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Abstract: The heat transfer problem of a zero-mean oscillatory flow of a Maxwell fluid

between infinite parallel plates with boundary conditions of the third kind is considered.

The local and global time-averaged entropy production are computed, and the consequences

of convective cooling of the plates are also assessed. It is found that the global entropy

production is a minimum for certain suitable combination of the physical parameters and a

discrete set of values of the separation between the parallel plates. The transferred heat at

the plates also shows minima in the same discrete set of values of the plates separation.

Keywords: entropy generation; optimization; oscillatory flows; boundary conditions of the
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1. Introduction

The design of many traditional heat removal engineering devices (such as heat exchangers and

cooling modules) relies on heat transfer enhancement. The performance of real thermal devices for

energy conversion processes is affected by irreversible processes that reduce their thermal efficiency. In

fluid flow systems, the use of oscillatory flows has been investigated to improve transport processes in
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different situations. It has been found that oscillatory flows may enhance the transport mass compared

to the molecular diffusive transport present in a motionless fluid [1]. The effective thermal diffusivity

of a Newtonian fluid in a duct subjected to a zero-mean oscillatory flow may reach a maximum for

a specific oscillation frequency and lead to heat transfer enhancement [2,3]. Moreover, in the case of

a viscoelastic fluid flowing in a tube, the dynamic permeability may be enhanced at given resonant

oscillation frequencies [4–10]. Oscillatory flows at high frequencies under conditions where inertial

effects are negligible have also been studied in microfluidics applications [11]. In all these situations,

the analysis of the entropy generation [12,13] has revealed as a tool for characterizing the associated

irreversible processes, contributing to the enlightenment of the underlying physical processes and

optimizing the performance of a given device. The physical mechanisms for size effects involve changes

in the relative importance of various phenomena that determine the flow and heat transfer. Here stands

the fact that the diminishing scale gives rise to surface-dominated effects. This results in variations of

the friction factor, the heat transfer coefficient, the transition from laminar to turbulent flow, etc., and in

general in the flow, heat transfer and entropy production regimes. In addition, when the characteristic

length of the system becomes the same order of magnitude as the mean free path of the molecular

components of the fluid, the continuum hypothesis breaks due to the rarefaction of the fluid under study.

This situation will not be considered here in such a way that the velocity slip and the temperature jump

at the boundaries are not included in the Navier-Stokes equations. Size effects have attracted the interest

of both applied and theoretical researchers since several years ago [14–21]. In this paper we examine

the size effects on the flow and heat transfer problem of a zero-mean oscillatory flow of a Maxwell fluid

between infinite parallel plates with boundary conditions of the third kind. The emphasis is placed on

the computation of the entropy generation [22] and the heat transfer in the plates. We will analyzed their

dependence on the characteristic length represented by the distance between plates. We find that the

global entropy production exhibits a series of maxima and minima for certain separation distances which

had not been reported in the literature. The maxima are associated with maxima and minima of the heat

being transferred at the plates. The relative importance of conductive and viscous loss processes and

their relation with the entropy production is also determined. Our findings may shed some light on the

factors affecting the physical behavior of oscillatory flows and, we hope, will provide additional useful

information for designing thermal devices.

2. Transport Problem

2.1. Basic Assumptions

We consider the flow of a viscoelastic fluid between two infinite parallel plates separated by a distance

2a. Specifically, we study an aqueous solution of cetylpyridinium chloride (CPyCl) and sodium salicylate

(NaSal) which is modeled as a Maxwell fluid. Our results can be supported, in principle, by the fact

that the Maxwell model constitutes a theoretical basis for the continuous description of viscoelastic

fluids as the mentioned solution. See for example [23], where comparison of theoretical results with

experiments was made with a good agreement. We assume that a zero-mean time-periodic pressure

gradient is established in the system producing an oscillatory flow in the axial x-direction. With the

former approximations, the flow becomes fully developed with all quantities depending on the transversal
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coordinate y and the time t, except for the pressure, which varies with x and t. We also assume that

the fluid is incompressible and monocomponent, so that mass diffusion phenomena are disregarded.

