by counting the number of drops fallen through the sensing area during a given

interval of time. The RDSD is derived by sorting the retrievals into different intervals of diameters

called bins. The most widely used disdrometer from the last few decades was the Joss-Waldvogel (JWD)

disdrometers, which derive the N(D) by measuring the momentum transferred between the drops and the

device. As such, a nominal terminal velocity is needed as a function of drop diameter. This drawback,

together with the dead-time problem requires corrections [2], thus making necessary the use of other

instruments to measure and compare the N(D), including optical or 2DVD video disdrometers. Note that

the latter is an advanced instrument that detects the actual drops. Contrastingly, optical disdrometers

relay in a simpler method based on infrared laser-beam interceptions of drops [3].

The actual functional form of the RDSD is the result of microphysical processes transforming the

water vapour into hydrometeors such as rain. Thus, multiple factors determine the RDSD, including

small-scale turbulence, the interplay between several variables such as relative humidity, and differences

in the cloud systems in which the RDSD emerges. Therein, one of the main characteristics and challenges

in RDSD research is the high spatial and temporal variability in the spectrum of drops sizes. This is a

major drive to replace the original model based on exponential distribution [4], N(D) = N0e
−ΛD with a

log-normal distribution [5,6] or the most frequently employed gamma equation, as follows,

N(D) = N0D
μe−ΛD (1)

The gamma distribution has three free parameters: N0 indicates raindrop concentration [mm−1−μm−3],

μ is a shape parameter and Λ is a scale parameter [mm−1]. In principle, three free parameters

ensures high representability of the experimental measurements obtained from different sources [7],

although experimental measurements have shown that it is not enough to represent all observed RDSD

accurately [8,9]: if RDSDs are assumed to follow a gamma distribution, it may be necessary to know the

model error [10].

Alternative to these models, some studies do not assume a fixed functional form. Rather, the RDSD

is obtained as a consequence of the relations between integral parameters of N(D) [11,12]. This allow

to address at least a part of the high variability of the N(D) through a scaling technique [13]. In all

these methods, the integral parameters of the sample are key experimental parameters. That includes the

radar reflectivity, the rainfall rate, the liquid water content or the total number concentration. On such

situation, the method of the moments is widely used, even though the method is well known to be

biased [14]. Another classical method that could outperform the method of moments includes

the maximum likelihood estimation (MLE), which directly uses the values from the sample and
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the hypothetical functional form to estimate the free parameters. However, typical disdrometric

measurements cannot obtain values across all spectra of sizes because the noise is too high for the

smallest drops; then as showed in [15] truncating the low end of the RDSD deteriorates the performance

of MLE more that it affects to moments method. As a result the typical MLE could be even more biased

than the method of moments for typical experimental measurements [10].

Other possibilities for modelling can be derived by drawing on Information Theory whereby the

physical properties of the RDSD simply constrain the possible functional form of RDSD. As such,

it is reasonable to use the maximum entropy method (MaxEnt) to model the RDSD. Following the

seminal work of Jaynes [16] the MaxEnt method should have theoretical advantages over other methods.

Namely, it retrieves the least biased probability density function (pdf) for a given amount of information,

making also possible to update a prior model if additional empirical information becomes available. A

major additional bonus is that thought MaxEnt, physical interpretations of the RDSD can be extracted.

The application of MaxEnt to atmospheric sciences presents an opportunity to develop new conceptual

models for physical process in the atmosphere with a stochastic component, such as droplet or aerosol

size distributions.

To the best of our knowledge, this approach has not yet been applied to RDSD modelling. Indeed,

the MaxEnt has already been fruitfully applied to model drop-size distribution in sprays [17,18], or in

the remote sensing of precipitation [19–21]. In the field of cloud microphysics, some models have been

developed using Jaynes entropy functional aiming to explore the idea that total water content available

during the microphysical process of coalescence and break-up, together with the total concentration of

drops may be the main constrains on the final cloud drop size distribution [22–24].

This paper applies the maximum entropy method to disdrometric measurements of the RDSD and

compared the results with existing methods. The paper is structured as follow. First, the following

section describes the origin of the datasets on which this study is based, including the synthetic dataset

and the empirical dataset. Next, the methods used to model the RDSD are explained. This section

includes the definitions that are later used to validate the method with the datasets. The results are

presented in Section 4. Discussion and conclusions are provided in Sections 5 and 6, respectively.

2. Data

The data used to test our proposal have been obtained using two complementary approaches. The first

is a synthetic method, in which is theoretically possible to distinguish the various sampling problems and

natural physical variations of the RDSD, and the second approach involves experimental data, which also

presents both sources of the aforementioned potential variability. The goals with each of these datasets

are different. The synthetic data may allow us to test the representability of a histogram with different

methods, by allowing us to change conditions in a controlled way; thus, it demonstrates the capacities of

MaxEnt before applying the method to experimental measurements, which is our main goal.

