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Abstract: A general definition of the Spintronics concept of spin-pumping is proposed

as generalized forces conjugated to the spin degrees of freedom in the framework of the

theory of mesoscopic non-equilibrium thermodynamics. It is shown that at least three

different kinds of spin-pumping forces and associated spin-currents can be defined in the

most simple spintronics system: the Ferromagnetic/Non-Ferromagnetic metal interface.

Furthermore, the generalized force associated with the ferromagnetic collective variable is

also introduced on an equal footing to describe the coexistence of the spin of the conduction

electrons (paramagnetic spins attached to s-band electrons) and the ferromagnetic-order

parameter. The dynamical coupling between these two kinds of magnetic degrees of freedom

is presented and interpreted in terms of spin-transfer effects.
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1. Introduction

Spintronics is a generalization of electronics that takes into account the degrees of freedom related to

the spins of the conduction electrons (or the spin of other electric carriers). Spintronics emerged with

the discovery of giant magnetoresistance in the late 1980s [1], and it today plays a crucial role in the

development of new electronic devices and functionalities. A typical spintronic system is defined by

a statistical ensemble of a plurality of electronic populations (discriminated by their internal degrees

of freedom), that are put out of equilibrium in the presence of electric and magnetic forces. The

consequence is the creation of coupled currents of different species of electric charges and spin carriers.
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The goal of this report is to revisit spintronics in the framework of the theory of Non-Equilibrium

Thermodynamics [2–8]. More precisely, the objective is to establish a general definition of the basic

concepts of spin pumping and spin transfer from the expression of the power dissipated through

spin-dependent relaxation processes.

Spin transfer is the name given to the ferromagnetic excitations observed while injecting

spin-dependent electric currents into a ferromagnetic nanostructure. In our context, “spin transfer”

is not reduced to a given microscopic mechanism (often presented as a transverse “spin-torque” in

the literature: see section 5 below). Instead, it is a consequence of both the “spin-pumping” effect

(i.e., any spin-dependent relaxation mechanism that is maintained by the electric current) and the

dynamic coupling between individual spins attached to the conduction electrons and the ferromagnetic

degrees of freedom. Spin pumping is here a generalization of the well-known spin accumulation concept

introduced for giant magnetoresistance. This is a change of paradigm in the sense that whatever

the microscopic mechanism involved—and we propose three different mechanisms of spin pumping

below—the effect is phenomenologically the same in terms of modification of the dynamics of the

magnetization. The main result of this work, given in last section, is the equation of the dynamics of

the magnetization (the so-called Landau-Lifshitz-Gilbert equation) generalized to spin-pumping effects.

From the Generalized Landau-Lifshitz-Gilbert equation, the different spin-pumping contributions can

be experimentally assessed and studied, e.g., with both ferromagnetic resonance-like experiments

(measurement of the precession states) and magnetic hysteresis experiments (measurements of the

quasi-static states).

The description holds at the mesoscopic scales, under the hypothesis of local equilibrium extended to

internal degrees of freedom [9,10]. We have restricted the generality of this work to the simplest systems.

Only classical or semi-classical systems are considered; the extension to quantum systems, especially

for the definitions related to “permanent currents” (for which the second law of thermodynamics

is inoperative), is beyond the scope of this report (see [11–13]). The review is also restricted

to spin and charge currents, without considering heat flows and corresponding cross coefficients

(see e.g., the references [14–20]). Finally, this work is restricted to uniform ferromagnets. It is worth

noting that previous studies of spin pumping do not differentiate the spin of the conduction electrons

and the ferromagnetic order parameters [21,22]. In those cases, the spin-pumping force can be directly

defined from the space inhomogeneity of the magnetization. However, if both magnetic subsystems

are differentiated, the pumping force has a different meaning, and a generalization of our model to

non-uniform magnetization would be misleading in a first approach.

1.1. Longitudinal Spin Relaxation

The typical system to be investigated is a 1D wire (with x as coordinate) containing a

Ferromagnetic/Non-Ferromagnetic metal junction (or a Ferromagnetic/Ferromagnetic metal junction).

In the most simple cases it can be described by a statistical ensemble of independent electrons that are

defined by an effective mass m∗, an electric charge e, internal degrees of freedom reduced to the spin

one half, and a quantization axis (fixed by the magnetization of the ferromagnetic layer). The system can

then be reduced to two electronic populations locally represented by a reservoir of conduction electrons
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of spin up—defined by a chemical potential μ↑(x)—and a reservoir of conduction electrons of spin

down—defined by a chemical potential μ↓(x). This approach is called the two spin-channel model.

There are then two different ways to put the system out of equilibrium: (i) Applying an electric

field E� = −1
e

∂μ�
∂x

will create spin-dependent electric currents Je
� = σ�E� through the wire (where

σ� is the conductivity). (ii) Applying an effective magnetic field will put the two spin populations

out-of-equilibrium, creating in turn a flux of spins (noted ψ̇ here) in the spin configuration space.

