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Abstract:

 In this paper, we present a revision on some of the recent progresses made in characterising and understanding information inequalities, which are the fundamental physical laws in communications and compression. We will begin with the introduction of a geometric framework for information inequalities, followed by the first non-Shannon inequality proved by Zhang et al. in 1998 [1]. The discovery of this non-Shannon inequality is a breakthrough in the area and has led to the subsequent discovery of many more non-Shannon inequalities. We will also review the close relations between information inequalities and other research areas such as Kolmogorov complexity, determinantal inequalities, and group-theoretic inequalities. These relations have led to non-traditional techniques in proving information inequalities and at the same time made impacts back on those related areas by the introduction of information-theoretic tools.
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1. Introduction

Information inequalities are the “physical laws” that characterise the fundamental limits in communications and compression. Probably the most well-known information inequalities are the nonnegativity of entropy and mutual information, extending back to Shannon [2]. They are indispensable in proving converse coding theorems and play a critical role in information theory.

To illustrate the idea about how inequalities are invoked to prove a converse, consider the following classical scenario: Alice aims to send a source message M to Bob in a hostile environment where the transmitted message may be eavesdropped by a malicious adversary Eve. In order to ensure that Eve will learn no knowledge about the source message M, Alice will encrypt it into a transmitted message X using a private key K which is known only by Bob and herself. It is well-known that in order to have perfect secrecy, the entropy of the key K is at least as large as the entropy of the message M. Such a result can be proved by invoking a few information inequalities as follows:



[image: there is no content]



(1)






=(b)I(M;K|X)



(2)






≤(c)H(K|X)



(3)






≤(d)H(K)



(4)




where (a) is due to perfect secrecy (i.e., M and X are independent), (b) follows from that M can be reconstructed from the key K and the encrypted message X, (c) follows from the nonnegativity of conditional entropy [image: there is no content] and (d) is due to the nonnegativity of mutual information [image: there is no content].
Besides their role in proving converse coding theorems, information inequalities are also shown to have close relations with inequalities for Kolmogorov complexities [3], group-theoretic inequalities [4], subspace rank inequalities [5], determinantal inequalities [6] and combinatorial inequalities [7]. Therefore, any new technique in characterising information inequalities will also have direct impact on these areas.

Despite its great importance, characterising information inequalities is not an easy task. It has been open for years whether there exists other information inequalities besides the nonnegativiity of entropies and mutual information. No further information inequalities were found for fifty years, until [1] reported the first “non-Shannon” information inequality. The significance of that result lay not only in the inequality itself, but also in its construction. This particular approach for construction has been the main ingredient in every non-Shannon inequality that has been subsequently discovered. Using this approach, new inequalities can be found mechanically [8] and there are in fact infinitely many such independent inequalities even when there are only four random variables involved [9]. Despite this progress, a complete characterisation is still missing however.

In this survey paper, we will review some of the major progresses in the areas of information inequalities. The organisation of the paper is as follows. In Section 2, we will first outline a geometric framework for information inequalities, based on which we will explain how a Shannon inequality can be proved mechanically. Then we will outline the proof of a non-Shannon inequality which was first proved in [1]. A geometric perspective for the proof will also be given. Next, Matúš’ series of information inequality (and its relaxation) will be discussed.

In Section 3, we will consider several “equivalent frameworks” for information inequalities. First and the most natural one is for the scenario when random variables are continuous. We will prove that information inequalities for discrete and continuous random variables are “essentially the same”. Then we will change our focus to the one-to-one relation between information inequalities, inequalities for Kolmogorov complexity, group-theoretic inequalities and inequalities for box assignments. In Section 4, we will consider two constrained classes of information inequalities, subject to the constraint respectively that random variables are induced by vector subspaces and are Gaussian. These constrained classes of information inequalities are equivalent to subspace rank inequalities and determinantal inequalities respectively.



2. Notations

Let [image: there is no content] be a finite set and [image: there is no content] be its power set. If n is understood implicitly, we will simply denote [image: there is no content] by [image: there is no content]. We define H[[image: there is no content]] as the set of all real functions defined on 2[image: there is no content]. Hence, H[[image: there is no content]] is a 2|[image: there is no content]|-dimensional Euclidean space. Elements in H[[image: there is no content]] are called rank functions over [image: there is no content]. Let [image: there is no content][image: there is no content] be nonempty sets and [image: there is no content] be n jointly distributed discrete random variables defined on [image: there is no content] respectively. For any α⊆[image: there is no content], [image: there is no content] denotes the joint random variable [image: there is no content] defined over [image: there is no content] (the Cartesian product of [image: there is no content] for [image: there is no content]). As an example, [image: there is no content] is the random variable [image: there is no content]. For simplicity, the parentheses in the subscript are usually omitted, i.e., [image: there is no content] is written as [image: there is no content] (or even simply [image: there is no content]).

For a discrete random variable X, [image: there is no content] denotes the support of the probability distribution function of X. In other words,



[image: there is no content]≜{x∈[image: there is no content]:Pr(X=x)>0}








The (discrete) entropy of X, denoted by [image: there is no content], is defined as


[image: there is no content]








where p is the probability distribution of X. We will also use the following conventions. Singletons and sets with one element are not distinguished. For any set {Yi,i∈[image: there is no content]} and subset α⊆[image: there is no content], [image: there is no content] denotes the subset [image: there is no content].


3. A Framework for Information Inequalities

Let {[image: there is no content],i∈[image: there is no content]} be a set of discrete random variables. It induces a rank function h which is defined as follows: For any α⊆[image: there is no content],



h(α)≜H([image: there is no content]).



(5)




We call h the entropy function induced by [image: there is no content]. For any function h in H[[image: there is no content]], we define


[image: there is no content]



(6)






[image: there is no content]



(7)




If h is the entropy function induced by random variables {[image: there is no content],i∈[image: there is no content]}, then [image: there is no content] is the conditional entropy H([image: there is no content]|[image: there is no content]) and [image: there is no content] is the mutual information I([image: there is no content];[image: there is no content]|[image: there is no content]).
All entropy functions must satisfy the following polymatroidal axioms.



[image: there is no content]



(R1)






[image: there is no content]



(R2)






[image: there is no content]



(R3)




The second axiom (R2) corresponds to that conditional entropy is nonnegative and the third axiom (R3) corresponds to that the conditional mutual information between [image: there is no content] and [image: there is no content] given [image: there is no content] is nonnegative.

3.1. Geometric Framework

Characterisation of entropic functions is one of the most important and challenging problems in information theory. In the following, we will review the geometric framework proposed in [10] which has greatly simplified our understanding about information inequalities.

