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Abstract: Hierarchical clustering has been extensively used in practice, where clusters can 
be assigned and analyzed simultaneously, especially when estimating the number of 
clusters is challenging. However, due to the conventional proximity measures recruited in 
these algorithms, they are only capable of detecting mass-shape clusters and encounter 
problems in identifying complex data structures. Here, we introduce two bottom-up 
hierarchical approaches that exploit an information theoretic proximity measure to explore 
the nonlinear boundaries between clusters and extract data structures further than the 
second order statistics. Experimental results on both artificial and real datasets demonstrate 
the superiority of the proposed algorithm compared to conventional and information 
theoretic clustering algorithms reported in the literature, especially in detecting the true 
number of clusters. 
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1. Introduction 

Clustering is an unsupervised approach for segregating data into its natural groups, such that the 
samples in each group have the highest similarity with each other and the highest dissimilarity with 
samples of the other groups. Clustering is in general exploited when labeling data by a human operator 
is expensive and subject to error, and has many applications in data mining, image segmentation, 
remote sensing, and compression, to name but a few. 

One of the main characteristics of any clustering algorithm is its definition of proximity measure. 
Various clustering algorithms have different notions of proximity. For instance, measures such as the 
Euclidean distance or the within cluster variance, also referred to as the Mahalanobis distance [1], can 
explore up to the second order statistics of the data. Determining an appropriate proximity measure for 
clustering is a challenging task that directly depends on the structure of the data. With an ill-defined 
proximity measure, even compatible clustering algorithms fail in accurately identifying the data 
structures. Since conventional clustering algorithms exploit within cluster variance measures, they are 
only capable of identifying spherical mass-shaped clusters, while complicated shapes are disregarded. 
Algorithms such as k-means [2], fuzzy c-means [3], divisive and agglomerative hierarchical clustering [4] 
fall into this category. On the other hand, clustering based on artificial neural networks [5] and support 
vector machines [6] can identify clusters with various shapes, however, are computationally expensive 
and require perfect tunings. 

Information theoretic measures have been proposed as proximity measures that can extract data 
structures further than the second order statistics [7,8]. However, practical difficulties in estimating the 
distribution of data have significantly reduced the applicability of such proximity measures in 
clustering, especially when no prior information about the data structures is given. The distribution can 
be estimated by either parametric models, such as a mixture of Gaussian functions [9], or by 
non-parametric models, such as the Parzen window estimator [10]. Regardless of the model used for 
estimating the distribution, the performance of any information theoretic clustering totally depends on 
how well the estimator predicts this distribution, its computational cost, and its ability in updating the 
distribution as the clustering proceeds. 

Information theoretic clustering algorithms have tackled the challenges of estimating the 
distribution from different prospects. Mutual information, defined using either the Shannon’s or 
Kolmogorov’s interpretation of information, has been used for combining clusters in an agglomerative 
hierarchical clustering, in which the distribution is approximated using the k-nearest neighbor 
estimator [11]. Using the grid and count method for estimating the distribution, the statistical 
correlation among clusters was minimized for clustering gene-wide expression data [12]. The k-nearest 
neighbor estimator is sub-optimal in the sense that it requires re-estimating the distribution after the 
clusters are updated. Although the grid and count method benefits from updating the distribution of 
combined clusters from the existing ones, but this algorithm produces biased estimations for small-sized 
high-dimensional data. 

In this paper, the distribution is estimated using a Parzen window estimator with Gaussian kernels 
centered on each sample and with a constant covariance. Although this distribution seems superficial 
and computationally expensive, but exploiting the Rényi’s entropy estimator [13] in a quadratic form 
as the proximity measure, the mutual information can be estimated from pairwise distances, also 
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referred to as the quadratic mutual information [14]. This proximity measure has been used in an 
iterative clustering to optimize the clustering evaluation function that will find the nonlinear boundaries 
between clusters [15]. It also has been used in learning the discriminant transform from the mutual 
information estimated between the cluster labels and the transformed features for classification [16]. Here, 
we use a similar technique in finding the association between the data samples and cluster labels using 
the quadratic mutual information. We will show how increasing the quadratic mutual information 
assigns appropriate clusters to the data. 