However, the striking point is that the two generalized forces, electric and magnetic, are not

independent. Applying a voltage difference through the junction also generates a stationary flux of

spins ψ̇ because an electric field difference E↑ − E↓ = −1
e

∂Δμ
∂x

is maintained. The junction produces a

non-zero chemical potential difference Δμ = μ↑ − μ↓, that plays the role of an effective magnetic field,

or spin-pumping force conjugated to the flux of spins ψ̇. The spin flux can also be written ψ̇ = δn/τ,

where τ is the spin-flip relaxation time and δn = n↑ − n↓ is the density of out-of-equilibrium spins.

As a consequence, applying a voltage difference through the junction generates not only the stationary
spin-dependent electric currents Je

� but also the stationary spin flux ψ̇.

If E(S, n↑, n↓) is the energy density of the system (function of the entropy S and the density of charge

carriers n↑ and n↓), the following canonical definitions holds: T ≡ ∂E
∂S , μ� ≡ ∂E

∂n�
and Δμ ≡ ∂E

∂ψ
. The first

relation defines the temperature, the second defines the chemical potential, and the last relation defines
the pumping force Δμ as the chemical affinity of the reaction that transforms a conduction electron of

spin up into a conduction electron of spin down [23,24].

The power dissipated by the system at fixed temperature reads TdS/dt = −J↑E↑ − J↓E↓ + ψ̇Δμ,

where dS/dt is the internal entropy production. The relation between the generalized force and the

generalized flux is imposed by the second law of thermodynamics, dS/dt ≥ 0, and is formally expressed

by the Onsager relation.

This two-channel approach has first been proposed by Johnson and Silsbee [25,26], and the

introduction of the pumping force Δμ in the context of spin-dependent transport is due to

Van Son et al. [27], with the description of longitudinal spin-accumulation and giant magnetoresistance

at a Ferromagnetic/Non-Ferromagnetic interface. This approach was systematized by T. Valet and A.

Fert in 1993, on the basis of the Boltzmann transport equations [28]. The model is presented below

(Section 3) in the language of non-equilibrium thermodynamics.

Note that in the Spintronics literature, the term spin-current is devoted to the spin-dependent electric

current δJe = Je
↑ − Je

↓ that flows through the wire, and not to the spin-flux ψ̇ that flows though the

spin-space (e.g., the so-called “Bloch sphere”).

1.2. Spin Precession

However, the description of spin dynamics in the spin-space is not restricted to spin-flip relaxation

(i.e., “longitudinal” spin relaxation) but it is also characterized by precession effects (“transverse

spin relaxation”) as observed in paramagnetic resonance or in the Spin-Hanle effect measured in

semiconductors [29]. In the framework of spintronics, the effect of the precession can be taken into

account in terms of diffusion in space of the transverse components of the spin. This generalization

was called transverse spin-accumulation [30–34], and was introduced much later in the context of

spin-transfer experiments (see below).
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As a consequence, there is another way to drive the spins out-of-equilibrium with the use of the

transverse spin pumping force Δμ⊥ that generates the transverse spin flux ψ̇⊥. Also in that case, the

application of a potential difference trough the junction gives rise to non-zero Δμ⊥, and the transverse

spin-polarized current δJ⊥ = σ⊥
∂Δμ⊥
∂x

is produced at the interface. The transverse spin flux can also be

expressed in terms of transverse relaxation time τ⊥ with ψ̇⊥ = δn⊥/τ⊥. These recent developments are

presented in Section 4 on equal footing with the longitudinal spin-flip relaxation.

1.3. Band Structure and s-d Relaxation

Furthermore, beyond the spin internal degrees of freedom, it is important to push the description to a

more realistic situation that takes into account the ferromagnetic specificity of the material (and not only

the paramagnetic properties of the conduction electrons). Indeed, the out-of-equilibrium magnetization

described within the two-channel model is given by δm = gμB(n↑−n↓) (where μB is the Bohr magneton

and g the Landé factor). This system is paramagnetic. However, in 3d ferromagnets, the contribution

δm to the total magnetization is superimposed to the ferromagnetic collective variable �M (which is

essentially due to the d band electrons [35]). In terms of transport parameters, the quasi particles s and d

are defined by effective masses m∗
s and m∗

d, i.e., by supplementary internal degrees of freedom that takes

into account the coupling to the periodic lattice.

In line with the pioneering works of Mott [36], we will consider a simple generalization of the two

channel model that takes into account the ferromagnetic nature of the 3d metals by enlarging the internal

degrees of freedom to four electronic populations: the conduction electrons of the s band for up and down

spins, and the conduction electrons of the d band for up and down spins. We have then a four-channel

model, in which two kinds of spin flux ψ̇ and ψ̇sd should be defined for both interband and intraband

spin-dependent relaxation. A third kind of pumping force can then be introduced with the interband

chemical potential difference Δμsd [18]. This treatment is performed in Section 5.