A function h∈H[[image: there is no content]] is called weakly entropic if there exists [image: there is no content] such that [image: there is no content] is entropic, and is called almost entropic if it is the limit of a sequence of weakly entropic functions. Let Γ*([image: there is no content]) be the set of all entropic functions and Γ¯*([image: there is no content]) be its closure. Then Γ¯*([image: there is no content]) is a closed and convex cone, and in fact is the set of all almost entropic functions. Compared to Γ*([image: there is no content]), its closure Γ¯*([image: there is no content]) is more manageable. In fact, for many application, it is sufficient to consider Γ¯*([image: there is no content]). The following proves that characterising all linear information inequalities is equivalent to characterising the set Γ¯*([image: there is no content]).

Theorem 1 (Yeung [10]) An information inequality ∑α⊆[image: there is no content]cαH([image: there is no content])≥0 is valid (i.e., holds for all discrete random variables) if and only if



∑α⊆[image: there is no content]cαh(α)≥0,∀h∈Γ¯*([image: there is no content]).








Unfortunately, Γ¯*([image: there is no content]) is still extremely difficult to characterise explicitly for [image: there is no content]. As we shall see, the cone is not polyhedral and hence cannot be defined by a finite number of linear inequalities. Theorem 1 offers a geometric perspective in understanding information inequalities. Based on the theorem, Yan et al. [11] wrote the software called Information-Theoretic Inequality Prover (ITIP) which can mechanically verify all Shannon inequalities.

The idea behind ITIP is very simple: Suppose we have a cone [image: there is no content] of H[[image: there is no content]] such that Γ*([image: there is no content])⊆[image: there is no content]. Consider an information inequality



∑α⊆[image: there is no content]cαH([image: there is no content])≥0.



(8)




Suppose one can verify that


∑α⊆[image: there is no content]cαh(α)≥0,∀h∈[image: there is no content].








Then by Theorem 1, the information inequality (8) will be valid. In other words, if the minimum of the following optimisation problem is nonnegative,


Minimise∑α⊆[image: there is no content]cαh(α)subjecttoh∈[image: there is no content],








then the information inequality (8) is valid.
As [image: there is no content] is a cone (hence, [image: there is no content] for all [image: there is no content] and [image: there is no content]), it is only required to test if the origin [image: there is no content] is a global minimum or not in the above optimisation problem. Furthermore, as the optimisation problem is convex, the optimality of [image: there is no content] can be verified by checking the Karush–Kuhn–Tucker (KKT) condition.

In ITIP, [image: there is no content] is chosen as the cone Γ([image: there is no content]) whose elements are all rank functions h that satisfies the polymatroidal axioms (R1)-(R3). By picking such a cone, the ITIP can prove all inequalities that are implied by the three axioms (or equivalently, all Shannon inequalities).



3.2. Non-Shannon Inequalities

It has been an open question for many years whether there exist information inequalities that are not implied by Shannon’s information inequalities. This question was finally answered in [1] where non-Shannon type inequalities were constructed explicitly. The proof was based on the use of auxiliary random variables. This turns out to be a very powerful technique. In fact, all subsequently discovered non-Shannon type information inequalities are essentially proved by the same technique.

Theorem 2 (Non-Shannon’s inequality [1]) Let [image: there is no content] be random variables. Then



[image: there is no content]



(9)




Or equivalently, if h is entropic, then


[image: there is no content]



(10)




The information inequality in Theorem 2 is a non-Shannon’s inequality because one can construct a rank function h∈H([image: there is no content]4) such that (1) h satisfies all the polymatroidal axioms (R1)-(R3) and (2) h violates the inequality (10)

To illustrate the technique in proving new inequalities, we will sketch the proof for Theorem 2. Further details can be found in [1,12].

Sketch of proof of Theorem 2:

Let h be the entropy function induced by a set of discrete random variables [image: there is no content] whose underlying distribution is p. Construct two auxiliary random variables [image: there is no content] and [image: there is no content] such that



Pr([image: there is no content],[image: there is no content],x3,x4,x1′,x2′)=p(x3,x4)p([image: there is no content],[image: there is no content]|x3,x4)p(x1′,x2′|x3,x4)ifp(x3,x4)>00ifp(x3,x4)=0.



(11)




It is easy to see that the marginals of [image: there is no content] and {[image: there is no content],[image: there is no content],X3,X4} are the same. By invoking the basic Shannon inequalities (involving six random variables), we can prove that



I(X3;X4)-I(X3;X4|X1)-I(X3;X4|X2)=I(X1;[image: there is no content])-I(X1;[image: there is no content]|X4)-I(X1;[image: there is no content]|X3)-I(X3;X4|X1,[image: there is no content]).



(12)




Hence,


I(X3;X4)-I(X3;X4|X1)-I(X3;X4|X2)≤I(X1;[image: there is no content]).



(13)




Similarly, we can also prove that


I(X3;X4)-2I(X3;X4|X1)≤I(X1;[image: there is no content]),



(14)




and consequently,


2I(X3;X4)-3I(X3;X4|X1)-I(X3;X4|X2)≤I(X1;[image: there is no content])+I(X1;[image: there is no content]).



(15)




Again, by invoking only Shannon’s inequalities, it can be proved that


I(X1;[image: there is no content])+I(X1;[image: there is no content])≤I(X1;X3,X4)+I([image: there is no content];[image: there is no content])



(16)






=I(X1;X3,X4)+I(X1;X2)



(17)




Combining (15) and (17), the theorem is proved.Ⅰ
Remark: In the above proof of Theorem 2, the non-Shannon inequality is proved by invoking only a sequence of Shannon inequalities. This seems impossible at the first glance, as by definition, non-Shannon inequalities are all inequalities that are not implied by Shannon inequalities. The trick however is to apply Shannon inequalities over a larger set of random variables.

Using the geometric framework obtained earlier, we will describe in the following a “geometric interpretation” for the proof of the non-Shannon’s inequality.

Consider a set [image: there is no content] such that [image: there is no content]⊆[image: there is no content]. Let h∈H[[image: there is no content]]. We define proj[image: there is no content][h] as a function g∈H[[image: there is no content]] such that



[image: there is no content]








for all α⊆[image: there is no content]. Similarly, for any subset [image: there is no content] of H[[image: there is no content]], proj[image: there is no content][[image: there is no content]] is the following subset


proj[image: there is no content][[image: there is no content]]≜{proj[image: there is no content][h]:h∈[image: there is no content]}.