2.1. Synthetic Data

The prototypical method to generate artificial raindrop size distributions assumes a functional form

that serves as the underlaying distribution function. It represents the population of raindrops from which



Entropy 2011, 13 296

the samples of data are obtained. In our case, to generate synthetic samples the selected distribution is

the normalised gamma distribution f(D):

f(D;μ,Λ) =
Λμ+1

Γ(μ+ 1)
Dμe−ΛD (2)

To provide a comparison between N(D) and f(D), is defined a concentration of drops Nd, by

N(D) = Ndf(D) = N0D
μe−ΛD and Nd = N0Γ(μ+1)/Λμ+1. Other authors [15] apply Dm = (μ+4)/Λ

as free parameter for f(D) instead of Λ but the method is equivalent.

For Equation (1), a large amount of previous experimental studies have reported different estimates

of the free parameters, thus showing that they can cover a wide range of values. Following [25,26]

the selection of typical values for the free parameters, μ and Λ, represents events with different rainfall

intensity categories as shown in Table 1.

Table 1. Properties of rainfall scenarios used for synthetic generation of RDSD [25,26].

Category μ Λ[mm−1] Dmin[mm] Size (Number drops)

Very Light 1.7 4.7 0.0 , 0.1 , 0.5 50, 100, 200, 500

Moderate 2.9 4.7 0.0 , 0.1 , 0.3, 0.5 50, 100, 200, 500

Heavy 3.9 5.2 0.0 , 0.1 , 0.3, 0.5 50, 100, 200, 500

Very Heavy 6.1 6.3 0.0 , 0.1 , 0.5 50, 100, 200, 500

To generate these samples, the Mersenne Twister pseudo-random number generator [27] is used,

which has been widely implemented in statistical packages such as MATLAB or R. To ascertain the

differences in the models a histogram comparison is performed for different, fixed sizes of the samples.

This allows us to also address challenging problems present in the case with a low total number of drops.

To mimic the experimental samples without values in lower diameters, several thresholds, Dmin, are

considered as the minimum allowable size of drops in the samples, see Table 1. A maximum limit for

Dmin was selected according to [28]. This value was used to evaluate whether the μ−Λ relations under

gamma estimations using the method of moments are due to a sampling problem. In addiction, the same

value is considered a confident threshold to discriminate among faithful measurements of smaller and

medium drops from noisier measurements characteristic of the smallest drops [15,29].

Along the paper, the word category denotes the pair of values μ and Λ. Each category represent a

functional form as given by the Equation (2). Also each simulated situation is called scenario, and it is

defined by: μ, Λ, Dmin and Size of the sample. A sample is a particular realization of a given scenario,

while the size of the sample is defined by the number of drops (or number of elements taken from the

population defined by the category). For each scenario 50 samples were generated all with the same

number of drops.

Simulating the statistical properties of the underlying measurement methods several studies have

generated an RDSD by choosing sample sizes according to a Poisson distribution with a given

mean [28]. In addiction, a second step to simulate observational errors has been suggested to add
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to previous Poisson ones [10]. Such methods are built to evaluate the bias and errors of the method

of moments or the maximum likelihood method of estimation for a gamma RDSD (or theoretically

another distribution function) as near as possible to the supposed experimental situation. In the context

of the present research, this would partially mask our main objective, which is evaluate the capacity of

different methods to represent a given sample. Thus, in our study, we used fixed values of Λ and μ for

several sample sizes ranging from 50 to 500 drops; nevertheless, in each case, 50 samples with the same

characteristics are generated.

2.2. Experimental

The empirical data set corresponds to the first Spanish-GPM Observation Program (SGPM/OP1)

carried out from 15 December 2009, to 15 January 2010, as part of the Spanish contribution to the

Ground Validation segment of the NASA/JAXA Global Precipitation Measuring (GPM) mission. The

general characteristics of the experiment are explained in [30] where information on the instrument is

also supplied. This paper also contains a description of the four rainfall events under analysis, called

hereafter 21-Dec-2009, 3-Jan-2010, 6-Jan-2010 and 12-Jan-2010.

3. Methods

The main goal is to compare the models of RDSD including the two most widely used methods, that

is, the method of moments and the maximum likelihood estimation, and the method of maximum entropy

principle under different sets of constrains.

3.1. Method of Moments

Given a sample of a population of drops, we can estimate the value of the moments, which are

expected to be unbiased but skewed. The question is how to estimate accurately the parameters of a

hypothetical distribution that describes the population using the information provided by the moments

of the sample.

In general, the modelling of the RDSD using the method of moments applied to a hypothetical

distribution of m free parameters requires the information on m moments Mi to estimate the entire

set of parameters. This makes it possible to define different methods of moments by choosing

several subsets of m moments of a given sample. For the gamma distribution, the free parameters

that must be calculated include {N0, μ,Λ}, while the most widely used subset of moments are

{M2,M3,M4} [31], {M2,M4,M6} [32] and the frequently applied {M3,M4,M6} [7,25,33].