1.4. Ferromagnetic Collective Variable

An important observable is still missing in the above description of a ferromagnetic junction:

the ferromagnetic collective variable �M has not been introduced explicitly. Accordingly, the next

section (Section 2) presents a derivation of the equation of the dynamics for the ferromagnetic variable

(i.e., the Landau-Lifshitz-Gilbert equation) performed with the introduction of a generalized force

�∇Σμ
F = − �Heff thermodynamically conjugated to the ferromagnetic degrees of freedom (μF is the

ferromagnetic chemical potential and Σ is the magnetic configuration space). The effective magnetic

field �Heff can also legitimately be called “spin-pumping force”. This generalized ferromagnetic force

generates the current JF in the magnetic configuration space.

Yet, many experiments have shown that it is possible to switch the magnetization

[37–40] or to generate ferromagnetic entropy [41] while injecting spin-polarized currents in

Ferromagnetic/Non-Ferromagnetic junctions. The corresponding effect—called spin-transfer—shows

that the spin-dependent electronic transport coefficients are coupled to the transport coefficient of the

ferromagnet. In other terms, the ferromagnetic current generated by �Heff and the spin-polarized current

generated by Δμ, Δμ⊥, or Δμsd are coupled.
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The dynamicl coupling that occurs between the current of spins and the current of ferromagnetic

moments is discussed in Section 6. It leads to the definition of a spin-transfer effect for all the

spin-pumping sources we have previously identified: longitudinal [23,24,42], transverse [43,44], and

s-d interband relaxation [45,46].

2. Introduction of the Ferromagnetic Degrees of Freedom

In this section, we focus on a uniform ferromagnetic moment �M = Ms�ur defined with radial unit

vector �ur and the magnetization at saturation Ms. It is called macrospin, in opposition to the microscopic

spins attached to atoms or electrons. In order to treat statistically the time dependence of ferromagnetic

degrees of freedom �m contacted to a heat bath, the ergodic property is used. It allows working with

a statistical ensemble of a large number of ferromagnetic moments �m ± d�m that defines a surface

{θ ± θ, ϕ ± dϕ} on the sphere Σ of radius Ms (see Figure 1). The corresponding density ρF (θ, ϕ)

is then identified with the statistical distribution of ferromagnetic moments [47]. The mean value of

the magnetization is �M . The introduction of the density is justified by the nanoscopic size of the

magnetic single domain, for which the fluctuations plays a major role. With this point of view, the

system is mesoscopic. Accordingly [48,49], the ferromagnetic chemical potential takes the general form

μF = kT ln(ρF )+V F where V F is the usual ferromagnetic potential (deduced e.g., from the quasi static

hysteresis loops) and the first term accounts for diffusion. On the other hand, the current of ferromagnetic

moments, �JF = ρFd�ur/dt, is confined on the surface of the sphere.

Figure 1. Illustration of the Σ configuration space of the ferromagnetic variable. The two

potential minima and the ferromagnetic currents are sketched.

Jθ
Jϕ

ur

The power dissipated by the ferromagnetic system is given by the corresponding internal entropy

production dSF

dt
, and is formed by the product of the generalized flux by the generalized force. Assuming

a uniform temperature T we have:

T
dSF

dt
= − �JF .�∇Σμ

F (1)
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The application of the second law of thermodynamics dSF/dt ≥ 0 allows the transport equation to be

deduced by writing the relation that links the generalized flux (the current �JF ) of the extensive variables

under consideration to the generalized force defined in the corresponding space Σ. Both quantities, flux

and forces, are related by the Onsager matrix of the transport coefficients L̄:

�JF = −L̄ �∇Σμ
F (2)

This is the simplest form of the well-known Landau-Lifshitz equation (see below). We started from

the hypothesis that the magnetic domain is uniform: the modulus of the magnetization is conserved.

The trajectory of the magnetization is then confined on the surface of a sphere of radius Ms, and the

flow is a two component vector defined with the unit vectors {�uϕ, �uθ} of Σ. Accordingly, the Onsager

matrix is a 2 × 2 matrix defined by four transport coefficients {Lθθ, Lθϕ, Lϕθ, Lϕϕ}. Furthermore,

the Onsager-Casimir reciprocity relations impose that Lθϕ = −Lϕθ. Assuming that the dissipation is

isotropic, we have Lθθ = Lϕϕ. Let us now introduce a dimensionless coefficient α, which is the ratio

of the off-diagonal to the diagonal coefficients: α = Lθϕ/Lθθ. Summarizing, the ferromagnetic kinetic

equation is defined by two ferromagnetic transport coefficients Lθϕ = ρFLF and α:

L̄ = ρFLF

(
α 1

−1 α

)
(3)

On the other hand, the generalized force �∇Σμ
F , thermodynamically conjugated to the magnetization,

is the effective magnetic field �Heff ≡ −�∇Σμ
F . It is a generalization in the sense that this effective

field includes the diffusive term [50] that was first introduced by Brown in the rotational Fokker-Planck

equation [51].