Now, suppose that one can construct two cones [image: there is no content] and [image: there is no content] such that


	Γ*([image: there is no content])⊆[image: there is no content];


	For any g∈Γ*([image: there is no content]), there exists a h∈Γ*([image: there is no content])∩[image: there is no content] such that g=proj[image: there is no content][h]. Or equivalently, Γ*([image: there is no content])⊆proj[image: there is no content][Γ*([image: there is no content])∩[image: there is no content]].




From the conditions 1 and 2, we have



Γ*([image: there is no content])⊆proj[image: there is no content][[image: there is no content]∩[image: there is no content]].








Again, using Theorem 1, we can prove that an information inequality


∑α⊆[image: there is no content]cαH([image: there is no content])≥0



(18)




is valid if


∑α⊆[image: there is no content]cαg(α)≥0,∀g∈proj[image: there is no content]([image: there is no content]∩[image: there is no content]).








Equivalently, the inequality (18) is valid if the minimum of the following linear program is zero.


Minimise∑α⊆[image: there is no content]cαh(α)










subjectto



(19)






h∈[image: there is no content]∩[image: there is no content].








Remark: Instead of verifying if an information inequality is valid or not, we can also use the Fourier-Motzkin elimination method to find all linear inequalities that defines the cone proj[image: there is no content]([image: there is no content]∩[image: there is no content]). Clearly, each such inequality corresponds to a valid information inequality over {[image: there is no content],i∈[image: there is no content]}.

Now, we will revisit the non-Shannon inequality in Theorem 2. Let [image: there is no content]={1,2,3,4} and [image: there is no content]={1,2,3,4,1′,2′}. Given any random variables [image: there is no content], construct two random variables [image: there is no content] and [image: there is no content] such that the probability distribution of {X1,X2,X3,X4,[image: there is no content],[image: there is no content]} is given by (11). Let g be the entropy function of [image: there is no content] and h be the entropy function of {X1,X2,X3,X4,[image: there is no content],[image: there is no content]}. Then it is easy to see that for all [image: there is no content] and [image: there is no content],



[image: there is no content]








and proj[image: there is no content][h]=g.
Let



[image: there is no content]≜h∈H[[image: there is no content]]:Ih(1,2;1′,2′|3,4)=0,h(1,2,β)=h(1′,2′,β),h(i,β)=h(i′,β),∀i∈{1,2}andβ⊆{3,4}








and [image: there is no content]=Γ([image: there is no content]) (which is the set of all functions h that satisfies the polymatroidal axioms). Then clearly Γ*([image: there is no content])⊆Γ([image: there is no content]) and Γ*([image: there is no content])⊆proj[image: there is no content][[image: there is no content]∩[image: there is no content]]. It can be numerically verified that the minimum of the linear program in (19) is zero when the information inequality is the non-Shannon inequality (9). Consequently, the non-Shannon inequality is indeed proved.


3.3. Non-Polyhedral Property

In the pervious subsection, we have discussed a promising technique in proving (or even discovering) new information inequalities. Using the same technique proposed in [1], more and more linear information inequalities have been discovered [8,13,14,15]. Later in [9], Matúš obtained a countable infinite set of linear information inequalities for a set of four random variables. Using the same set of inequalities, Matúš further proved that Γ¯*([image: there is no content]4) is not a polyhedral. In the following, we will review Matúš’ inequalities and its relaxation.

Remark: The non-polyhedral property of Γ¯*([image: there is no content]4) was later used by [16] to show that the set of achievable tuples of a network is in general also non-polyhedral. As a result, this proved that the Linear Programming bounds is not tight in general.

Theorem 3 (Matúš) Let [image: there is no content] and g∈Γ*([image: there is no content]4). Then



s□12,34g+▵34|2g+▵24|3g+▵23|4g+s(s-1)2▵24|3g+▵34|2g≥0



(20)




where for any distinct elements i,j,k∈[image: there is no content]4,


▵ij|kg≜Ig([image: there is no content];Xj|Xk),□12,34g≜g(13)+g(23)+g(14)+g(24)+g(34)-g(12)-g(3)-g(4)-g(134)-g(234).








While Matúš proved a series of linear information inequalities, it is sometimes difficult to use these infinitely number of inequalities at the same time. In [17], the series of Matúš’ inequalities is relaxed to a single non-linear inequality.

Remark: Using one single nonlinear inequality, it can be proved that the set of all almost entropic functions is not polyhedral.

Theorem 4 (Quadratic information inequality [17]) Let g∈Γ¯*([image: there is no content]),



a(g)≜12▵24|3g+▵34|2gb(g)≜□12,34g+▵34|2g+▵24|3gc(g)≜▵23|4gw(g)≜-b(g)-a(g)2a(g)ifa(g)>00otherwise.



(21)




If [image: there is no content], then



[image: there is no content]



(22)




and consequently,


□12,34g+▵24|3g+▵34|2g22-2(▵24|3g+▵34|2g)▵32|4g≤(▵24|3g+▵34|2g)24.



(23)




Remark: Subject to the constraint that [image: there is no content], then the series of linear inequalities (20) is implied by the Shannon inequalities. Therefore, the constraint (i.e., [image: there is no content]) we imposed on Theorem 4 is not critical.

Conjecture 1  (20) holds for all [image: there is no content]. Consequently, if [image: there is no content], then



[image: there is no content]











4. Equivalent Frameworks

In the previous section, we have described a framework for information inequalities for discrete random variables. We have also demonstrated the common proving technique. In this section, we will construct several different frameworks which are “equivalent” or “almost equivalent” to the earlier one. These equivalence relations among different frameworks will turn out to be very useful in deriving new information theoretic tools.


4.1. Differential Entropy

The previous framework for information inequalities assumes that all random variables are discrete. A very natural extension of the framework is thus to relax the restriction by allowing random variables to be continuous. To achieve this goal, we will first need an analogous definition of discrete entropy in the domain of continuous random variables.

Definition 1 (Differential entropies) Let {[image: there is no content],i∈[image: there is no content]} be a set of continuous random variables such that [image: there is no content] are real numbers. For any α⊆[image: there is no content], let [image: there is no content] be the density functions for ([image: there is no content],i∈α). Then the differential entropy of ([image: there is no content],i∈α) is denoted by



H([image: there is no content])≜-∫f(xα)logf(xα)dxα.








Remark: For notation simplicity, we abuse our notations by using [image: there is no content] to denote both discrete and differential entropies. However, its exact meaning should be clear from the context.