First, by introducing the clustering as a distortion-rate problem, we will show how optimizing the 
distortion-rate function provides us with the best clustering result. We propose a hierarchical approach 
for this optimization. Unlike partitioning approaches such as k-means clustering that primarily require 
setting the number of clusters, the hierarchical approach gives us the additional ability of detecting the 
number of clusters in data, especially when no prior information is available. Starting from an initial set 
of clusters generated by a simple clustering algorithm, in each hierarchy, a cluster is eliminated and 
merged with the remaining clusters, until one cluster remains. Eventually, based on the variations in the 
mutual information, the true number of clusters is determined. 

We propose two algorithms for the hierarchical optimization, the agglomerative and the split-and-merge 
clustering. In the former, at any hierarchy, the two clusters that maximize the mutual information are 
combined into one cluster. In the latter one, a cluster that has the worst effect on the mutual 
information is singled out for elimination. This cluster is split and its samples are allocated to the 
remaining clusters. Both these methods maximize the mutual information and have advantages 
compared to one another. In the following section, we will first demonstrate how optimizing the 
distortion-rate function provides us with the best clustering and then show how the mutual information 
can be approximated by the quadratic mutual information. The two hierarchical approaches are also 
demonstrated in this section. In Section 3, we will demonstrate the performance of the proposed 
hierarchical clustering on both artificial and real datasets, and will compare them with clustering 
algorithms reported in the literature. 

2. Theory 

2.1. Distortion-Rate Theory 

Clustering can be viewed as projecting a large number of discrete samples from the input space, into 
a finite set of discrete symbols in the clustered space, where each symbol resembles a cluster. Thus, 
clustering is a many-to-one mapping from the input space, �, to the clustered space, ��, and can be 
fully characterized by the conditional probability distribution, ������	. Using this mapping, the 
distribution of the clustered space is estimated as: 

����	 
 � ���	������	�� (1)

where ���	 is the distribution of the input space. Figure 1 demonstrates a many-to-one mapping, where 
each symbol, ���  ��, for � 
 ����� � �, represents a cluster of samples from the input space, and�� is 
the number of clusters. 
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Although clusters have different number of samples, but the average number of samples in each 
cluster is �������	, where ������� is the conditional entropy of the clustered space given the input space 
and is estimated as: 

������� 
 � � ���	������	 ��� ������	������ (2)

The number of clusters is �����	, where ����� is the entropy of the clustered space. Note that �����
is upper bounded by ���� and is equal to the upper bound only when all clusters have an equal 
number of samples. 

Figure 1. Demonstration of a many-to-one mapping from the input space, including 
semi-infinite number of discrete samples, to a finite number of symbols, �, in the 
clustered space. 

 

To obtain a lossless many-to-one mapping, the immediate goal is to preserve the information in � in 
the projected space, ��. The loss of information due to mapping is measured by the conditional entropy, ������� 
 ���	 �  ��! ���, where ���	 is the amount of information in �. The mutual information 
between the input and clustered space,  ��! ���, is estimated as: 

 ��! ��� 
 � � ���� ��	 ��� ���� ��	���	����	������ 
 � � ���	������	 ��� ������	" ���	������	�������� (3)

Notice how the mutual information is estimated based on only the input distribution,����	, and 
mapping distribution, ������	. Mutual information gives us the rate by which the clustered space 
represents the input space. For a lossless mapping, ������� 
 # or  ��! ��� 
 ���	, which in turn 
means that all the information in the input space is sent to the clustered space. While a higher rate for 
the clustered space generates less information loss, reducing this rate increases the information loss, 
therefore introducing a tradeoff between the rate and the information loss. In clustering, the goal is to 
introduce a lossy many-to-one mapping that reduces the rate by representing the semi-infinite input 
space with a finite number of clusters, thus introducing information loss such that  ��! ��� $ ���	.