In addition, all physical properties of the fluid are assumed to be constant. Irreversible processes due

to viscous stresses generate heat in the system and it exchanges heat with the surroundings through the

Newton’s law of cooling. Finally, as a first approach we assume that the velocity slip and the temperature

jump are not present at the plates containing the fluid.

2.2. Fundamental Equations

The continuity and momentum equations for this system are

∇ · u = 0 (1)

ρ
∂u

∂t
+ (u · ∇)u = −∇p+∇ · τ (2)

where u and p , are the velocity and pressure fields while ρ and τ are the mass density and viscous stress

tensor of the fluid. In turn, the heat transfer equation reads

ρCp

(
∂T

∂t
+ (u · ∇)T

)
= k∇2T − τ : ∇u (3)

where T is the temperature, and Cp and k are the specific heat at constant pressure and the thermal

conductivity of the fluid, respectively. For the viscous stress tensor τ we consider the linear form of the

Maxwell model, namely,

tm
∂τ

∂t
= −η∇u− τ (4)

where η is the shear viscosity and tm the relaxation time for the Maxwell fluid. Note that if tm = 0 we

recover the expression for the viscous stress tensor for the Newtonian fluid given by

τ = −η∇u (5)

2.3. Velocity Field

Assuming an unidirectional flow that depends only on the transversal coordinate and time and using

the equation for τ in the momentum balance equation yields

tmρ
∂2u

∂t2
+ ρ

∂u

∂t
= −

(
1 + tm

∂

∂t

)
∂p

∂x
+ η

∂2u

∂y2
(6)

The oscillatory pressure gradient that produces the motion can be expressed as the real part of

(∂p/∂x) = Geiωt, where G is a constant. Therefore, we assume that the velocity is also a harmonic

function of t, that is, u =
[
u = 1

2

(
uo(y)e

iωt + uo(y)e
−iωt

)
, 0, 0

]
, where the bar denotes complex

conjugation. Under these circumstances the equation to be solved reads

η
∂2u0

∂y2
= (1 + iωtm)(iρωu0 +G) (7)

The corresponding non-slip boundary conditions for Equation (7) read u0(±a) = 0. Though we take

our analysis in the micro scales of length we do not use the slip boundary condition since the Knudsen
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number for the working fluid is ≤ 0.001. This condition is recognized [24,25] as the one which assures

the validity of the continuous hypothesis for describing the transport phenomena in the system and

it allows us to despise the slip of velocity at the plates. We calculate the Knudsen number through

the expression

κn = l/L (8)

where l is the mean free path of the particles of the solution and L is a characteristic length which is

taken to be the plate separation. The mean free path is obtained from a kinetic theory calculation [26] at

a fluid particle concentration of 100 mM by taking the particle size of the fluid as 2.6 nm [23,27]. The

value we obtain for the Knudsen number is 5.53 × 10−4 for a plate separation of 10−3 m. The explicit

(analytic) solution u0(y) of Equation (7), in terms of the parameters of the fluid and the separation a, is

given by

u0 (y) =
iG (−) (−i+ τω)

ρ (−iω + τω2)
+

iea
√

ρ(iω−τω2)G

ρω
(
1 + e2a

√
ρ(iω−τω2)

) × (e−y
√

ρ(iω−τω2) − ey
√

ρ(iω−τω2))

The average velocity U0 is in turn given by

Uo =
1

2

∫ +a

−a

uody (9)

2.4. Temperature Field

Once the velocity field is obtained, one may proceed to solve the energy balance equation. Here this

equation is solved using boundary conditions of the third kind that indicate that the normal temperature

gradient at any point in the boundary is assumed to be proportional to the difference between the

temperature at the surface and the external ambient temperature. Hence, the amount of heat entering

or leaving the system depends on the external temperature as well as on the convective heat transfer

coefficient. The energy balance (3) for the Maxwell fluid may be written as

ρCp
∂T

∂t
= k

∂2T

∂y∗2
+

η

1 + ω2t2m

(
∂u

∂y

)2

(10)

Note that the viscous dissipation contribution involves squared terms of harmonic functions of time.