Discrete and differential entropies shared similar and dissimilar properties. The main difference is that differential entropy can be negative, unlike discrete entropy. However, mutual information and its conditional counterpart (by defined analogously as in (7)) remain nonnegative. In fact, as we shall see, the sets of information inequalities for discrete and continuous random variables are almost the same.

Definition 2 (Balanced inequalities) An information inequality ∑α⊆[image: there is no content]cαH([image: there is no content])≥0 (for either discrete or continuous random variables) is called balanced if for all n∈[image: there is no content], ∑α⊆[image: there is no content]:n∈αcα=0.

For any information inequality ∑α⊆[image: there is no content]cαH([image: there is no content])≥0 or expression ∑α⊆[image: there is no content]cαH([image: there is no content]), its [image: there is no content] residual weight [image: there is no content] is defined as



[image: there is no content]≜∑α⊆[image: there is no content]:n∈αcα.



(24)




Clearly, an information inequality is balanced if and only if [image: there is no content]=0 for all n∈[image: there is no content].
Example 1 The residual weights [image: there is no content] of the information inequality [image: there is no content] are both equal to one. Hence, the inequality is not balanced.

For any information inequality ∑α⊆[image: there is no content]cαH([image: there is no content])≥0, its balanced counterpart is the following inequality



∑α⊆[image: there is no content]cαH([image: there is no content])-∑n∈[image: there is no content][image: there is no content]H(Xn|[image: there is no content],i≠n)≥0,



(25)




which is balanced (as its name suggests).
Proposition 1 (Necessary and sufficiency of balanced inequalities [6]) For any valid information inequality ∑α⊆[image: there is no content]cαH([image: there is no content])≥0 , it is a valid discrete information inequality if and only if


	its residual weights [image: there is no content]≥0 for all n, and


	its balanced counterpart is also valid.



∑α⊆[image: there is no content]cαH([image: there is no content])-∑n∈[image: there is no content][image: there is no content]H(Xn|[image: there is no content],i≠n)≥0.











Consequently, all valid discrete information inequalities are implied by the set of all valid balanced inequalities and the nonnegativity of (conditional) entropies.

It turns out that this set of balanced information inequalities also play the same significant role for inequalities involving continuous random variables.

Theorem 5 (Equivalence [6]) All information inequalities for continuous random variables are balanced. Furthermore, a balanced information inequality



∑α⊆[image: there is no content]cαH([image: there is no content])-∑n∈[image: there is no content][image: there is no content]H(Xn|[image: there is no content],i≠n)≥0








is valid for continuous random variable if and only if it is also valid for discrete random variables.
By Theorem 5, to characterise information inequalities, it is sufficient to consider only balanced information inequalities which are the same for either discrete or continuous random variables.



4.2. Inequalities for Kolmogorov Complexity

The second framework we will describe is quite different from the earlier information-theoretic frameworks. For information inequalities, the objects of interest are random variables. However, for the following Kolmogorov complexity framework, the objects of interest are deterministic strings instead.

To understand what Kolmogorov complexity is, let us consider the following example: Suppose that [image: there is no content] and [image: there is no content] are the following binary strings



[image: there is no content]=1111111111111111111111111111111111111111111111111111111111111111



(26)






[image: there is no content]=0110010101010100010001010100101101001011101010101001011011101011.



(27)




Kolmogorov complexity of a string x (denoted by [image: there is no content]) is the minimal program length required to output that string [18] In the above example, it is clear that the Kolmogorov complexity of [image: there is no content] is much smaller than that of [image: there is no content] (which is obtained by flipping a fair coin).
Although the objects of interest are different, [3] proved a surprising result that inequalities for Kolmogorov complexities and for entropies are essentially the same.

Theorem 6 (Equivalence [3]) An information inequality (for discrete random variable) ∑αcαH([image: there is no content],i∈α)≥0 is valid if and only if the corresponding Kolmogorov complexity inequality defined below



[image: there is no content]








is also valid.


4.3. A Group-Theoretic Framework

Besides Kolmogorov complexities, information inequalities are also closely related to group-theoretic inequalities [4]. To understand their relation, we first illustrate how to construct a random variable from a subgroup.

Definition 3 (Group-theoretic construction of random variables) Let G be a finite group and U be a random variable that takes value in G uniformly. In other words,



[image: there is no content]



(28)




for all [image: there is no content].
For any subgroup K of G, it partitions G into [image: there is no content]’s left (or right) coset of K in G such that each coset has exactly [image: there is no content]’s elements. Note that, each coset can be written as the following subset for some elements [image: there is no content]



[image: there is no content]








where ∘ is the binary group operator. Let [image: there is no content] be the collection of all left cosets of K in G. The subgroup K induces a random variable [image: there is no content], which is defined as the random left coset of K in G that contains U. In fact, [image: there is no content] is equal to the following coset


[image: there is no content]



(29)




Since U is uniformly distributed over G, we can easily prove that [image: there is no content] is uniformly distributed over [image: there is no content] and that



H([image: there is no content])=log|G|/|K|.








The above construction of a random variable from a subgroup can be extended naturally to multiple subgroups.

Theorem 7 (Group characterisable random variables [4]) Let G be a finite group and {[image: there is no content],i∈[image: there is no content]} be a set of subgroups of G. For each i∈[image: there is no content], let [image: there is no content] be the random variable induced by the subgroup [image: there is no content] as defined above. Then for any α⊆[image: there is no content],


	H([image: there is no content],i∈α)=log[image: there is no content]/|∩[image: there is no content][image: there is no content]|,


	|λ([image: there is no content],i∈α)|=[image: there is no content]/|∩[image: there is no content][image: there is no content]|,


	([image: there is no content],i∈α) is uniformly distributed over its support. In other word, the value of the probability distribution function of ([image: there is no content],i∈α) is either zero or is a constant.




Definition 4 A function h∈H[[image: there is no content]] is called group characterisable if it is the entropy function of a set of random variables [image: there is no content] induced by a finite group G and its subgroups [image: there is no content]. Furthermore, h is


	representable if [image: there is no content] are all vector space, and


	abelian if G is abelian.




Clearly, random variables induced by a set of subgroups must satisfy all valid information inequalities Therefore, we have the following theorem.

Theorem 8 (Group-theoretic inequalities [4]) Let



∑α⊆[image: there is no content]cαH([image: there is no content])≥0



(30)




be a valid information inequality. Then for any finite group G and its subgroups {[image: there is no content],i∈[image: there is no content]}, we have


∑α⊆[image: there is no content]cαlog[image: there is no content]|∩[image: there is no content][image: there is no content]|≥0,



(31)




or equivalently,


G∑α⊆[image: there is no content]cα≥∏α⊆[image: there is no content]∩[image: there is no content][image: there is no content]cα.