The immediate goal in clustering is to introduce clusters with the highest similarity or lowest 
distortion among its samples. Distortion is the expected value of the distance between the input and 
clustered spaces, %��� ��	, defined based on the joint distribution, ���� ��	, as: 

��&��'
��()

�
��
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*+�����	,%��� ��	- 
 � � ���� ��	%��� ��	������ (4)

Different proximity measures can be defined as distortion, for instance, for the Euclidean  
distance, �� are the center of clusters and %��� ��	 
 " �� � ��	'��  is the cluster variance and  ���� ��	 
 &.  �� / ��	 is a uniform distribution, where 0 
 " ���� ��	����  is the normalizing term and  �1 	 is the indicator function. The tradeoff between the preserved amount of information and the 
expected distortion is characterized by the Shannon-Kolmogorov rate-distortion function, where the 
goal is to achieve the minimum rate for a given distortion, illustrated by the horizontal arrow in  
Figure 2. The rate-distortion optimization has been extensively used for quantization, where the goal is 
to achieve the minimum rate for a desired distortion [17]. Unlike quantization, the goal in clustering is 
to minimize the distortion for a preferred number of clusters, �, thus, the distortion-rate function is 
optimized instead: 2�3	 
 4�56��!��	78 *,%��� ��	- (5)

In Figure 2, the vertical arrow demonstrates the distortion-rate optimization that achieves the lowest 
distortion for a desired rate. Note that the number of clusters, �, places an upper bound on the rate, 
determined by the mutual information. Assuming that decreasing distortion monotonically increases 
the mutual information, clustering can be interpreted as maximizing the mutual information for a fixed 
number of clusters, �� 
 49�����:(  ��! ���, where ���� is the number of clusters. 

Figure 2. Demonstration of the rate-distortion and distortion-rate optimizations by the 
horizontal and vertical arrows, respectively. 

 

2.2. Quadratic Mutual Information

The Shannon’s mutual information estimates the distance between the joint distribution, ��;��� <	,
and the product of the marginal distributions, ����	�;�<	, [18], as: 

 ��! =	 
 >>��;��� <	 ��� ��;��� <	����	�;�<	 %�%<
;� (6)

The mutual information has also been referred to as the Kullback-Leibler divergence between ��;��� <	 and ����	�;�<	 [19]. Due to the challenges in estimating the Shannon’s mutual information, 
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the Euclidean distance between ��;��� <	 and ����	�;�<	 can be used instead as an approximation for 
mutual information,  ?��! =	, also referred to as the quadratic divergence between distributions [20]: 

 ?��! =	 
 >>���;��� <	 � ����	�;�<	�'%�%<
;�


 >>��;' ��� <	%�%<
;�

� � >>��;��� <	����	�;�<	%�%<
;�

@ >��'��	%�
�

>�;'�<	%<
�

(7)

Considering the quadratic Rényi’s entropy estimator, �'��	 
 � �5 A B'��	%�, this entropy also 
includes the quadratic form of the distribution, B��	. Note that the quadratic Rényi’s entropy estimator 
is the second order, C 
 �, of the Rényi’s entropy estimator, �D��	 
 &&ED �5 A BD��	%� [13]. By 

disregarding the logarithm in the quadratic Rényi’s entropy, the quadratic approximation of mutual 
information in (7) is a valid estimator of the information content, and indeed can be used for clustering. 