Applications with seventh moment of beyond are generally not used. The method {M2,M3,M4} is

claimed to be the least biased [34] while the {M3,M4,M6} method is more widely used in the estimation

of ZR relations. While all of these methods are well known, there is no general agreement regarding

which method should be adopted, and it has been suggested that if model errors are included the position

of the least biased method {M2,M3,M4} becomes less attractive because the overall differences among

all methods of moments are then non substantial [10].
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Therefore, we used the method {M2,M3,M4} for the synthetic data and the methods of moments

{M2,M3,M4} and {M3,M4,M6} for the empirical data, in order to ascertain the advantages or

disadvantages of the MaxEnt. These methods are hereafter called MM234 and MM346, respectively.

3.2. Maximum Likelihood Estimation

Much like the method of moments, the maximum likelihood (MLE) method is used by statisticians

to estimate the parameters of an assumed parametric model. It is based on the existence of a likelihood

function that attempts to indicate how likely a particular population is to produce an observed sample.

To implement the MLE method mathematically over a sample of size n, the MLE method requires the

minimization of the likelihood function given by,

L(Di;μ0,Λ0) =
n∏

i=1

f(Di;μ0,Λ0) (3)

for the two parameters μ0 and Λ0 of the gamma function, (see Equation (2)), as applied in previous

studies [15].

3.3. Maximum Entropy Principle

Often, only some of the properties of a probability density function are known, and indeed, not only

the set of free parameters but even the functional distribution shape itself may be unknown. In his

seminal work, Jaynes proposed the maximum entropy (MaxEnt) principle as a method of inference to

solve indeterminate problems with several origins using the concept of the relative entropy function as

defined in information theory [35]:

SI [N ] = −
∫

N(D)log
N(D)

m(D)
dD (4)

The goal of this inference process [16] is to update a prior probability distribution, m(D) to a posterior

distribution, N(D), when new information about the probability density function becomes available. On

this situation the MaxEnt provides a systematic and objective way to construct a distribution based on

information given in the form of constraints on the family of possible distributions.

These constraints are defined as follows,

Φi =

∫
N(D)φi(D)dD i = 0, ..., L (5)

where the functions φi(D) are selected according to the specific system being analysed [36] or the

available empirical information, and the values of Φi are supposed to be known.

The formalism of MaxEnt relies on the maximisation of Equation (4) subject to the constraints given

as (5), to yield the least biased probability distribution under these constraints. As the result of the

maximisation, we formally obtain the following equation,

N̂(D) =
m(D)

Z
exp

[
−
∑
i=0

λiφi(D)

]
, Z(λ1, ..., λk) =

∫
m(D)e−

∑
i=0 λiφi(D) (6)
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where the values λ0, ..., λL represent the values of the free parameters that cause to N(D) to satisfy the

Equation (5) reporting with a maximum value of the entropy.

As a consequence, the method, with appropriately selected choices for the functions φi(D) can

be applied to estimate, for example, the free parameters of a gamma distribution or a log-normal

distribution. In the case of the gamma distribution, the functions φi of Equation (5) that define the

constrains are, φ0 = 1, φ1(D) = lnD and φ2(D) = D, and the results for λi are algebraically dependent

on the values of the parameters in (2). Moreover, given an estimate for RDSD, it is possible to evaluate

how the functional form of the distribution would change if new empirical information in the form of Φi

became available, simply by substituting the given previous estimate as m(D) in the formalism.

In our case, m(D) = 1 as there is no information initially available. The constraints are related to

the integral parameters of rainfall [7]. The general solution introduced in the constraints (5) provides

a non-linear system of equations that must be solved numerically to obtain the values of λi, and the

pdf (6). The mathematical details are explained in Appendix.

The analysis systematically covers three different sets of constraints where φi(D) = Di, where i can

be an integer value where 0 until imax that is set to 4, 6 and 8. These models will be known as MaxEnt-4,

MaxEnt-6 and MaxEnt-8, respectively. The first configuration is designed to reproduce the general

properties of the histograms while the last case may reproduce full detailed multimodal cases. MaxEnt-6

shows an intermediate situation. It is designed to provide the empirical integral rainfall parameters and

as results it retrieves the histograms with enough detail to represent typical multimodal cases.

The value of each MaxEnt model depends on the specific study carried out. The MaxEnt-8 model is

introduced in order to test and demonstrate how the MaxEnt method is able to reproduce the details of

a given sample and introduce information progressively. However, from the point of view of physical

applications the use of integral parameters beyond the reflectivity makes its use more restricted. On the

other hand, for the MaxEnt-8 model, the values of the λi may show histograms with larger standard

deviations because disdrometric measurements include larger sampling errors for larger drops, as shown

in the integral rainfall parameter ahead of the reflectivity. The MaxEnt-4 is a reliable model together

with the least bias property provided by the methodology.

A microphysical description of a precipitation process is typically based on the integral rainfall

parameters from the total number of drops to the reflectivity. As such, to differentiate between the

convective core, stratiform rain or the region ahead the convective core, the usual arguments are based

on the mean diameter, reflectivity, rainfall rate and total number of drops together. The MaxEnt-6 model

provides the least biased functional from these given values.