Consequently, the heat source term contains time harmonic terms with twice the frequency of oscillation

as well as a steady contribution. Therefore, one may assume that the temperature has the form

T (y, t) = Tu(y)e
2iωt + Tu(y)e

−2iωt + Ts(y) (11)

where the sub-indexes u and s refer to the unsteady and steady contributions, respectively. Introducing

Equation (11) into Equation (10), the equations satisfied by Tu, Tu and Ts are found to be

k
d2Tu

dy2
− 2iρCpωTu = − η

4(1 + ω2t2m)

(
∂u0

∂y

)2

(12)

k
d2Tu

dy2
+ 2iρCpωTu = − η

4(1 + ω2t2m)

(
∂u0

∂y

)2

(13)
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and

k
d2Ts

dy2
= − 1

2(1 + ω2t2m)

(
∂u0

∂y

)(
∂u0

∂y

)
(14)

The solution to Equations (12)-(14) must satisfy the boundary conditions of the third kind, namely

k
dTs

dy
+ h1 (T s − TA) = 0, at y = a (15)

k
dTs

dy
− h2 (T s − TA) = 0, at y = −a (16)

k
dTu

dy
+ h1Tu = 0, at y = a (17)

k
dTu

dy
− h2Tu = 0, at y = −a (18)

where TA is the reference ambient temperature and h1 and h2 , the convective heat transfer coefficients

of the lower and upper surfaces, respectively, which can be different. Apart from the spatial or the spatial

and temporal dependence, such solutions are functions of ρ, Cp, η, h1 , h2 and ω. The expressions of the

steady temperature Ts(y) and the unsteady temperature Tu(y) in terms of the parameters of the fluid and

the separation a, numerically derived in this work with the aid of Mathematica from Equation (14) and

its boundary conditions, will not be shown explicitly.

The velocity and temperature fields already obtained will be used for the determination of the entropy

generation rate for this problem. The local entropy density generation rate, Ṡ, that takes into account

irreversible processes due to heat conduction and viscous losses is given by [9,10]

Ṡ =
k

T 2

(
∂T

∂y

)2

+
η

T (1 + ω2t2m)

(
∂u

∂y

)2

(19)

Equation (19) is obtained from the Gibbs equation in conformity with the principles of irreversible

thermodynamics (see [22] , Chapter 13). For the case of a constant density monocomponent fluid the

Gibbs equation reduces to

T
dS

dt
=

dU

dt
(20)

By introducing the balance equation of internal energy in the absence of electromagnetic fields an entropy

balance equation is obtained where the entropy production takes the form

− 1

T 2
q · ∇T − 1

T
τ : ∇v (21)

being q the heat flux. If one introduces in the last expression the Fourier’s law and Equation (4) for the

heat flux and the viscous stress tensor, respectively, one gets Equation (19).

Evidently, Ṡ is a function of space and time and, in fact, contains both time harmonic and steady parts.

The global entropy generation rate per unit length in the axial direction, Ṡg, is obtained by integrating Ṡ

between the plates and over one period of time.
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3. Results and Discussion

A particular choice of the values of the parameters defining the system was made in order to

perform the further simulations. The values are the following: k = 0.58 W/mK, ρ = 1050 Kg/m3,

Cp = 4.2× 103 J/KgK and η = 60 Pa s, tm = 1.9 s. The viscoelastic properties of this fluid correspond

to an aqueous solution of cetylpyridinium chloride (CPyCl) 100 mM and sodium salicylate (NaSal)

60 mM [28]. The oscillation frequency ω in the pressure gradient was ranging from 100 Hz to 2×103 Hz

and we took TA = 300 K. Finally, the separation between plates ranged from 100 μm to 10−3 m.