2.3. Parzen Window Estimator with Gaussian Kernels 

The distribution of samples in cluster F is approximated by the non-parametric Parzen window 
estimator with Gaussian kernels [21,22], in which a Gaussian function is centered on each sample as: 

����	 
 ��F�� �G��H	I�J� K�� L�&'�� � ��	MJE&�� � ��	N�F�
�:& (8)

where O is transpose, % is the dimension of �, J is the covariance matrix, ��  F are the samples of 
cluster F, and the cardinality �F� is the number of samples in that cluster. Assuming the variances for 
different dimensions are equal and independent from each other, thus, providing us with a diagonal 
covariance matrix with constant elements, P�', the distribution is simplified as: 

����	 
 ��F�� �G��HP�'	I K�� Q� �� � ��	'�P�' R�F�
�:& 
 ��F��S�� � ��� P�'	�F�

�:& (9)

where S�T� P'	 is a Gaussian function with mean T and variance P'. Using the distribution estimator 
in (9), the quadratic terms in (7) can be further simplified as: 

>��'��	%�
�


 ��FU� ��FV� � � >S�� � ��� P�'	S�� � �W� P�'�%�
�

�FX�
W:&

�FY�
�:&


 ��FU� ��FV� � �S��� � �W� �P�'��FX�
W:&

�FY�
�:&

(10)

where ��  FU and �W  FV are the samples from clusters FU and FV, respectively, and ZFU�FV[  ��
are clusters from the clustered space. Note that the convolution of two Gaussian functions is also a 
Gaussian function. 

Back to the clustering problem, in which the input space is the individual samples and clustered 
space is the finite number of clusters, the quadratic mutual information in (7) is restructured in the 
following discrete form: 
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 ?��! ��� 
 � ��������� ��	 � ����	������	�'
������


 � � ����' ��� ��	������ � � � � ������� ��	����	������	������ @ � � ��'��	���'���	������
(11)

The distribution of data,�����	, is equal to the distribution of all samples considered as one cluster, 
and is estimated using (9) as: 

����	 
 �����S�� � ��� P�'	���
�:& (12)

where ��� is the total number of samples, ��� 
 " �FU�(U:& , and �FU� is the number of samples in the \]^ cluster, ZFU[  ��. The distribution of the clustered space, on the other hand, is estimated as: 

������	 
 �FU���� B�_ \ 
 ��� � � (13)

The joint distribution, ������� ��	, for each of the � clusters of the clustered space is estimated as: 

������� ��	 
 ������	������	 
 ���� � S�� � ��� P�'	�FY�
�:& B�_ \ 
 ��� � � (14)

Substituting (12), (13) and (14) in (11) provides us with the following approximation for the 
discrete quadratic mutual information (proof provided in Appendix): 

 ?��! ��� 
 ����'
`
aaa
b� � � S��� � �W� �P�'��FY�

W:&
�FY�
�:&

(
U:& � � ��FU���� � � S��� � �W� �P�'��FY�

W:&
���
�:&

(
U:&

@ c� �FU�'���'
(

U:& d��S��� � �W� �P�'����
W:&

���
�:& e

fff
g

(15)

For simplification, here we define the between cluster distance among clusters FU and FV, as PU�V 
 " " S��� � �W� �P�'��FX�W:&�FY��:& , therefore, (15) can be represented as: 

 ?��! ��� 
 ����' h�PU�U
(

U:& � � ��FU���� �PU�V
(

V:&
(

U:& @ i ��FU�'���'
(

U:& j (16)

where i 
 " " S��� � �W� �P�'����W:&����:&  is a constant. 

2.4. Hierarchical Optimization 

The proposed hierarchical algorithm, similar to most hierarchical clustering algorithms, operates in 
a bottom-up approach. In this approach clusters are merged together until one cluster is obtained, and 
then the whole process is evaluated to find the best number of clusters that fits the data [4]. Such 
clustering algorithms start by assuming each sample as an individual cluster, and therefore require ��� � � merging steps. To reduce the number of merging steps, hierarchical algorithms generally 
exploit an low-complexity initial clustering, such as k-means clustering, to generate �k clusters, far 
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beyond the expected number of clusters in the data, but still much smaller than the number of samples, �k l ��� [23,24]. The initial clustering generates small spherical clusters, while significantly reducing 
the computational complexity of the hierarchical clustering. 

