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Abstract: In this paper we review a particular connection between information theory and

group theory. We formalize the notions of information elements and information lattices,

first proposed by Shannon. Exploiting this formalization, we expose a comprehensive

parallelism between information lattices and subgroup lattices. Qualitatively, isomorphisms

between information lattices and subgroup lattices are demonstrated. Quantitatively, a

decisive approximation relation between the entropy structures of information lattices and

the log-index structures of the corresponding subgroup lattices, first discovered by Chan and

Yeung, is highlighted. This approximation, addressing both joint and common entropies,

extends the work of Chan and Yeung on joint entropy. A consequence of this approximation

result is that any continuous law holds in general for the entropies of information elements if

and only if the same law holds in general for the log-indices of subgroups. As an application,

by constructing subgroup counterexamples, we find surprisingly that common information,

unlike joint information, obeys neither the submodularity nor the supermodularity law. We

emphasize that the notion of information elements is conceptually significant—formalizing

it helps to reveal the deep connection between information theory and group theory. The

parallelism established in this paper admits an appealing group-action explanation and

provides useful insights into the intrinsic structure among information elements from a

group-theoretic perspective.
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1. Introduction

Information theory was born with the celebrated entropy formula measuring the amount of

information for the purpose of communication. However, a suitable mathematical model for information
itself remained elusive over the last sixty years. It is reasonable to assume that information theorists

have had certain intuitive conceptions of information, but in this paper we seek a mathematic model

for such a conception. In particular, building on Shannon’s work [1], we formalize the notion of

information elements to capture the syntactical essence of information, and identify information elements

with σ-algebras and sample-space-partitions. As we shall see in the following, by providing such a

mathematical framework for information and exposing the lattice structure of information elements, the

seemingly surprising connection between information theory and group theory, established by Chan

and Yeung [2], can be understood in terms of isomorphism relations between information lattices and

subgroup lattices. Consequently, a full-fledged and decisive approximation relation between the entropy

structure of information lattices, including both joint and common entropies, and the subgroup-index

structure of corresponding subgroup lattices becomes evident.

We first motivate a formal definition for the notion of information elements.

1.1. Informationally Equivalent Random Variables

Recall the profound insight offered by Shannon [3] on the essence of communication: “the

fundamental problem of communication is that of reproducing at one point exactly or approximately a

message selected at another point.” Consider the following motivating example. Suppose a message, in
English, is delivered from person A to person B. Then, the message is translated and delivered in German
by person B to person C (perhaps because person C does not know English). Assuming the translation

is faithful, person C should receive the message that person A intends to convey. Reflecting upon this

example, we see that the message (information) assumes two different “representations” over the process

of the entire communication—one in English and the other in German, but the message (information)

itself remains the same. Similarly, coders (decoders), essential components of communication systems,

perform the similar function of “translating” one representation of the same information to another

one. This suggests that “information” itself should be defined in a translation invariant way. This

“translation-invariant” quality is precisely how we seek to characterize information.

To introduce the formal definition for information elements to capture the essence of information

itself, we note that information theory is built within the probabilistic framework, in which one-time

information sources are usually modeled by random variables. Therefore, we start in the following with

the concept of informational equivalence between random variables and develop the formal concept of

information elements from first principles.

Recall that, given a probability space (Ω,F ,P) and a measurable space (S,S), a random variable is

a measurable function from Ω to S. The set S is usually called the state space of the random variable,

and S is a σ-algebra on S. The set Ω is usually called the sample space; F is a σ-algebra on Ω, usually

called the event space; and P denotes a probability measure on the measurable space (Ω,F).

To illustrate the idea of informational equivalence, consider a random variable X : Ω → S and

another random variable X ′ = f(X), where the function f : S → S′ is bijective and measurable (f−1
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is assumed to be measurable as well). Certainly, the two random variables X and X ′ are technically
different for they have different codomains. However, it is intuitively clear that that they are “equivalent”

in some sense. In particular, one can infer the exact state of X by observing that of X ′, and vice versa.

For this reason, we may say that the two random variables X and X ′ carry the same piece of information.

Note that the σ-algebras induced by X and X ′ coincide with each other. In fact, two random variables

such that the state of one can be inferred from that of the other induce the same σ-algebra. This leads to

the following definition for information equivalence.

Definition 1. We say that two random variables X and X ′ are informationally equivalent, denoted
X ∼= X ′, if the σ-algebras induced by X and X ′ coincide.

It is easy to verify that the “being-informational-equivalent” relation is an equivalence relation. The

definition reflects our intuition, as demonstrated in the previous motivating examples, that two random

variables carry the same piece information if and only if they induce the same σ-algebra. This motivates

the following definition for information elements to capture the syntactical essence of information itself.

Definition 2. An information element is an equivalence class of random variables with respect to the
“being-informationally-equivalent” relation.

We call the random variables in the equivalent class of an information element m representing random
variables of m. Or, we say that a random variable X represents m.

We believe that our definition of information elements reflects exactly Shannon’s original

intention [1]:

Thus we are led to define the actual information of a stochastic process as that which is

common to all stochastic processes which may be obtained from the original by reversible

encoding operations.