(32)




Theorem 8 proved that we can directly “translate” any information inequality into a group-theoretic inequality. A very surprising result proved in [4] was that the the converse also holds.

Theorem 9 (Converse [4]) The information inequality (30) is valid if it is satisfied by all random variables induced by groups, or equivalently, the group-theoretic inequality (32) is valid.

Theorems 8 and 9 suggested that to prove an information inequality, it is necessary and sufficient to verify if the inequality is satisfied by all random variables induced by groups. Later, we will further illustrate how to use the two theorems to derive a group-theoretic proof for information inequalities.

In the following, we will further prove that many statistical properties of random variables induced by groups will have analogous algebraic interpretations.

Lemma 1 (Properties of group induced random variables) Suppose that {[image: there is no content],i∈[image: there is no content]} is a set of random variables induced by a finite group G and its subgroups {[image: there is no content],i∈[image: there is no content]}. Then


	(Functional dependency) H([image: there is no content]|[image: there is no content],i∈α)=0 (i.e., [image: there is no content] is a function of [image: there is no content]) if and only if ∩[image: there is no content][image: there is no content]⊆Gl. Hence, functional dependency is equivalent to subset relation;


	(Independency) I([image: there is no content];Xj|[image: there is no content])=0 if and only if



|[image: there is no content]∩Gl||Gj∩Gl|=|Gl||[image: there is no content]∩Gj∩Gl|;



(33)





	(Conditioning preserves group characterisation) for any fixed any α⊆[image: there is no content], the group K≜∩[image: there is no content]Ki and its subgroups Ki≜K∩[image: there is no content] for i∈[image: there is no content] induce a set of random variables {Yi,i∈[image: there is no content]} such that



H(Yi,i∈β)=H([image: there is no content],i∈β|Xj,j∈α)








for all β⊆[image: there is no content]. In other words, for any group characterisable h∈H[[image: there is no content]], let g∈H[[image: there is no content]] such that



[image: there is no content]








for all β⊆[image: there is no content]. Then g is also group characterisable.




Proposition 2 (Duality [19]) Let [image: there is no content] be a set of vector subspaces of [image: there is no content] over the finite field [image: there is no content]. Define the following subspace [image: there is no content] for i∈[image: there is no content]:



[image: there is no content]={w∈V:v⊤w=0}.



(34)




Then, for any α⊆[image: there is no content],


dim⟨[image: there is no content],i∈α⟩=dimV-dim⋂[image: there is no content][image: there is no content]=log|V||⋂[image: there is no content][image: there is no content]|.








Hence, if h∈H[[image: there is no content]] such that [image: there is no content] for all α⊆[image: there is no content], then h is weakly representable.
Remark: While [image: there is no content] and W are both subspaces of V and dimW+dim[image: there is no content]=dimV, ⟨W,[image: there is no content]⟩≠V in general. If [image: there is no content]=R, then [image: there is no content] (defined as in (34)) is the orthogonal complement of [image: there is no content].

Theorems 8 and 9 suggested that proving an information inequality (30) is equivalent to proving a group-theoretic inequality (32). In the following, we will illustrate the idea by providing a group-theoretic proof for nonnegativity of mutual information



H(X1)+H(X2)≥H[image: there is no content].



(35)




Example 2 (Group-theoretic Proof) Let G be a finite group and [image: there is no content] and [image: there is no content] be its subgroups. Let



S={a∘b:a∈[image: there is no content],b∈[image: there is no content]}








where ∘ is the binary group operator. As S is a subset of [image: there is no content], [image: there is no content]. With a simple counting argument (by removing duplications), it can be proved easily that


|S|=|[image: there is no content]||[image: there is no content]||[image: there is no content]∩[image: there is no content]|.








Therefore,


|G||[image: there is no content]∩[image: there is no content]|≥|[image: there is no content]||[image: there is no content]|.








Finally, according to Theorems 8 and 9, the inequality (35) follows.
It is worth mentioning that Theorems 8 and 9 also suggested an information-theoretic proof for group-theoretic inequalities. For example, the following information inequality



H(X1)+H(X2)+2H[image: there is no content]+4H(X3)+4H(X4)



(36)






[image: there is no content]



(37)






≤6H(X3,X4)+4H(X1,X3)+4H(X1,X4)



(38)






+4H(X2,X3)+4H(X2,X4),



(39)




implies the following group-theoretic inequality


|G34|6|G13|4|G14|4|G23|4|G24|4≤|[image: there is no content]||[image: there is no content]||G3|4|G4|4|G12|2|G134|5|G234|5



(40)




The meaning of this inequality and its implications in group theory are yet to be understood.


4.4. Combinatorial Perspective

Random variables that are induced by groups have many interesting properties. One interesting property is that they are quasi-uniform in nature.

Definition 5 (Quasi-uniform random variables) A set of random variables [image: there is no content] is called quasi-uniform if for all α⊆[image: there is no content], [image: there is no content]≜([image: there is no content],i∈α) is uniformly distributed over its support λ([image: there is no content]). In other words,



Pr([image: there is no content]=xα)=1/|λ([image: there is no content])|ifxα∈λ([image: there is no content])0otherwise.



(41)




Since [image: there is no content] is uniformly distributed for all α⊆[image: there is no content], the entropy H([image: there is no content]) is thus equal to log|λ([image: there is no content])|.
According to the Asymptotic Equipartition Property (AEP) [12], for a sufficiently long sequence of independent and identically distributed random variables, the set of typical sequences has a total probability close to one and the probability of each typical sequence is approximately the same. In certain sense, quasi-uniform random variables possess the non-aymptotic equipartition property that the probabilities are completely concentrated and uniformly distributed over their supports. As a result, quasi-uniform random variables can be fully characterised by their supports (because the probability distributions are uniform over the supports). This offers a combinatorial interpretation for quasi-uniform random variables. And it turns out that this interpretation offers a combinatorial approach to proving information inequalities.

Definition 6 (Box assignment) Let [image: there is no content] be nonempty finite sets and [image: there is no content] be their Cartesian product ∏i=1n[image: there is no content]. A box assignment [image: there is no content] in [image: there is no content] is a nonempty subset of [image: there is no content][image: there is no content].