3.4. Performance Measures

The differences between the experimental histogram, hexp, and the models represented by f0 (given

by Equation (2) for MLE and method of moments, and by Equation (6) in our application of MaxEnt),

are defined as follows,

da[k] =
1

N

N∑
i=1

|Dk
i hexp(Di)−Dk

i f0(Di)| (7)

where the sub-index a indicates the absolute value of the difference and the sum is over the bins of the

experimental or synthetic histogram. The goal of this general measure is to quantify the deviation of the
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quantity f0 from the histogram weighted to analyse the relevance in the integral parameters. To give an

account of the accumulation of the differences in the entire rain event, the following definition is used,

Da[k] =
Ne∑
j=1

d(j)a [k] (8)

where Ne is the total number of histograms evaluated in the event, and d
(j)
a [k] is the reported difference

in the j-th histogram.

From an experimental point of view, a histogram-based comparison is possible if disdrometric

measurements are available. The main measure for this comparison is da[0]. Depending on the details

of the specific study it may be interesting to compare, for example, da[3], as this may more directly

demonstrate the different behavior between a rain process observed in a convective core region and the

one obtained in stratiform rain. For these such studies, the general measure da[k] is a valuable piece of

information.

The two main measures of performance used in this paper are da[0] and Da[0]. It is also possible to

sum over the bins without using any absolute values in Equation (7) to analyse if the differences along

the histogram are set off. This is denoted as d[0].

As a complement another measure of comparison has been introduced based on the relative moment

errors for the simulated RDSD [10], where it is compared the errors that the different methods produce

to estimate using the model, (1) the values of the empiric integral rainfall parameters, (2) the values for

the integral parameters of the hypothetical distribution (based directly in the values of μ and λ). Then,

for each scenario

F
(1)
X =

〈∣∣∣∣∣X
i
s − X̂ i

X i
s

∣∣∣∣∣
〉

(9)

The values of X i
s represents the interested integral variable in the histogram i-th of the scenario given.

X̂ i represent the value in each method of modelling (for the sample i-th) of the integral parameter X.

The < · > represents the mean value over the scenario, that is the mean value of the 50 samples.

F
(2)
X =

〈∣∣∣∣∣Xd − X̂ i

Xd

∣∣∣∣∣
〉

(10)

the Xd represents the value of the integral parameter obtained using the underlying gamma distribution

function, then is a constant value for each scenario. For scenarios defined by a total number of drops

higher than 100 drops and Dmin < 0.3 the values of X i
s are similar to the values of Xd.

4. Results

4.1. Analysis of Synthetic Data

With the synthetic samples obtained as explained in Section 2.1 a binning procedure was carried out

to construct histograms of 15 bins [37]. The histograms generated (H1, ..., H15) were normalised to

(h1, ..., h15) to satisfy the constraint:
∑

i hiδDi = 1. Note that δDi is the distance between consecutive

bins which in our case is a constant value. The histograms produced by typical disdrometers are designed
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to follow a log-scale; the motivation to choose a constant linear-scale value is explore the robustness of

MaxEnt to different binning procedures. Now the values (h1, ..., h15) can be compared directly with the

methods explained in Section 3. An example of the histograms generated is presented in Figure 1.

Figure 1. Eight synthetic histograms together with the models obtained using the methods

MLE, MM234 and MaxEnt-4 are showed. Cases with several values of Dmin and sample

size are showed.
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For all histograms of each scenario, the measure da[0] was calculated for each of the methods shown

in the previous section. The measure da[0] has numerical values that depend on the histogram, especially

for samples with small number of drops. For this reason the direct comparison of the da[0] values for

two different histograms is a less valuable tool than the comparison of da[0] for different methods but

the same histogram [38]. For these reasons, we study the following measures: (1) the number of times

each method reports the lowest values of da[0] of all methods, and (2) the relative values da[0]/d
MLE
a [0],

taking MLE as a reference. By studying a significant number of histograms for each scenario we will be

able to show the systematic behaviours of different methods. For the 50 different scenarios studied 50

histograms were enough to highlight comparative properties between methods [39].

Table 2 illustrates the results obtained for all scenarios studied with a fixed category. The number

of cases in which each method produces the best value of da[0] is shown together with the number of

times in which each method improves the MLE. Illustrative examples of the histograms are present in

Figure 1 comparing the methods MLE, MM234 and MaxEnt-4. Figure 2 compares MaxEnt-4, MaxEnt-6

and MaxEnt-8 for the same histograms. Figure 3 shows significance of Dmin and the number of drops,

again using MLE as a reference. Finally, the relatives values, da[0]/d
MLE
a [0], are shown in Figure 4 for

4 different scenarios.
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Table 2. For the category “Moderate” (see Table 1) used for synthetic generation: The

number of times that each method produces lower levels of difference with respect to the

histogram, as measured with da[0]. Between parentheses is the number of cases in which

a method has a value of da[0] lower than that value derived under MLE. The symbol (*)

indicates the presence of a sample without convergence (see the main text). As explained in

the main text, size represents the number of drops of each histogram, for each scenario (μ,

λ, Dmin and Size) 50 histograms were generated.