Actually, it could be rather surprising to claim that Equation (2) is the “well-known LL equation”.

However, it is sufficient to rewrite Equation (2) in 3D space with re-introducing the radial unit vector

�ur = (1, 0, 0) of the reference frame {�ur, �uθ, �uϕ}, and recalling that the current is the density multiplied

by the velocity �JF = ρFd�ur/dt, to recover the traditional LL equation from Equation (2) and

Equation (3):
d�ur

dt
= −LF

{
�ur × �Heff + α�ur ×

(
�ur × �Heff

})
(4)

Furthermore, it is well-known that the LL equation is equivalent to the phenomenological Gilbert [51,52]

equation, that defines the magnetic damping coefficient η:

d �M

dt
= γ �M ×

(
�Heff − η

d �M

dt

)
(5)

where γ is the gyromagnetic ratio. The equivalence between the two equations defines the coefficients

α and LF as a function of the coefficients η and γ: α = ηγMs is the dimensionless damping coefficient

and LF is defined by the relation:

LF =
γ

Ms (1 + α2)
(6)

The above approach can be applied to microscopic spins (e.g., for the derivation of the Bloch equation),

but it should be generalized to the case in which the modulus of the magnetization is not constant

(3 × 3 matrix) and the damping is not necessarily isotropic (Lθ,θ �= Lϕ,ϕ). Such generalizations are

beyond the scope of this report (see however reference [47]).
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3. Two Spin-Channel Model

In this section we focus on the spin-dependent electric transport only and on the two-channel model

sketched in the introduction. The corresponding electric wire is defined along the x axis, with a section

unity. The relevant configuration space is the one-dimensional real space R.

The conservation laws write: {
dn↑
dt

= −∂Je
↑

∂x
− ψ̇

dn↓
dt

= −∂Je
↓

∂x
+ ψ̇

(7)

where n↑ and n↓ are the densities of charge carriers in the channels {↑, ↓}, and the spin-dependent

relaxation is taken into account by the flux ψ̇. This is the velocity of the reaction (or relaxation

of the spin-dependent internal variable) that transforms a conduction electron ↑ into a conduction

electron ↓. This relaxation is formally equivalent to a chemical reaction, driven by the chemical affinity

Δμ = μ↑ − μ↓ [23]. The power dissipated by the system then reads:

T
dSe

dt
= −Je

↑
1

e

∂μe
↑

∂x
− Je

↓
1

e

∂μe
↓

∂x
+ ψ̇Δμ (8)

The corresponding kinetic equations are deduced from the second law of thermodynamics, after

introducing a supplementary Onsager coefficient L.⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Je
↑ = −σ↑

e

∂μe
↑

∂x

Je
↓ = −σ↓

e

∂μe
↓

∂x

ψ̇ = LΔμ

(9)

The set of equations Equation (9) is sufficient in order to describe, in the stationary regime,

spin-accumulation effects and any non-equilibrium contribution to the resistance due to relaxation

(Δμ �= 0) occurring at an interface [18,24]. Equation (9) shows that the spin-dependent electric currents

Je
� and the spin flux ψ̇ are not independent. Accordingly, it is more convenient to rewrite Equation (9)

as a function of the variables Δμ and μ0 = μ↑ + μ↓. Let us define the conductivity asymmetry by the

parameter β such that β =
σ↑−σ↓
σ0

and the mean conductivity 2σ0 = σ↑ + σ↓. On the other hand, the

spin-polarized electric current is δJe = Je
↑ − Je

↓ and the current of electric charges is Je
0 = Je

↑ + Je
↓ . The

Onsager relation re-writes: ⎛
⎜⎝ δJe

Je
0

ψ̇

⎞
⎟⎠ =

⎛
⎜⎝ σ0 βσ0 0

βσ0 σ0 0

0 0 L

⎞
⎟⎠
⎛
⎜⎝

−1
e

∂Δμe

∂x
−1
e

∂μe
0

∂x

Δμ

⎞
⎟⎠ (10)

The current δJe is called “spin current” or “pure spin-current” in the spintronics literature. The

dynamical coupling between the ”spin current” and the current of electric charges is described by the

Onsager cross-coefficient βσ0.