For any α⊆[image: there is no content] and [image: there is no content]≜([image: there is no content],i∈α)∈∏[image: there is no content][image: there is no content], we define



[image: there is no content][image: there is no content]|α([image: there is no content])≜(xj,j∈[image: there is no content])∈[image: there is no content]:xi=[image: there is no content],i∈α,



(42)






[image: there is no content]α≜([image: there is no content],i∈α):|[image: there is no content][image: there is no content]|α([image: there is no content])|≥1.



(43)




Roughly speaking, [image: there is no content][image: there is no content]|α([image: there is no content]) is the set of elements in [image: there is no content] such that its “[image: there is no content]-coordinate” is [image: there is no content] for [image: there is no content]. The set [image: there is no content][image: there is no content]|α([image: there is no content]) will be called the [image: there is no content]-layer of [image: there is no content]. And hence, [image: there is no content]α contains all [image: there is no content] such that the [image: there is no content]-layer of [image: there is no content] is nonempty. And we will call [image: there is no content]α the α-projection of [image: there is no content].
Definition 7 (Quasi-uniform box assignment) A box assignment [image: there is no content] is called quasi-uniform if for any α⊆[image: there is no content], the cardinality of [image: there is no content][image: there is no content]|α([image: there is no content]) is constant for all [image: there is no content]∈[image: there is no content]α. And we will denote the constant by |[image: there is no content][image: there is no content]|α| for simplicity.

The following proposition proves that quasi-uniform box assignment and quasi-uniform random variables are in fact equivalent.

Proposition 3 (Equivalence [7]) Let [image: there is no content] be a set of quasi-uniform random variables and [image: there is no content] be its probability distribution’s support. Then [image: there is no content] is a quasi-uniform box assignment in ∏i∈[image: there is no content][image: there is no content]. Furthermore, for all α⊆[image: there is no content],



H([image: there is no content])=log|[image: there is no content]α|.



(44)




Conversely, for any quasi-uniform box assignment [image: there is no content], there exists a set of quasi-uniform random variables [image: there is no content] whose probability distribution’s support is indeed [image: there is no content].

As random variables induced by groups are quasi-uniform, by Theorems 8 and 9, we have the following combinatorial interpretation for information inequalities.

Theorem 10 (Combinatorial interpretation [7]) An information inequality



∑α⊆[image: there is no content]cαH([image: there is no content])≥0



(45)




is valid if and only if the following box assignment inequality is valid


∑α⊆[image: there is no content]cαlog|[image: there is no content]α|≥0,



(46)




or equivalently,


∏α⊆[image: there is no content]|[image: there is no content]α|cα≥1



(47)




for all quasi-uniform box assignments [image: there is no content].
Again, in the following example, we will illustrate how to use the combinatorial interpretation to derive a “combinatorial proof” for information inequality.

Example 3 (Combinatorial proof) Let [image: there is no content] be a quasi-uniform box assignment in [image: there is no content]=[image: there is no content]1×[image: there is no content]2. Suppose (a1,a2)∈[image: there is no content]. Then it is obvious that a1∈[image: there is no content]1 and a2∈[image: there is no content]2. In other words, [image: there is no content]⊆[image: there is no content]1×[image: there is no content]2 and consequently,



|[image: there is no content]1|×|[image: there is no content]2|≥|[image: there is no content]1,2|.








By Theorem 10, we prove that H(X1)+H(X2)≥H[image: there is no content].


4.5. Coding Perspective

We can also view a box assignment [image: there is no content] as an error correcting code such that [image: there is no content] is the set of all codewords. For each codeword [image: there is no content], [image: there is no content] is the [image: there is no content] symbol to be transmitted across a channel. Taking this coding perspective, in the following, a box assignment will simply be called a code. Also, a code [image: there is no content] is called a quasi-uniform code if [image: there is no content] is a quasi-uniform box assignment. Again, each quasi-uniform code [image: there is no content] will induce a set of quasi-uniform random variables [image: there is no content].

For any code [image: there is no content] (which is just a box assignment) and two codewords c,c′∈[image: there is no content], the Hamming distance between codewords [image: there is no content] and [image: there is no content] is defined as



D(c,c′)≜|{i∈[image: there is no content]:ci≠ci′}|.








In addition, the minimum Hamming distance of the code [image: there is no content] is defined as


D([image: there is no content])≜minc≠c′,c,c′∈[image: there is no content]D(c,c′)








The minimum Hamming distance of a code characterises how strong the error correcting capability of the code is. Specifically, a code [image: there is no content] with a minimum Hamming distance d can correct up to [image: there is no content]’s symbol errors.

Example 4 Let [image: there is no content] be a length-3 code containing only two codewords [image: there is no content] and [image: there is no content]. The minimum Hamming distance of this code is 3 and hence can correct any single symbol error. For instance, suppose the codeword [image: there is no content] is transmitted. If a symbol error occurs, the receiver will receive either [image: there is no content], [image: there is no content] or [image: there is no content]. In any case, the receiver can always determine which symbol is erroneous (by using a bounded-distance decoder) and hence can correct it.

In addition to the minimum Hamming distance, in many cases, a code’s distance profile is also of great importance: Let [image: there is no content] be a code and c be a codeword in [image: there is no content]. The distance profile of [image: there is no content] centered at c is a set of integers A([image: there is no content],c)≜{Ar(c):r=1,…,n} where



Ar(c)≜|{c′∈C:D(c,c′)=r}|}.








In other words, [image: there is no content] is the number of codewords in [image: there is no content] such that their Hamming distances to the centering codeword c is r.
The profile A([image: there is no content],c) contains information about how likely a decoding error (i.e., the receiver decodes a wrong codeword) occurs if the transmitted codeword is c. In general, the distance profile A([image: there is no content],c) depends on the choice of c. A code is called distance-invariant if its distance profile A([image: there is no content],c) is independent of c. Roughly speaking, a distance-invariant code is one where the probability of decoding error is the same for all transmitted codewords c∈[image: there is no content].

Theorem 11 (Distance invariance [20]) Quasi-uniform codes are distance-invariant.

Example 5 (Linear codes) Let P be a [image: there is no content] parity check matrix (over a finite field [image: there is no content]) and the code [image: there is no content] is defined by



[image: there is no content]={c∈[image: there is no content]n:Pc=[image: there is no content]}.








Then [image: there is no content] is called a linear code. Note that, for a linear code, if c1,c2∈[image: there is no content], then [image: there is no content] is also contained in [image: there is no content]. Linear codes are quasi-uniform codes and hence are also distance invariant.
In the following, we will consider only quasi-uniform codes. For simplicity, we will assume without loss of generality that there is a zero-codeword [image: there is no content]∈[image: there is no content] (by renaming). Also, for any c∈[image: there is no content], we define the Hamming weight of the codeword c (denoted by [image: there is no content]) as D(c,[image: there is no content]).