Similarly, in the proposed hierarchical algorithms, clusters are merged; however, the criterion is to 
maximize the quadratic mutual information. Here we propose two approaches for merging, the 
agglomerative clustering and the split and merge clustering. In each hierarchy of the agglomerative 
clustering, two clusters are merged into one cluster to maximize the quadratic mutual information. In 
each hierarchy of the split and merge clustering, on the other hand, the cluster that has the worst effect 
on the quadratic mutual information is first eliminated, and then its samples are assigned to the 
remaining clusters in the clustered space. Following, these two approaches are explained in details. 

2.4.1. Agglomerative Clustering 

In this approach, we compute the changes in the quadratic mutual information after combining any 
pair of clusters to find the best two clusters for merging. We pick the pair that generates the largest 
increase in the quadratic mutual information. Since, at each hierarchy, clusters with the lowest 
distortion are generated, therefore, this approach can be used for optimizing the distortion-rate function 
in (5). Assuming that clusters Fm and Fn are merged to produce Fo 
 Fm p Fn, the changes in the 
quadratic mutual information, q ?m�n, can be estimated as: 

q ?m�n�]r&	 
  ?�]r&	��! ��� �  ?�]	��! ���

 ����' h�Pm�n � ���� h�Fm��Pn�V

(
V:& @ �Fn��Pm�V

(
V:& j @ �i�Fm��Fn����' j (17)

where  ?�]	��! ��� is the quadratic mutual information at the step s. The closed form equation in (17) 
provides us with the best pair for merging without literally combining each pair and estimating the 
quadratic mutual information. Eventually, the maximum q ?m�n�]r&	 at each hierarchy determines the  
true number of clusters in the data. Table 1 introduces the pseudo code for the agglomerative clustering 
approach.

Table 1. Pseudo code for the agglomerative clustering. 

1: Initial Clustering, ���� 
 �k
2: for s 
 �t �k � � do 
3: Estimate q ?m�n�]r&	 for all pairs 
4: Merge clusters Fm and Fn, in which Fm�Fn 
 49�m�n q ?m�n�]r&	�
5: end for 
6: Determine # of clusters 

2.4.2. Split and Merge Clustering 

Unlike the agglomerative clustering, this approach detects one cluster at each hierarchy for 
elimination. This cluster has the worst effect on the quadratic mutual information, meaning that out of 
all clusters, this is the cluster to be eliminated such that the mutual information is maximized. 
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Assuming cluster Fm has the worst effect on the mutual information, the change in the quadratic 
mutual information, q ?m, can be estimated as: q ?m�]r&	 
  ?�]r&	��! ��� �  ?�]	��! ���


 ����' hPm�m � �h�Fm���� �Pm�V
(

V:& @ � �FU���� �PU�m
(

V:&
(

U:&�Uum j @ i �Fm�'���' j (18)

The samples of the worst cluster are then individually assigned to the remaining clusters of the 
clustered space based on the minimum Euclidean distance, in which the closest samples are assigned 
first. This process also proceeds until one cluster remains. Eventually, based on the maximum changes 
in the quadratic mutual information at different hierarchies, q ?m�]r&	, the true number of clusters is 
determined. Table 2 introduces the pseudo code for the split and merge clustering approach. 

Table 2. Pseudo code for the split and merge clustering. 

1: Initial Clustering, ���� 
 �k
2: for s 
 �t �k � � do 
3: Estimate q ?m�]r&	 for all pairs 
4: Eliminate cluster Fm, in which Fm 
 49�m q ?m�]r&	
5: for � 
 �t �Fm� do 
6:  Assign sample �� 
 4�5��U %���� ��  FU	 to cluster FU
7: end for 
8: end for 
9: Determine # of clusters 

Comparing the two proposed hierarchical algorithms, the split and merge clustering has the 
advantage of being unbiased to the initial clustering, since the eliminated cluster in each hierarchy is 
entirely re-clustered. However, the computational complexity of the split and merge algorithm is in the 
order of v��k w ���'	 and higher than the agglomerative clustering, that is in the order of v��k' w ���	.
The split and merge clustering also has the advantage of being less sensitive to the variance selection 
for the Gaussian kernels, since re-clustering is performed based on the minimum Euclidean distance. 