The system of equations Equation (10) allows the diffusion equation for Δμ(x) to be derived for the

stationary conditions
∂Je

0

∂x
= 0 and ∂δJe

∂x
= −2ψ̇:

∂2Δμ

∂x2
=

Δμ

l2diff
(11)
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where l−2
diff = 2eL

σ0(1−β2)
. This diffusion process is called spin-accumulation, and it can be considered as

the archetype of the spin-pumping effects occurring at a ferromagnetic interface. The typical profile for

a ferromagnetic layer of some tens of nanometer is depicted in Figure 2.

Figure 2. Spin-accumulation Δμ(x) trough a Non-Ferromagnetic/Ferromagnetic/Non-

Ferromagntic junction with typical size of the order of the spin diffusion length. The

spin-diffusion length has been taken as equal for both materials.

The corresponding non-equilibrium magnetoresistance produced by the interface writes (see the

details of the derivation in references [18,24,46]):

Rne = − 2β

Je
0e

∫ B

A

∂Δμ

∂x
dx (12)

where the measurement points A and B are located far enough in each side of the interface so that

Δμe(A) = Δμe(B) = 0.

The spin diffusion length is typically some tens of nanometers in ferromagnetic metals, so that the

non-equilibrium magnetoresistance requires thin films (current-in-plane geometry) or nanostructured

pillars (current-perpendicular-to-the-plane geometry).

4. Spin Precession

The description proposed above with a spin-dependent internal variable that takes the two spin values

{↑, ↓} is not able to take into account the precession of the spins occurring in a magnetic field, and

observed with electronic resonance or Hanle effects. In the case of the processes that lead to spin

accumulation and giant magnetoresistance, the mean values are averaged out over the spin-diffusion

length, so that the precession of the spin is not relevant. However, this is no longer the case in a

quasi-ballistic regime close enough to the interface.

In order to take into account these quasi-ballistic effects (i.e., sub-nanometric scales in metallic

devices), the two-channel model has been recently generalized to transverse spin-accumulation in the

context of spin-transfer-torque investigations [30–34]. The transverse spin-accumulation is introduced
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with the corresponding current δJe
⊥ and the corresponding chemical potential Δμe

⊥. Transverse means

here that the spin density is considered in the plan perpendicular to the quantification axis � that defines

the spin up and spin down in the two-channel model.

The conservation law writes:

∂δn⊥
∂t

= −∂J⊥
∂x

− ψ̇⊥ (13)

The transverse spin flux ψ̇⊥ can be expressed with a transverse relaxation time τ⊥ such that ψ̇⊥ = δn⊥
τ⊥

,

where n⊥ is the density of transverse spins.

Note that in metals the two potentials Δμe and Δμe
⊥ are defined at very different length scales and

it is necessary to refer to quantum approaches in order to understand the physical signification of the

transverse parameters [44,53]. The corresponding transverse contribution to the dissipated power is

T
dSe

⊥
dt

= −δJe
⊥
∂Δμe

⊥
e∂x

+ ψ̇⊥Δμ⊥ (14)

Putting all together, we have the following Onsager relations for the electric system:⎛
⎜⎜⎜⎜⎜⎜⎝

δJe

Je
0

δJe
⊥

ψ̇

ψ̇⊥

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

σ0 βσ0 0 0 0

βσ0 σ0 0 0 0

0 0 σ⊥ 0 0

0 0 0 L 0

0 0 0 0 L⊥

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
e

∂Δμe

∂x
−1
e

∂μe
0

∂x
−1
e

∂Δμe
⊥

∂x

Δμ

Δμ⊥

⎞
⎟⎟⎟⎟⎟⎟⎠

(15)

5. The Role of the d ↓ Electronic Subband

A justification of the spin-dependent conductivity asymmetry β �= 0 in ferromagnetic metals has been

proposed by N. Mott in 1936 [36], on the bases of the band-structure approach. In the Mott description,

the observed transport properties (e.g., the decreased resistivity of Ni below the Curie temperature) have

been accounted for by the existence of four electronic populations: the conduction electrons of spin up

and down (s ↑ and s ↓) of the s band and the conduction electrons of spin up and down (d ↑ and d ↓)

of the d band. The argument is based on the fact that the contribution to the resistivity due to s − d

interband scattering is higher than the contribution due to s intraband scattering. In the ferromagnetic

3d metal, the d ↑ band is full so that the relaxation channel of s ↑ electrons to d ↑ band is blocked

(according to the Fermi golden rule, the relaxation rate is proportional to the density of states in the final

d ↓ band). Furthermore, the spin-flip interband relaxation is too energetic to be efficient (the relaxation

s ↑ to d ↓ is negligible). As a consequence, the s ↓ are more scattered that the s ↑, and the conductivities

of the two channels is asymmetric: σ↑ > σ↓. This mechanism is also responsible for the anisotropic

magnetoresistance [54]. The necessity of enlarging the internal degrees of freedom to the band structure

enriches the concept of spin-currents and spin-pumping forces.