Firstly, Figures 1 and 2 show the plot of u0 as a function of the position along y axis for different

times and frequencies of the applied external pressure gradient, respectively. Figure 3 corresponds to the

profile of a normalized local temperature Θ along the y-coordinate for different times. The definition of

Θ is as follows

Θ(y, t) =
T (y, t)− Tm

Tmax − Tmin

where Tm is the mean temperature in the profile, Tmax and Tmin are the maximum and the minimum

temperatures in the plot respectively.

Figure 1. Flux velocity vs. position in y for different times. Solid line: t = 0.00 s, dashed:

t = 2× 10−4 s, dotdashed: t = 10−3 s. ω = 100 Hz, a = 10−3 m.
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We now consider the aim of this communication, namely, the study of the dependence of the entropy

production and heat transfer on the plates separation. We begin with Figure 4 where the behavior of

Ṡ with respect the position along y axis can be seen. The plot was obtained for three different times.

Figure 5 shows one of the main results of this paper. The global entropy production, calculated by

summing it on the profile along the y axis and over a period, shows maxima at certain values of the

plates separation a. This is a remarkable result which will be commented below. We have calculated

the Nusselt number which describes the relative importance of convective effects at the plates and found

that it also has several maxima (Figure 6). These maxima coincide with those of the global entropy

production shown in Figure 4 for the same values of the plates separation. The connection of this fact

with the entropy generation will be discussed below too. It is convenient to introduce at this point the

definition of the Nusselt number we have used in the calculation. The definition is the following [29,30]
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Nu =
−
(

∂T
∂y

)
y=±a

Tp − Tb

(22)

being Tp and Tb the value of the temperature at the plate in ±a and the bulk temperature, respectively.

This last defined as

Tb =

a∫
−a

ρT (y, t)u0 (y) dy

a∫
−a

ρu0 (y) dy

Figure 2. Flux velocity vs. position in y for different frequencies of the external pressure

gradient. Solid line: ω = 200 Hz, dashed: ω = 210 Hz, dotdashed: ω = 220 Hz.

a = 10−3 m.
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Figure 3. Flux temperature vs. position in y for different times. Solid line: t = 0.0 s, dashed:

t = 0.2 s, dotdashed: t = 0.4 s. a = 1.7× 10−4 m, h1 = 5000 J/m2K, h2 = 1000 J/m2K.
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Figure 4. Local entropy production vs. position in y for different times. Solid line:

t = 0.00 s, dashed: t = 2×10−4 s, dotdashed: t = 3×10−4 s. ω = 100 Hz, a = 1.7×10−4 m.
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Figure 5. Global entropy production vs. plates separation. ω = 100 Hz, h1 = 5000 J/m2K,

h2 = 1000 J/m2K.
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Figure 6. Nusselt number at upper plate vs. plates separation. ω = 100 Hz,

h1 = 5000 J/m2K, h2 = 1000 J/m2K.
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Finally, in Figure 7, the dependence of the entropy production can be found with respect to the

frequency of the oscillation of the external pressure gradient. All the details of the mentioned figures can

be found in the corresponding caption.

Figure 7. Global entropy production vs. frequency of the external pressure gradient.

a = 0.0001 m, h1 = 5000 J/m2K, h2 = 1000 J/m2K.
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We begin the discussion of our results by remarking the effects of the viscoelastic properties of the

working fluid. These properties reflect in Figures 1 and 2 where it can be seen that different horizontal

layers of the fluid flow with opposite velocities. This kind of behavior does not appear in the case of a

Newtonian fluid [31]. It must be noted in Figure 3 the convective effects causing that the temperature

at the plates differs from the reference temperature TA. Figure 4 displays the inhomogeneities of the

local entropy generation in the profile along the y axis. Naturally, the maxima and minima in each case

coincide with the maxima and minima shown by the velocity gradient in the profile. One of our main

results is shown in Figure 5 where the maxima of Ṡg are periodically found in the considered range

variation of the separation between the plates, namely, 10 μm to 2 × 10−3 m. We have investigated

the change of the conductive and viscous contribution to the entropy generation and the heat transfer

at the plates with respect to the plates separation a in the same interval. First, we found that viscous

dissipation becomes the most important contribution dominating heat conductive effects in that interval.