Scenario Methods of Modelling

Rain Category Dmin Size MLE MM234 MaxEnt-3 MaxEnt-4 MaxEnt-6 MaxEnt-8

Moderate

0.0

50 0 0 (10) 0 (22) 1 (35) 6 (45) (*)43 (50)

100 1 0 (7) 0 (17) 1 (24) 9 (39) 39 (50)

200 3 0 (5) 1 (11) 4 (21) 11 (32) 31 (50)

500 3 0 (6) 0 (4) 0 (11) 11 (36) 36 (50)

0.1

50 1 0 (5) 1 (17) 1 (24) 8 (41) 39 (50)

100 1 0 (4) 1 (12) 3 (31) 12 (43) 33 (50)

200 3 0 (3) 0 (6) 1 (19) 7 (33) 39 (50)

500 7 0 (1) 0 (4) 4 (15) 2 (25) 37 (50)

0.3 100 1 0 (16) 0 (3) 1 (23) 4 (40) 44 (50)

0.5

50 0 1 (25) 0 (0) 1 (31) 14 (48) (*)34 (50)

100 0 0 (35) 0 (1) 0 (36) 7 (46) (*)42 (50)

200 0 0 (37) 0 (0) 0 (29) 3 (46) 47 (50)

500 0 0 (45) 0 (0) 0 (32) 0 (48) 50 (50)

The drawback of MaxEnt respect to other methods in the synthetic cases relates to the numerical

solution of the problem. With our convergence parameters the system always solved for MaxEnt-3 and

MaxEnt-4. Meanwhile, only 3 cases out of 2,500 histograms evaluated failed to achieve convergence

for MaxEnt-6. For MaxEnt-8 around 1% of the samples either required further iterations or simply did

not converge under the algorithm. These problems of convergence are present in the more challenging

samples involving few drops and higher Dmin. It important to note that while MM234 and MLE always

provide solutions to the problem, these solutions may not faithfully represent the underlying histogram.

On these cases MaxEnt-4 and MaxEnt-6 provide better approximations to the problem.

From 80% of the entire set of 2,500 histograms MaxEnt-8 produces lower values of da[0]. This

fact makes logical sense, as a larger set of free parameters allow a more accurate representation of the

histogram. For 68% of the scenarios with Dmin = 0, MaxEnt-8 produces lower values of da[0], while

for the scenarios with Dmin = 0.5 the percentage is 85%. These data show that for lower values of Dmin

(with large values of the size) the histograms are well described by MaxEnt-4 and MLE. If MaxEnt-8 is

excluded from the comparison, MaxEnt-6 produces the best performance in the 63% of the total number

of histograms. Comparing only MLE, MM234 and MaxEnt-4, the latter one produces lower values
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da[0] for 40% of the scenarios of the entire set. This shows how MaxEnt is a progressive method of

incorporating information, while the results for MaxEnt-4 are interesting because a more realistic RDSD

using a fixed distribution function would need add model errors and a direct consequence is a decrease

in the performance of MLE and MM234.

In the 15% of the total histograms analysed MaxEnt-6 produces lower values of da[0] than any other

method. This, together with the generally similar values of da[0] for MaxEnt-6 and MaxEnt-8 (see

Figure 4) may be interpreted to mean that the information contained in the integral rainfall parameters

from the total number of drops until to the reflectivity is enough to retrieve an accurate representation of

the samples. In the values of da[0] a small dependence in the histogram binning procedure is possible, as

shown in the panels (c) and (h) of Figure 2, while different binning procedures produce the same global

results when the total number of histograms generated are compared.

Figure 2. Eight synthetic histograms together with the models obtained using methods

MaxEnt-4, MaxEnt-6, MaxEnt-8 are showed. Cases with several values of Dmin and sample

size are showed.
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MaxEnt-3 model of the RDSD, which includes the integral rainfall parameters up to the liquid water

content, is a good method for small samples compared with MLE or MM234. Including just one

more constraint, MaxEnt-4 obtained better results than MLE in 51% of the histograms, with suitable

performance for Dmin �= 0 and versatile behaviour for samples with different number of drops.

MM234 outperforms the MLE method when larger values Dmin are introduced. These drawbacks

of MLE in estimating the parameters of a distribution are well known, but here the study focuses on

analysing the case with the measure da[0]. This is shown in the Figure 3.
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Figure 3. Number of cases in which each model reports lower value of da[0] than MLE.

Different scenarios are showed.
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In the case of MLE, the results show that MLE optimises the model using values of the samples instead

of the moments; however, the capacity of this method is strongly conditioned by the characteristics of

the sample. In such situations for values of Dmin = 0.5, MM234 provides a better representation

of the histogram; see Table 2, particularly the second column on MM234. This justifies the general

preference for the method of moments over MLE. The panels (d) and (e) Figure 1 illustrate cases in

which MLE outperforms MM234 for Dmin = 0.5 whereas for 33 cases out of 50, the result is the

opposite. This shows how necessary it is to consider a large number of histograms. Finally, these results

also suggest that methods of MLE applied to a truncated gamma distribution can improve compared to

MM234 [29], although these methods there are not widely used [10,15]. However, from the point of

view of comparing with MaxEnt a completely realistic RDSD simulation includes model errors that also

decrease the capacities of MLE and MM234 for specific truncated methods, and the differences with

MaxEnt may remain similar.