Using the notations introduced in the previous sections, the total current Jt is composed by the three

currents for each channel : Jt = Js↑ + Js↓ + Jd↓ (Jd↑ = 0 because the band is full). The relaxation rate

ψ̇sd is introduced to account for s− d spin-conserved scattering, and the relaxation rate ψ̇s, is introduced
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in order to account for previously defined spin-flip scattering. Assuming that all channels are in steady

states, the conservation laws write:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂nt

∂t
= −∂Jt

∂x
= 0

∂ns↑
∂t

= −∂Js↑
∂x

− ψ̇s = 0

∂ns↓
∂t

= −∂Js↓
∂x

− ψ̇sd + ψ̇s = 0

∂nd↓
∂t

= −∂Jd↓
∂x

+ ψ̇sd = 0

(16)

where nt, ns↑, ns↓, nd↓ are respectively the total densities of particles and the density of particles

in the s ↑, s ↓, d ↓ channels. The conjugate (intensive) variables are the chemical potentials

{μs↑, μs↓, μd↑, μd↓}. The application of the first and second laws of thermodynamics allows us to deduce

the Onsager relations of the system : ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Js↓ = −σs↓
e

∂μs↓
∂x

Js↑ = −σs↑
e

∂μs↑
∂x

Jd↓ = −σd↓
e

∂μd↓
∂x

ψ̇sd = Lsd (μs↓ − μd↓)

ψ̇s = Ls (μs↑ − μs↓)

(17)

where the conductivity of each channel {σs↑, σs↓, σd↑, σd↓} has been introduced. The first three equations

are Ohm’s laws applied to each channel, and the two last equations introduce new Onsager transport

coefficients, Lsd↓ and Ls, that respectively describe the s − d relaxation for minority spins under the

action of the chemical potential difference Δμ↓ = μs↓/2 − μd↓ and the spin-flip relaxation under spin

pumping Δμs = μs↑ − μs↓/2. The Onsager coefficients are proportional to the corresponding relaxation

times [24].

In the same manner as performed in Section 3, the equations of conservation Equation (16) and the

Onsager equations Equation (17) lead to the two coupled diffusion equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2Δμ↓
∂x2

=
1

l2sd
Δμ↓ − 1

λ2
s

Δμs

∂2Δμs

∂x2
=

1

λ2
sd

Δμ↓ − 1

l2sf
Δμs

(18)

where the four diffusion lengths {lsd, λs, lsf , λsd} are given as a function of the transport coefficients in

reference [24]. The resolution of the coupled diffusion equations (the spin-accumulation processes) is

discussed in the same reference.

The two spin pumping mechanisms gives rise to the corresponding contributions to the

non-equilibrium magnetoresistance; these contributions can hence be assessed experimentally with

electric measurements [18]. Furthermore, as shown below, these contributions can also be observed

through the measurements of the magnetization states under current injection.
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6. Derivation of Spin Transfer due to Spin-Pumping Forces

In usual experimental configurations for spin-transfer, an electric current is injected in a ferromagnet

through an interface (in series or in non-local configuration [55]) and the magnetoresistance allows the

magnetization states to be measured. The effect of strong electric currents on the magnetization states

can then be observed. The two sub-systems Σ and the spin-polarized current described in the previous

sections exchange magnetic moments at the junctions and both are open systems. In order to describe the

dynamics of the ferromagnetic degrees of freedom, we have to deal with a closed system. The system of

interest is now the ferromagnetic system that includes spin-accumulation effects at the junctions.

For the sake of simplicity, we treat in the following a unique spin-accumulation process Δμ and ψ̇

that takes into account both spin-flip and s− d relaxation mechanisms. This total ferromagnetic system

is such that the density of ferromagnetic moments ρFtot and the total ferromagnetic flux �JF
tot are related by

the conservation law: dρFtot/dt = −divΣ �JF
tot.

The initial configuration space of magnetic moments is then extended to 1D real space parametrized

by the internal variable Σ⊗RΣ. The important point here is that the internal variable is spin dependent,

and related to the ferromagnetic space Σ (e.g., through spin-flip or s−d relaxation and the corresponding

spin accumulation). This accounts for the coupling, i.e., the transfer, of magnetic moments between the

two sub-systems.

The dissipation is given by the internal power dissipated in the total system T dS/dt :

T dS/dt = −�jFtot.�∇Σμ
F − δJe.

∂Δμe

e∂x
− δJe

⊥.
∂Δμe

⊥
e∂x

− Je
0

∂μe
0

e∂x
+ ψ̇Δμe + ψ̇⊥Δμe

⊥ (19)

Where the first term in the right hand side is the power dissipated by the total ferromagnetic sub-system

(including the ferromagnetic contribution due to spin-transfer), the two following terms are the power

dissipated by spin-dependent electric transport, and the fourth term is the spin-independent Joule

heating. The two last terms describe the power due to the various spin-dependent relaxation mechanisms

occurring in the spin space.