So, the main internal heat source in the system is the shearing of fluid layers. This is characteristic of

the surface-dominated phenomena in small scale devices [16]. For a ≥ 2 × 10−3 m viscous losses and

conductive contributions become comparable in magnitude. Our calculations showed that the maxima

of the global entropy generation are due mainly to the presence of maxima in the dissipative viscous

contribution. The physical mechanism of this amplification for certain values of a is to be determined.

The position of the maxima with respect to the separation a depends only on the frequency of the external

pressure gradient. The position is not affected by other physical parameters. The intensity G of the

external gradient only increases the value of the global entropy production without changing the position

of the maxima. Our finding was that the position of the maxima moves towards smaller values of a as the

frequency is increased. This would imply, in principle, that in the high frequency operation the maxima

in the global entropy generation may appear when the plates separation is of the order of magnitude
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of nanometers. This is an interesting conclusion for the design of nanodevices which deserves more

investigation by applying the proper boundary conditions. In relation to the heat transfer at the plates,

Figure 6 shows the corresponding result of this study. The relative importance of convective effects at

the plates was calculated through the Nusselt number as defined in Equation (22). It was found that the

Nusselt number also has maxima at the same values of the separation between plates where the entropy

generation has maxima. In turn, these maxima coincide with the maxima of the conductive and viscous

contributions to the entropy production. Here it must be mentioned again the tendency of the maxima in

the Nusselt number to move towards smaller values of the separation between the plates as the oscillation

frequency increases. Translating the previous comments to temperature gradient at the plates language, it

should be stressed that it increases its magnitude when the convective coefficients h1 or h2 are increased.

All our graphs were obtained with h1 (upper plate) < h2 (lower plate). In Figure 6 we have shown the

upper plate case (y = a) so in the lower plate case we should expect the presence of minima (in fact

negative minima) at the same values of the plates separation with an absolute value bigger than those

maxima in the upper plate case. The sign of the temperature gradient at the plates indicates that heat is

transferred from the outside into the system in both cases. Nevertheless, it is worth noting that if h1 � h2

then both extremes have positive values. This indicates that heat is being transferred from the outside of

the upper plate to the outside of the lower plate. Finally, in Figure 7 it can be seen that the global entropy

production also has maxima when the frequency is varied for a fixed value of the separation between

the plates. This allows one to infer the dependence of the global entropy production on the oscillatory

Reynolds number Rω defined as

Rω =
ρωa2

η
(23)

Expression (23) implies that the plot Ṡg vs. Rω has the same shape as that of the plot Ṡg vs. ω shown in

Figure 7.

4. Summary and Conclusions

In this work we have analyzed the problem of an oscillatory flow of a Maxwell fluid between infinite

parallel plates and considered the effects of the separation between the plates with boundary conditions

of the third kind. After deriving the velocity and temperature fields, we computed the local and global

entropy production in the system. It has been found that the global entropy generation shows maxima

at specific values of the separation between the parallel plates. Two facts accompany the appearance of

these maxima in the global entropy production. On the one hand, the conductive and viscous dissipative

contributions to the entropy production in the bulk also show maxima at the same values of the separation

between the plates. On the other, the heat transferred in the plates has maxima at those values of a too.

The system can be operated in such a way that heat can be transferred at big rates from the lower to the

upper part of the device. As the frequency of the oscillatory external pressure gradient is increased, the

maxima appear for smaller separation values and eventually they appear in the microscale and even in

the nanoscale of lengths.

It can be concluded that for a suitable combination of geometric design, physical parameters involved

in the oscillatory regime of the problem and those defining the boundary conditions, the system can

operate in a minimum global entropy production state avoiding the most dissipative working conditions,
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but they can be combined to get the maximum rate of heat transferred from the upper part to the lower

part of the device (or vice versa). The role played by the separation between the parallel plates must be

specially remarked. This can be a useful information for designing thermal devices.
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