Both proposed hierarchical approaches are unsupervised clustering algorithms; therefore require finding 
the true number of clusters. Determining the number of clusters is challenging, especially when no prior 
information is given about the data. In the proposed hierarchical clustering, we have access to the changes 
of the quadratic mutual information from the hierarchies. The true number of clusters is determined when 
the mutual information is maximized or when a dramatic change in the rate is observed. 

Another parameter to be set for the proposed hierarchical clustering is the variance of the Gaussian 
kernels for the Parzen window estimator. Different variances detect different structures of data. 
Although there are no theoretical guidelines for choosing this variance, but some statistical methods 
can be used. For example, an approximation can be obtained for the variance in different dimensions, P' 
 ��1#x w " P��I�:& � %G���yz  where P�� is the diagonal element of the covariance matrix of the 
data [25]. We can also set the variance proportional to the minimum variance observed in each 
dimension, P' 
 ��1#x w 4�5ZP&&� � � PII[	 G���y{  [26]. 
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3. Experimental 

The performance of the proposed hierarchical clustering was evaluated by clustering both artificial 
and real data. The distribution patterns of samples in the artificial data were designed such that they 
incorporate clusters with different shapes and sizes. The nonlinear boundaries between clusters in these 
data make it impossible for linear clustering algorithms, such as k-means clustering, to detect the true 
clusters. In Figure 3, the clustering performance of both the agglomerative and split and merge 
clustering algorithms are demonstrated, in which the k-means clustering was used to produce the initial 
clusters. Figures 3a and 3b show data containing two bean-shape clusters, with a total of 796 samples. 
Figures 3c and 3d show data containing three concentric circle-shape clusters, connected by some 
random samples, totally containing 580 samples. Besides successful clustering by both of the two 
hierarchical approaches, slight differences in the clustering outcome are mainly due to the arbitrary 
nature of the initial clustering. 

The clustering performance on real data, namely the Iris data and the Wine data, was used to make 
direct comparison with clustering algorithms reported in the literature. Using these data has the benefit of 
knowing the actual clusters, and can be used for evaluating clustering algorithms. The Iris data is one of 
the earliest test benchmarks for clustering that contains three clusters, each with 50 samples [27]. Every 
sample includes four features collected from an iris flower. The split and merge clustering generates 
six errors in the clustering result, compared to the actual labels, while the agglomerative clustering 
generates 10 errors. This is while an unsupervised perceptron network generates 19 errors, the 
superparamagnetic clustering misses 25 samples [28], the information based clustering generates 14 
errors [15] and the information forced clustering generates 15 errors [29]. 

The Wine data demonstrates the chemical analysis of wines derived from different cultivars, and 
therefore resembles different clusters. This data was developed to use chemical analysis for 
determining the origin of wines [30]. The Wine data contains three clusters with 178 samples, each 
with 13 features that represent different constituents of the wine. The split and merge clustering 
generates 15 errors, which is far less than the 56 errors produced by fuzzy clustering [3]. 