In Equation (19), the vectors are defined on the sphere Σ with the help of two angles θ

and ϕ. The total ferromagnetic current �jFtot = jFtot⊥�uϕ + jFtot //�uθ includes the contribution due to

spin-accumulation mechanisms. The chemical potential μF accounts for the energy of a ferromagnetic

layer. On the other hand, the system is contacted to electric reservoirs with the electric currents and the

corresponding chemical potentials. Applying the second law of thermodynamics, we obtain the general

Onsager relations:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

jFtot⊥
jFtot //
δJe

⊥
δJe

ψ̇⊥
ψ̇

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρFLFα ρFLF l⊥ 0 0 0

−ρFLF ρFLFα 0 l// 0 0

l̃⊥ 0 σ⊥ 0 0 0

0 l̃// 0 σ0 0 0

0 0 0 0 Ł⊥ 0

0 0 0 0 0 L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
sinθ

∂μF
⊥

∂ϕ
∂μF

//

∂θ
−1
e

∂Δμe
⊥

∂x
−1
e

∂Δμe

∂x

Δμ⊥
Δμ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

All coefficients were defined in the previous sections, except the two cross-coefficients {l⊥, l//},

introduced in this model as spin-transfer coefficients. The coefficients {l̃⊥, l̃//} are given by the Onsager

reciprocity relations. We assumed that the other cross-coefficients are zero or negligible.
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The total ferromagnetic current can be written after integrating over the volume v of the ferromagnetic

layer of section unity and the spin accumulation zone. This volume is such that v =
∫ B

A
dz, where x = A

and x = B are two sections close to the interface but far enough with respect to the diffusion lengths.

We assume here that the diffusion lengths are much smaller than the width of the ferromagnetic layer

in order to simplify the calculation: the volume of the ferromagnet is identified as v. Let us define �X

as the correction due to the spin-transfer after integrating over the volume v deduced from the two first

equations of the matrix equation Equation (20):

�JF
tot = L̄v �∇Σμ

F + ρF vLF
�X (21)

where L̄ is the matrix defined in Equation (3). The assumption of constant modulus of the magnetization

imposes that �X is confined on the surface of the sphere Σ. The Helmoltz decomposition theorem can

then be applied: the vector �X can be decomposed in a unique way with the introduction of two potentials

χ and Φ (i.e., a potential vector) such that:

�X = �ur × �∇ΣΦ + �∇Σχ (22)

where the first term is divergenceless and the second term is curlless (i.e., non-conservative). The total

correction to the Landau-Lifshitz-Gilbert equation writes

�JF
tot = vL̄�∇Σμ

F + ρF vLF

(
�ur × �∇ΣΦ + �∇Σχ

)
(23)

The generalized LLG takes the form:

d�ur

dt
= −LF

{
�ur ×

(
�Heff − �∇ΣΦ

)
+ α�ur ×

(
�ur ×

(
�Heff +

�∇Σχ

α

))}
(24)

where �Heff = −�∇μF is the usual effective ferromagnetic field.

Equation (24) is a generalized LLG equation that includes the effect of spin-pumping Δμ and Δμ⊥
(the contribution of Δμsd has not been added to the Onsager relations Equation (20) for the sake of

simplicity). Qualitatively, the most important point is that the dynamics should now be described by the

introduction of two potentials, or two magnetic fields �Heff − �∇ΣΦ for the precession and �Heff +
�∇Σχ
α

for the longitudinal relaxation, instead of a single field �Heff in the usual case. Both fields appearing in

the LLG equation contains the electric-current dependence and are related to the relevant spin-pumping

mechanisms. The first contribution is measured, e.g., with ferromagnetic resonance experiments (the

corresponding device is called “spin-transfer oscillator”): the field �∇ΣΦ is responsible for the shift of

the resonance frequency (i.e., the Larmor frequency). The second contribution can be assessed with

the measurement of the magnetic hysteresis loop under current injection: the quasi-static states are

defined by �Heff +
�∇Σχ
α

= 0: the spin-transfer effect shifts the hysteresis loop. Beyond, fluctuations

and diffusion effects are described by the corresponding Fokker-Planck equation of the statistical

distribution function ρFtot, obtained by inserting the expression of �Jtot into the conservation equation:

dρFtot/dt = −divΣ �JF
tot.
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7. Conclusions

The fundamental concepts of Spintronics—spin-pumping force and spin currents—have been

presented on the basis of the theory of Non-Equilibrium Thermodynamics. Spin pumping is defined as

a generalized force associated to any kind of spin-dependent relaxation mechanisms that is maintained

at stationary regime through an interface. It has been shown that different relaxation mechanisms can be

invoked, each of which defines a specific spin-pumping force and a specific spin flux. Three mechanisms

have been investigated within this formalism: spin-flip scattering, quasi-ballistic spin precession and

s − d scattering. The dynamics of the magnetization—i.e., the Landau-Lifshitz-Gilbert equation (with

both longitudinal relaxation and precessional motion)—can also be described in this context as the flux

�JF produced by a spin-pumping force (i.e., the effective magnetic field �∇Σμ
F ≡ − �Heff ).