The roles of Dmin and the sample size are visually illustrated for all methods in Figure 4. It shows

the progressive improvement of MaxEnt. The relative differences in da[0] between MLE and MaxEnt-6

(or MaxEnt-8) can reach a factor of two. As noted above, with Dmin = 0.5, MM234 generally improves

the estimate of MLE but lacks consistency. However, due to sampling variability regarding the presence

of larger drops in some samples MM234 may lose part of the information present in the histogram; see

Figure 1 subplot (d).
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Figure 4. Values of da[0] relative to the value for the MLE method, da[0]/d
MLE
a [0]. Cases

with several values of Dmin and sample size are shown. In first subplot, the sample 28 is a

case of non-convergence.

A different estimate of the advantages of each method may be obtained by comparing F
(1)
X and F

(2)
X .

In our cases, it is interesting to compare the capacities of the different methods to represent different

integral rainfall parameters: the mean diameter is Φ1, the mean mass diameter is the quotient Φ4/Φ3,

and the reflectivity is related to Φ6, so we will compare all values from Φ1 until Φ6. We ask two main

questions, (1) What is the ability of each method to reproduce given values of empiric integral rainfall

parameters? For this objective, it is useful to consider F
(1)
X . (2) What are the differences when we

compare the integral rainfall parameters obtained from a hypothetical gamma distribution function?
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The results are shown in Tables 3 and 4. The first shows how MaxEnt-6 represents a model whose

expected values for the integral rainfall parameters are the empirical values. It also shows how MaxEnt-4

gives excellent results for integral rainfall parameters related to the kinetic energy of drops, Φ5, and to

the reflectivity Φ6, without constraints on the probability density function as in MaxEnt-6. This shows

how MaxEnt-4 may be a valuable tool to study Z-R relations based on empirical values of rainfall. It also

shows another interesting result: the information contained in the integral parameters up to the rainfall

fixes all of the remaining integral parameters.

Table 3. Fractional Error F (1) for the Integral Parameters. The field with the character ”-”

means that the error is lower than 0.0001, typically is 10−5 to 10−7.

Scenario Method F(1)

Rain Category Dmin Size Modelling Φ1 Φ2 Φ3 Φ4 Φ5 Φ6

Very Heavy 0.1 100

MLE - 0.033 0.122 0.260 0.418 0.571

MM234 0.088 0.105 0.109 0.117 0.125 0.123

MaxEnt-4 - - - - 0.004 0.018

MaxEnt-6 - - - - - -

Moderate 0.0 500

MLE - 0.013 0.050 0.109 0.180 0.250

MM234 0.048 0.057 0.057 0.057 0.054 0.041

MaxEnt-4 - - - - 0.011 0.045

MaxEnt-6 - - - - - -

Moderate 0.5 50

MLE - 0.037 0.133 0.271 0.415 0.539

MM234 0.052 0.055 0.055 0.055 0.034 0.035

MaxEnt-4 - - - - 0.003 0.012

MaxEnt-6 - - - - - -

Very Light 0.5 200

MLE - 0.053 0.208 0.457 0.744 1.012

MM234 0.230 0.283 0.283 0.283 0.289 0.281

MaxEnt-4 - - - - 0.008 0.035

MaxEnt-6 - - - - - -

In the results for F
(2)
X , larger differences between MaxEnt and MLE or MM234 were expected, as the

functional form for N(D) is different in our application of MaxEnt, however, the actual results are similar

to those of MM234 and, depending on the scenario, could be better or worse than MLE, but always with

reasonable values. This means that even in the hypothetical cases in which the underlying distribution

is a gamma distribution function MaxEnt-4 is a useful model. Obviously if the gamma distribution is

considered to be the real distribution function, then this hypothesis may be included in the maximum

entropy formalism as explained above.
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Table 4. Fractional Error F (2) for the Integral Parameters.

Scenario Method F(2)

Rain Category Dmin Size Modelling Φ1 Φ2 Φ3 Φ4 Φ5 Φ6

Very Heavy 0.1 100

MLE 0.023 0.048 0.076 0.105 0.135 0.166

MM234 0.065 0.027 0.091 0.282 0.544 0.880

MaxEnt-4 0.023 0.083 0.212 0.425 0.713 1.047

MaxEnt-6 0.023 0.083 0.212 0.425 0.719 1.075

Moderate 0.0 500

MLE 0.016 0.050 0.097 0.150 0.208 0.269

MM234 0.063 0.093 0.103 0.099 0.085 0.062

MaxEnt-4 0.016 0.038 0.048 0.044 0.041 0.066

MaxEnt-6 0.016 0.038 0.048 0.044 0.031 0.022

Moderate 0.5 50

MLE 0.032 0.147 0.436 0.749 1.034 1.268

MM234 0.020 0.164 0.372 0.600 0.821 1.021

MaxEnt-4 0.032 0.113 0.326 0.562 0.804 1.041

MaxEnt-6 0.032 0.113 0.326 0.562 0.802 1.036

Very Light 0.5 200

MLE 0.937 1.514 1.655 1.432 0.978 0.428

MM234 0.599 1.098 1.502 1.818 2.056 2.225

MaxEnt-4 0.937 1.608 2.079 2.448 2.723 2.829

MaxEnt-6 0.937 1.608 2.079 2.448 2.742 2.914

4.2. Analysis of Experimental Measurements

Experimental histograms are shown in Figures 5 and 6 for the four different rain events. The general