Definition 8 (Weight enumerator) The weight enumerator of a quasi-uniform code C with length n is



[image: there is no content]








where x and y are indeterminates, and Ar≜Ar([image: there is no content]). Using simple counting, it is easy to prove that


WC(x,y)≜∑c∈Cxn-D(c)y[image: there is no content].



(48)




In many cases, it is more convenient to work with weight enumerator than distance profile. However, conceptually, they are equivalent (i.e., they can be uniquely obtained from each other). Clearly, the weight enumerator is uniquely determined from the code [image: there is no content]. However, what “structural property” of the code [image: there is no content] determines the weight enumerator? For example, suppose that we construct a new code from [image: there is no content] by exchanging the first and the second codeword symbols. It is obvious that this modification will not affect the weight enumerator. In other words, ordering of the codeword symbols has no effects on the weight enumerator. The question therefore is: What property of a code has direct effects on the weight enumerator?

To answer the question, let us use the old perspective that a quasi-uniform code is merely a quasi-uniform box assignment (and also its associated set of quasi-uniform random variables). These random variables [image: there is no content] have a simple interpretation here: Suppose a codeword [image: there is no content] is randomly and uniformly selected from [image: there is no content]. Then [image: there is no content] is the [image: there is no content] symbol in the random codeword C, i.e., [image: there is no content]=Ci. Our answer to the above question is given in the following theorem.

Theorem 12 (Generalised Greene’s Theorem [20]) Let C be a quasi-uniform code and [image: there is no content] be its induced quasi-uniform random variables. Suppose that ρ is the entropy function of [image: there is no content]. In other words, ρ(α)=H([image: there is no content],i∈α). Then



WC(x,y)=∑α⊆[image: there is no content]2ρ([image: there is no content])-ρ(α)(x-y)|α|yn-|α|.



(49)




Remark: The Greene’s Theorem is a special case of Theorem 12 when the code [image: there is no content] is a linear code.

By Theorem 12, the weight enumerator (and also the error-correcting capability) of a quasi-uniform code depends only on the entropy function induced by the codeword symbol random variables. By exploiting the relation between the entropy function of a set of quasi-uniform random variables and the weight enumerator of the induced code, we open a new door on how to harness coding theory results to derive new information theory results.

Example 6 (Code-theoretic proof) Consider a set of quasi-uniform random variables [image: there is no content] which induces a length-2 quasi-uniform code C. The length of the code is 2. By the Generalised Greene’s Theorem, the number of codewords which have Hamming weights 1 is given by



[image: there is no content]=(2H[image: there is no content]-H(X1)+2H[image: there is no content]-H(X2)-2).



(50)




As [image: there is no content] is nonnegative, (50) implies that


min(H(X1),H(X2))≤H[image: there is no content].



(51)




Finally, by Theorem 10 (a variation of which to be precise), an information inequality holds if and only if it also holds for all quasi-uniform random variables. Consequently, we prove that (51) holds for all random variables.



5. Constrained Information Inequalities

In pervious sections, we considered general information inequalities where we do not impose any constraint on the choice of random variables. In the following, we will focus on two constrained classes of information inequalities: subspace rank inequalities and determinantal inequalities.


5.1. Rank Inequalities

Let [image: there is no content] be a set of vector subspaces over a field [image: there is no content]. A subspace rank inequality is an inequality about the rank or dimension of subspaces in the following form:



∑α⊆[image: there is no content]cαdim⟨[image: there is no content],i∈α⟩≥0.



(52)




For example, it is straightforward to prove that


[image: there is no content]



(53)




which is a direct consequence of the following identity


[image: there is no content]



(54)




Subspace rank inequalities are in fact constrained information inequalities subject to the criteria that random variables are induced by vector subspaces over a field. Clearly, all valid information inequalities (including all Shannon inequalities) are subspace rank inequalities. For example, the subspace rank inequality (53) is indeed equivalent to the nonnegativity of mutual information. Besides all these known unconstrained information inequalities, one of the most well-known subspace rank inequalities is the Ingleton inequalities [21]. A recent work [22] proved that Ingleton inequalities also include Shannon inequalities as special cases and determined the unique minimal set of Ingleton inequalities that imply all the others.

Theorem 13 (Ingleton inequality) Suppose r is a representable polymatroid over [image: there is no content]. Then for every choice of subsets X1,[image: there is no content]2,[image: there is no content]3,[image: there is no content]4⊆[image: there is no content]



0≤r([image: there is no content]1∪[image: there is no content]2)+r([image: there is no content]1∪[image: there is no content]3)+r([image: there is no content]1∪[image: there is no content]4)+r([image: there is no content]2∪[image: there is no content]3)+r([image: there is no content]2∪[image: there is no content]4)-r([image: there is no content]1)-r([image: there is no content]2)-r([image: there is no content]3∪[image: there is no content]4)-r([image: there is no content]1∪[image: there is no content]2∪[image: there is no content]3)-r([image: there is no content]1∪[image: there is no content]2∪[image: there is no content]4).



(55)




It has been open for years whether there exists subspace rank inequalities that are not implied by Ingleton inequalities and Shannon inequalities. It was until recently that the question was finally answered. In [5], insufficiency of Ingleton inequality to characterise all subspace rank inequalities was proved. And in [23,24], new subspace rank inequalities not implied by Ingleton inequalities were explicitly constructed. In fact, the set of subspace rank inequalities for up to five variables have all been determined. However, the complete characterisation involving more than five variables is still missing. In the following, we will review some of the important results along this line of work.

Theorem 14 (Kinser [23]) Suppose [image: there is no content]={X1,…,Xn} and h is representable over [image: there is no content]. Then



h([image: there is no content])+h(X1,3,n)+h(X3)+∑i=4n(h([image: there is no content])+h(X2,i-1,i))≤h(X1,3)+h(X1,n)+h(X2,3)+∑i=4n(h(X2,i)+h(Xi-1,i)).



(56)




Or equivalently,


Ih(X2;X3)≤Ih(X1;X2)+Ih(X3;Xn|X1)+∑i=4nIh(X2;Xi-1|[image: there is no content]).



(57)




Theorem 15 (Dougherty et al. [24]) Suppose [image: there is no content]={A,B,C1,…,Cn} and h is representable over [image: there is no content]. Then



[image: there is no content]



(58)




Remark: In addition to the inequalities obtained in Theorem 15, the work [24] found all subspace rank inequalities in five variables (called DFZ inequalities) and many more other new inequalities in six variables.