This approach shows that the application of a voltage difference through a Ferromagnetic/Non-

Ferromagnetic junction leads to the creation of spin-pumping and spin-flux, which in turn leads to

both non-equilibrium interface resistance and excitation of the ferromagnetic collective variable. The

derivation proposed for the spin-accumulation formulae, magnetization dynamics and spin-transfer

effects, are based on the expression of the entropy production and the second law of thermodynamics.

The dynamical equation of the magnetization (the Landau-Lifshitz-Gilbert equation) generalized to

spin-pumping effects has been derived. From this generalized equation, the different spin-pumping

contributions can be experimentally assessed and studied, e.g., with using ferromagnetic resonance-like

experiments (precession states for the determination of the transverse field �∇ΣΦ) and magnetic hysteresis

experiments (quasi-static states for the determination of the longitudinal field
�∇Σχ
α

). The spin-transfer

transport cross-coefficients {l⊥, l//} can then be deduced. Equivalently, Equations (20) show that the

cross-coefficients can also be measured without electric currents (spin-pumping experiments) through

the dynamics of the magnetization: −∂Δμe/∂x = e jFtot/l.

Beyond the present phenomenological model, the explicit expressions of the spin-transfer transport

cross-coefficients {l⊥, l//} could be derived in principle in the framework of non-equilibrium

statistical mechanics.
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Verlag: Basel, Switzerland, 1974.

5. Smith, A.C.; Janak, J.F.; Adler, R.B. Electric Conduction in Solids; McGraw-Hill Inc.: Columbus,

OH, USA, 1967; Chapters 1–2.

6. Parrott, J.E. Thermodynamic theory of transport processes in semiconductors. IEEE Trans.
Electron Dev. 1996, 43, 809–826.



Entropy 2011, 13 329

7. Saslow, W. M. Landau-Lifshitz or Gilbert damping? That is the question. J. Appl. Phys. 2009,

105, 07D315-1–07D315-3.

8. Podio-Guidugli, P. On dissipation mechanisms in micromagnetics. Eur. Phys. J. B 2001, 19,

417–424.

9. Prigogine, I.; Mazur, P. Sur l’Extension de la Thermodynamique aux Phnomnes Irreversibles Lis

aux Degrs de Libert Internes. Physica 1953, 19, 241–254.

10. Reguera, D.; Vilar, J.M.G.; Rubı́, J.M. The mesoscopic dynamics of thermodynamic systems.

J. Phys. Chem. B 2005, 109, 21502–21515.

11. Rashba, E.I. Spin currents in thermodynamic equilibrium: The challenge of discerning transport

currents. Phys. Rev. B 2003, 68, 241315(R).

12. Sonin, E.B. Equilibrium spin currents in the Rashba medium. Phys. Rev. B 2007, 76, 033306.

13. Hoai Nguyen, T.L.; Drouhin, H.-J.; Wegrowe, J.-E.; Fishman, G. Spin rotation, spin filtering,

and spin transfer in directional tunneling through barriers in noncentrosymmetric semiconductors.

Phys. Rev. B 2009, 79, 165204.

14. Tulapurkar, A.A.; Suzuki, Y. Boltzmann approach to dissipation produced by a spin-polarized

current. Phys. Rev. B 2011, 83, 012401-1–012401-4.

15. Hatami, M.; Bauer, G.E.W.; Zhang, Q.; Kelly, P.J. Thermal spin-transfer torque in

magnetoelectronic devices. Phys. Rev. Lett. 2007, 99, 066603.

16. Uchida, K.; Takahashi, S.; Harii, K.; Ieda, J.; Koshibae, W.; Ando, K.; Maekawa, S.; Saitoh, E.

Observation of the spin Seebeck effect. Nature 2008, 455, 778–781.

17. Pu, Y.; Chiba, D.; Matsukura, F.; Ohno, H.; Shi, J. Mott relation for anomalous Hall and Nernst

effects in Ga1-xMnxAs ferromagnetic semiconductors. Phys. Rev. Lett. 2008, 101, 117208.

18. Wegrowe, J.-E.; Anh Nguyen, Q.; Al-Barki, M.; Dayen, J.-F.; Wade, T.L.; Drouhin, H.-J.

Anisotropic magnetothermopower: Contribution of interband relaxation. Phys. Rev. B 2006, 73,

134422-1–134422-11.
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