results are analogous to the synthetic histograms. Subplots (f) and (g) of Figure 6 show that MaxEnt-6

and MaxEnt-8 can model adequately several peaks. MaxEnt-6 is able to model cases with a second

peak with larger drops (typical multimodal cases), while MaxEnt-8 may model cases with several

peaks as well as small drops with low rainfall intensity. The Figure 5 illustrates how—for subplots

(d) and (h)—MM346 fails to provide a reasonable prediction for the smallest drops and, consequently,

underestimates the total number of drops. The method is designed to represent experimental liquid water

content M3 and reflectivity M6. However, when comparing the subplots (a) and (e), both with similar

amount of rainfall, the presence of a few large drops results in an uncontrolled prediction for smaller

drops. MM234 shows more stability and results in a more systematic representation of the histogram,

while this representation is improved using the MaxEnt methods. The comparison of subplots (a) and

(b) is illustrative of the role of larger drops in rainfall.
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Figure 5. Eight Experimental histograms together with the models obtained using different

methods are showed. The value of Rainfall as calculated from the sample is showed for

comparative. MM234, MM346 and MaxEnt-4 are showed.
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Figure 6. Eight Experimental histograms together with the models obtained using different

methods are showed. The value of Rainfall as calculated from the sample is showed for

comparative. Maximum Entropy models are showed.
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These facts can be appreciated in Figure 7, where measure d[0] is applied. The value of log10|d[0]| is

shown for the four different rain events. MM346 systematically results in larger values, though similar

in magnitude to MM234, while the results of MaxEnt are always lower. In fact, MM346 in many cases

provides a value that is too high or too low with respect to the total number of drops. This happen occurs

for MM234, though less frequently. On the other hand MaxEnt-4 without capturing all details of the

histogram is a good representation of it.

Figure 7. Comparison of log10|d[0]| for the four episodes of rain analyzed and for all

methods used in Experimental Modeling.
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As a result of the behaviour previously noted, the accumulation of differences, Da[0], is an increasing

monotonic function with different rates. It is larger under the method of moments that under the MaxEnt

methods. However, Figure 8 shows a correlation between all methods, all of which allow discriminate

periods of larger relative rates of increase, related presumably with intrinsic properties of the rainfall

process.

Looking to the experimental dataset, findings on convergence are similar to the synthetic analysis.

However, a careful comparison allows us to discriminate two cases of convergence problems. Some

histograms with fewer that 10 drops required more effective algorithms to solve the system and maximise

of the entropy functional. As noted before, problems related to a small number of drops are present in all

methods, and for practical purposes, some authors preprocess data so that data with fewer than 10 drops

are classified as noise. For those analyses the algorithm applied to retrieve the RDSD using MaxEnt

is simple.
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Figure 8. Comparison of Da[0] for the four episodes of rain analyzed and for all methods

used in Experimental Modeling.
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A previous study on sprays [40] reported situations in which this algorithm fails to convergence

instead reaches a narrow, non-physical fixed peak. Both situations explain why in around a 5–7% of the

cases do not convergence for MaxEnt-8 (that is, given the reasonable difference within the data and a

limited number of iterations), though convergence is better under MaxEnt-6. For the cases reported here,

it may be possible improve the Newton-Raphson algorithm [41] or avoid using it by instead using more

recently introduced algorithms [42].

In our comparative study with other methods, see Figures 7 and 8, the cases with fewest number of

drops that did not converge are not considered as in the previous methods, because they cannot be used to

provide a convenient solution. Meanwhile the case of a narrow, large peak is easily detected as indicating

higher differences within histogram (or integral parameters such as rainfall or reflectivity). Figures 7

and 8 do not include histograms in which any of the methods show a value of da[0] higher than

the prescribed threshold. The criterion to determinate this threshold is aimed at eliminating similar

number of samples with high values of da[0] under method of moments as the number eliminated

for non-convergence under MaxEnt-8 method. The resulting, an improved algorithm could provide

higher differences under MaxEnt methods. In other words, the threshold is selected to prune cases

of non-convergence under MaxEnt-8 as well as the cases of null representability with respect to the

histograms generated under the method of moments.
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5. Discussion

The maximum entropy modelling applied to RDSDs outperforms other analysed methods for both

synthetic and experimental datasets, in terms of providing the empirical values of the integral rainfall

parameters and reproducing a given histogram.

In those cases where there is a sufficient amount of drops and measurements of all sizes, the MLE

will satisfactory represent a sample. However, whenever these conditions are not true, the method of

moments can improve the predictions of MLE.