Definition 9 (ϵ-truncation) Let h be a polymatroid over [image: there is no content] and 0≤ϵ≤h([image: there is no content]). Define g as follows where



g(α)≜min(h(α),h(Y)-ϵ),∀α⊆Y.



(59)




Then g is called the ϵ-truncation of h.
Definition 10 (Truncation-preserving inequalities) Let [image: there is no content]={Yi,i∈[image: there is no content]m}. A set of rank inequalities



∑α⊆[image: there is no content]mcαℓH(Yi,i∈α)≥0,ℓ∈Δ



(60)




is said to preserve truncation (or is truncation-preserving) if for any h satisfying all the inequalities in (60), its truncation also satisfies all the inequalities.
Proposition 4 (Chan et al. [5]) DFZ inequalities are truncation preserving.

Theorem 16 (Insufficiency of truncation preserving inequalities [5]) Let [image: there is no content] be the set of all subspace rank inequalities involving n variables (or subspaces). Then for sufficiently large n, [image: there is no content] is not truncation-preserving.



5.2. Determinantal Inequalities

Information inequalities for Gaussian random variables are another interesting class of information inequalities. As we shall see, they are equivalent to determinantal inequalities.

Definition 11 (Gaussian polymatroid) Let h be a polymatroid over [image: there is no content]. It is called Gaussian if there exists a set of jointly Gaussian random variables [image: there is no content] with a [image: there is no content] covariance matrix and a partition of [image: there is no content] into n disjoint nonempty subsets [image: there is no content] such that for any α⊆[image: there is no content],



h(α)=H[image: there is no content],[image: there is no content].



(61)




where [image: there is no content]=(Yj,j∈βi) for all i∈[image: there is no content]. Furthermore, h is called weakly Gaussian if there exists [image: there is no content] such that [image: there is no content] is Gaussian, and almost Gaussian if h is the limit of a sequence of weakly Gaussian functions.
It is straightforward to prove that the weakly Gaussian property is closed under addition. In other words, if h and g are weakly Gaussian, then their sum [image: there is no content] is also weakly Gaussian. Furthermore, like information inequality for any continuous random variables, if an inequality



∑α⊆[image: there is no content]cαH([image: there is no content])≥0



(62)




holds for all Gaussian random variables {[image: there is no content],i∈[image: there is no content]} [25], then it must be balanced. Therefore, in the following, we will only consider balanced information inequalities.
Let [image: there is no content] be a set of jointly Gaussian random variables with covariance matrix K which is a [image: there is no content] positive definite matrix. Suppose [image: there is no content] is partitioned into n disjoint nonempty subsets [image: there is no content]. A very compelling property of a set of Gaussian random variable is that its entropy and the determinant of its covariance matrix is related by the following relation:



[image: there is no content]



(63)




where [image: there is no content] be the principal submatrix of K by deleting rows and columns that are not indexed by β. Substitute (63) back into (62), the inequality (62) is satisfied by all Gaussian random variables {[image: there is no content],i∈[image: there is no content]} if and only if


∑α⊆[image: there is no content]cα|βα|log(2πe)2+logdet(Kβα)2≥0



(64)




where βα=⋃[image: there is no content]βi. Since the inequality (62) is balanced,


∑α⊆[image: there is no content]:j∈αcα=0



(65)




for all j∈[image: there is no content]. On the other hand,


∑α⊆[image: there is no content]cα|βα|=∑α⊆[image: there is no content]cα∑j∈α|βj|



(66)






=∑j∈[image: there is no content]∑α⊆[image: there is no content]:j∈αcα|βj|



(67)






=∑j∈[image: there is no content]|βj|∑α⊆[image: there is no content]:j∈αcα



(68)






=0.



(69)




Therefore, the inequality (62) holds for all Gaussian random variables if and only if the following determinantal inequality holds for all positive definite matrix K



∑α⊆[image: there is no content]cαlogdet(Kβα)≥0



(70)




or equivalently,


∏α⊆[image: there is no content]det(Kβα)cα≥1.



(71)




As a direct consequence, for any valid information inequality, we can use the above relation to derive a corresponding determinantal inequality. For example, the following well-known determinantal inequalities can all be proved using this “information-theoretical method”.


	(Hadamard inequality) Let K be a positive definite matrix K. Then



detK≤∏i=1|[image: there is no content]|[image: there is no content]



(72)




where [image: there is no content] is the [image: there is no content] diagonal entry of K. This inequality follows from the following information inequality



[image: there is no content]









	(Szasz inequality) For any [image: there is no content],



∏β:|β|=ldet([image: there is no content])1/k-1l-1≥∏β:|β|=l+1det([image: there is no content])1/k-1l.



(73)




This determinantal inequality follows from the following information inequality



[image: there is no content]



(74)







Finally, we will conclude this section by the following open question: While Gaussian polymatroid is clearly almost entropic, is it true that an almost entropic polymatorid almost Gaussian? In other words, for any almost entropic polymatroid h, can we construct a sequence of Gaussian polymatroids [image: there is no content] such that



[image: there is no content]








for some [image: there is no content] for all i.



6. Summary and Conclusions

In this paper, we have reviewed some of the recent progresses in characterisation of information inequalities. We first began with a geometric framework for information inequalities which has simplified the understanding of information inequalities. We also reviewed how the first non-Shannon inequality was proved and highlighted the general idea behind the proof. Next, we studied the infinite series of inequalities over [image: there is no content]4 and considered a nonlinear relaxation of the series of inequalities.

We have also reviewed how information inequalities are related to Kolmogorov complexity inequalities, group-theoretic inequalities and inequalities for box assignments. Based on their relations, we demonstrated non-traditional approaches to proving information inequalities.

Finally, we investigated two constrained classes of information inequalities. The first class is when random variables are induced by vector spaces. In this case, the constrained inequalities are equivalent to subspace rank inequalities. We showed that Ingleton and DFZ inequalities are insufficient to characterise all subspace rank inequalities in general where the set of all subspace rank inequalities is not truncation-preserving. The second constrained class of inequalities is when random variables are Gaussian. We have showed that these constrained inequalities are in fact determinantal inequalities.

As a final remark, we would like to emphasise that this survey paper aims not to cover every aspect about information inequalities. In fact, there are many interesting pieces of work that we did not cover. For example, as pointed out by one of the reviewers, one very interesting area is about the relation between convex body inequalities and information inequalities [26,27]. We strongly encourage readers who are interested to further explore those relevant areas.
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