We also evaluated the performance of the proposed hierarchical algorithms in detecting the true 
number of clusters, and compared it with other methods reported in the literature. An artificial data set 
with nine Gaussian distributed clusters, arranged in three groups of three clusters, is used for this 
purpose. The variance of each cluster was increased such that the boundaries between the clusters in 
each group would start fading, and the data seemingly would have three clusters instead of nine [31]. 
Figures 4a, 4c, and 4e show the data for distribution variances 0.02, 0.04 and 0.06, respectively. By 
implementing the split and merge clustering, we demonstrate the mean quadratic mutual information 
estimated at each hierarchy in Figures 4b, 4d, and 4f, in which the errorbar shows the standard 
deviation for repeating the clustering 10-fold, each originating from a different initial clustering. As the 
variance increases for the Gaussian distributed clusters, the peak of mutual information deliberately shifts 
from nine clusters to three clusters. The advantage of the proposed clustering in detecting the true 
number of clusters is best illustrated in Figures 4d and 4f, where it progressively indicates the confusion 
between choosing three or nine clusters for this data. This confusion is represented as a local maximum 
at nine clusters with a global maximum at three clusters. Most algorithms mistakenly detect three clusters 
instead of nine clusters, especially for the data in Figure 4e, such as an information-theoretic approach 
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proposed for finding the number of clusters [31] and clustering based on Rényi’s entropy, which uses the 
variations of between cluster entropy for detecting the true number of clusters [32]. 

Figure 3. The clustering results obtained for the data with two bean-shaped clusters by (a) 
agglomerative clustering and (b) split and merge clustering. The clustering results obtained 
for the data with three concentric circle-shaped clusters by (c) agglomerative clustering and 
(d) split and merge clustering. 

(a) (b)

(c) (d)
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Figure 4. Data with 9 Gaussian distributed clusters arranged in three groups with variances (a) 
0.02, (c) 0.04, and (e) 0.06. The mean quadratic mutual information and its standard deviation 
measured at each step of the split and merge clustering for ten trials is demonstrated. A clear 
global maximum at nine clusters is observed for (b). Subplots (d) and (f) show a local 
maximum at nine clusters and a global maximum at three, demonstrating the confusion in 
selecting nine clusters out of three group of clusters when the variance is relatively high.

(a) (b)

(c) (d)

(e) (f)
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4. Conclusions 

In this paper, mutual information has been used as an information theoretic proximity measure for 
clustering. Although information theoretic measures facilitate extracting data structures further than 
the second order statistics, but are challenged by the practical difficulties in estimating the distribution 
of samples in each cluster. We use the non-parametric Parzen window estimator with Gaussian kernels 
to estimate this distribution, where it has been shown to simplify the quadratic approximation of the 
mutual information into a sum of pairwise distances. Since the quadratic mutual information can be 
updated iteratively for newly generated clusters, it is an appropriate proximity measure for hierarchical 
clustering algorithms. 

Two hierarchical approaches are proposed for maximizing the quadratic mutual information 
between the samples of the input space and the clusters, namely the agglomerative and the split and 
merge clustering. We demonstrated how maximizing the mutual information is analogous to 
optimizing the distortion-rate function that achieves the minimum distortion among samples of each 
clusters for a given rate, and therefore provides the best clustering result. Beginning from a preliminary 
set of clusters generated by the initial clustering, the agglomerative clustering finds the best pair of 
clusters to be merged at each step of the hierarchy, while the split and merge clustering eliminates the 
cluster with the worst effect on the mutual information, and reassigns its samples to the remaining 
clusters. Finally, the true number of clusters in the data is determined based on the rate of changes in 
the quadratic mutual information from different hierarchies. Although the split and merge clustering is 
computationally more expensive than the agglomerative clustering, it benefits from being less sensitive 
to the initial clustering and the selection of the variance for the Gaussian kernels. 

Experimental results on both artificial and real datasets have illustrated the promising performance 
of our proposed algorithms, both in finding the nonlinear boundaries between complex-shape clusters 
and determining the true number of clusters in the data. While conventional clustering algorithms 
typically fail in detecting the true data structures of the introduced artificial datasets, the proposed 
algorithms were able to detect clusters with different shapes and sizes. The superiority of the proposed 
algorithms for real applications is demonstrated by their clustering performance on the Iris and Wine 
datasets in comparison with some clustering algorithms reported in the literature. 
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Appendix 

Here we provide a proof for (15). The proof for each term, out of the three quadratic terms in (11), 
is presented separately. Starting from the first term we have: 
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Similarly, for the second term we have: 
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Finally, for the third term we have: 
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