On the other hand, the MaxEnt method shows a systematic and progressive approximation of

the empirical information; while MaxEnt-3 is a coarse representation of the histogram, MaxEnt-4

and MaxEnt-6 achieve a gradual improvement by simply incorporating more information. The only

drawback of MaxEnt method are the occasional difficulties related to convergence with the exposed

simple algorithm under the MaxEnt-8 model; therefore, MaxEnt-4 or MaxEnt-6 are reliable models for

RDSD in the majority of the cases. The first is a general valuable model, the latter is more useful to

study multimodal cases.

In the synthetic case, we tested the methods with an underlying hypothetical distribution. However in

the experimental case, model errors appear, decreasing the performance when using traditional methods.

In contrast, MaxEnt provides less biased probability density function which fulfills a given a set of

constraints imposed by empirical information. Thus, the study of the variability of RDSD then does not

rely on the capacity of a prefixed functional form to represent the RDSD for all different cases. Rather, it

focuses on the physical and empirical meaningful selection of constraints. Meanwhile, the analysis of the

values of λ retrieved by MaxEnt provided the necessary information to develop a deeper understanding

of the questions related with the RDSD.

This opens the possibility of improving the predictions of precipitation in two different aspects; the

first requires the incorporation of a more physical parametrisation of RDSD to the numerical weather

prediction models, while the second requires a new method of analysis and prediction of ZR relations,

which should prove useful for ground and space-borne meteorological radars.

6. Conclusions

The formulation of statistical mechanics as proposed by Jaynes [16] is conceptualised as a general

inference method resulting in the maximum entropy principle, which allows to understand physical

systems of stochastic origin and formulate more objective and systematic models. This formulation

of statistical mechanics, and its underlying entropy concept have been applied to many fields in earth

sciences [43], from problems similar to the presented in this paper to problems related to reformulations

of the MaxEnt as a maximum entropy production postulate; for more details, see [44] and the reference

there contained.

Under the maximum entropy principle the probability density function represents the best guess

according to available knowledge. The method also has a physical significance when used to understand

the processes of the earth’s physics. This paper provides an application to a real problem that is

present in the microphysics of precipitation resulting in a physically based method rather than merely

experimental fit.
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Appendix

Numerical Method for Maximise the Entropy Functional

The analytical maximisation of Equation (4) is only possible for selected sets of constrains [36], and a

computational framework is needed. Here is presented the application of the classical iterative method of

Newton-Raphson [45] for the numerical solution of the moment-constrained maximum entropy problem.

Non-Linear Systems of Equations

The method of Lagrange multipliers provides a strategy for finding the maxima of a function, such as

Equation (4) subject to a set of constraints, such as Equation (5). In this method a new function S∗[N ] is

defined as follows,

S∗[N ] = −
∫ b

a

{
N(D)ln(N(D)) +

L∑
i=1

λiφi(D)N(D)

}
dD (11)

which is the function to be maximised; then the formal solution obtained for the probability density

function is given by Equation (6). With this solution the constraints are now given by,

Fk(λ0, ..., λL) =

∫
φk(D)

m(D)

Z
exp

[
−
∑
i=0

λiφi(D)

]
= Φk, k = 1, ..., L (12)

This is a set of non-linear equations in the unknowns λ0, ..., λL which must now be solved.
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Numerical Solution by Newton-Raphson Method

The numerical method consists of calculating the linear approximations of Fk around trial values of

λ0, ..., λL, and solving the resulting linear system iteratively. We define,

Φ = (Φ0, ...,ΦL) (13)

and

λ = (λ0, λ1, ..., λL) (14)

and the problem Equation (12) is then given by,

F(λ)−Φ = 0 (15)

The Jacobian of the vector function F(λ) is given by,

(JF )
j
i =

∂Fj

∂λi

(16)

Then, given a initial trial, λ0 = (λ0
0, λ

0
1, ..., λ

0
L) it is possible to solve the Equation (15) by the iterative

method,

JF (λ
(k))Δλ(k) = −F(λ(k))

λ(k+1) = λ(k) +Δλ(k) (17)

This system is solved for Δλ(k) from which we drive λ(k+1) = λ(k) +Δλ(k) , which becomes our new

initial vector λ(k) and the iterations continue until Δλ(k) is sufficiently small, i.e., ||λ(k+1)−λ(k)|| << δ,

where δ is the tolerance parameter of convergence. The system is considered solved when the difference

between k-th and (k+1)-th steps in the iterative process is less than δ = 10−9, and a fixed limitation on

the maximum number of iterations was also added to the solution algorithm.

Given the values of Φ, it can be a challenge to choose a convenient value for λ0 to ascertain that

the iterative process converges to the fixed point representing the maximum of the entropy functional.

To avoid spurious cyclic points, small perturbations δλi were cyclically added to the value of λi if the

iterative process oscillated periodically around a fixed value of λi.

The matrix equation in (17) is solved by the method of Gauss. To update the λ(k+1) values, in each

iteration, a scaling factor is introduced to stabilise the algorithm. This scaling factor ν is selected based

on the convergence process and the number of constraints, in an interval from 10−2 to 10−5, then the

second equation in (17) is written as λ(k+1) = λ(k) + νΔλ(k).
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