Intuitive (also informal) discussion on identifying “information” with σ-algebras surfaces often

in probability theory, martingale theory, and mathematical finance. In probability theory, see for

example [4], the concept of conditional probability is usually introduced with discussion of treating

the σ-algebras conditioned on as the “partial information” available to “observers”. In martingale theory

and mathematical finance, see for example [5,6], filtrations—increasing sequences of σ-algebras—are

often interpreted as records of the information available over time.

A Few Observations

Proposition 1. If X ∼= X ′, then H(X) = H(X ′).

(Throughout the paper, we use H(X) to denote the entropy of random variable X .)

The converse to Proposition 1 clearly fails—two random variables with a same entropy do not

necessarily carry the same information. For example, consider two binary random variables X, Y :

Ω → {0, 1}, where Ω = {a, b, c, d} and P is uniform on Ω. Suppose X(ω) = 0 if ω = a, b and

1 otherwise, and Y (ω) = 0 if ω = a, c and 1 otherwise. Clearly, we have H(X) = H(Y ) = 1,

but one can readily agree that X and Y do not carry the same information. Therefore, the notion of

“informationally-equivalent” is stronger than that of “identically-distributed.”
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On the other hand, we see that the notion of “informationally-equivalent” is weaker than that of

“being-equal.”

Proposition 2. If X = X ′, then X ∼= X ′.

The converse to Proposition 2 fails as well, since two informationally equivalent random variable X

and X ′ may have totally different state spaces, so that it does not even make sense to say X = X ′.
As shown in the following proposition, the notion of “informational equivalence” characterizes a kind

of state space invariant “equalness.”

Proposition 3. Two random variables X and Y with state spaces X and Y , respectively, are
informationally equivalent if and only if there exists a one-to-one correspondence f : X → Y such
that Y = f(X).

Remark: Throughout the paper, we fix a probability space unless otherwise stated. For ease of

presentation, we confine ourselves in the following to finite discrete random variables. However, most

of the definitions and results can be applied to more general settings without significant difficulties.

1.2. Identifying Information Elements via σ-algebras and Sample-Space-Partitions

Since the σ-algebras induced by informationally equivalent random variables are the same, we can

unambiguously identify information elements with σ-algebras. Moreover, because we deal with finite

discrete random variables exclusively in this paper, we can afford to discuss σ-algebras more explicitly

as follows.

Recall that a partition Π of a set A is a collection {πi : i ∈ [k]} of disjoint subsets of A such

that ∪i∈[k]πi = A. (Throughout the paper, we use the bracket notation [k] to denote the generic index set

{1, 2, · · · , k}.) The elements of a partition Π are usually called the parts of Π. It is well known that there

is a natural one-to-one correspondence between partitions of the sample space and the σ-algebras—any

given σ-algebra of a sample space can be generated uniquely, via union operation, from the atomic events

of the σ-algebra, while the collection of the atomic events forms a partition of the sample space. For

example, for a random variable X : Ω → X , the atomic events of the σ-algebra induced by X are

X−1({x}), x ∈ X . For this reason, from now on, we shall identify an information element by either its

σ-algebra or its corresponding sample space partition.

It is well known that the number of distinct partitions of a set of size n is the nth Bell number and

that the Stirling number of the second kind S(n, k) counts the number of ways to partition a set of

n elements into k nonempty parts. These two numbers, important to the remarkable results obtained

by Orlitsky et al. in [7], suggest a possibly interesting connection between the notion of information

elements discussed in this paper and the “patterns” studied in [7].

1.3. Shannon’s Legacy

As mentioned before, the notion of information elements was originally proposed by Shannon in [1].

In the same paper, Shannon also proposed a partial order for information elements and a lattice structure

for collections of information elements. We follow Shannon and call such lattices information lattices in

the following.
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Abstracting the notion of information elements out of their representations—random variables—is

a conceptual leap, analogous to the leap from the concrete calculation with matrices to the study of

abstract vector spaces. To this end, we formalize both the ideas of information elements and information

lattices. By identifying information elements with sample-space-partitions, we are equipped to establish

a comprehensive parallelism between information lattices and subgroup lattices. Qualitatively, we

demonstrate isomorphisms between information lattices and certain subgroup lattices. On such

isomorphisms, quantitatively, we establish an approximation for the entropy structure of information

lattices, consisting of joint, common, and many other information elements, using the log-index

structures of their counterpart subgroup lattices. Our approximation builds on the construction of joint

information elements by Chan and Yeung [2]. Further reinforcing the view of [2], the parallelism

identified here reveals an intimate connection between information theory and group theory and

suggests that group theory may provide a suitable mathematical language to describe and study laws

of information.

The full-fledged parallelism between information lattices and subgroup lattices established in paper is

one of our main contributions of this review. With this intrinsic mathematical structure among multiple

information elements being uncovered, we anticipate more systematic attacks on certain network

information problems, where a better understanding of intricate internal structures among multiple

information elements is in urgent need. Indeed, the ideas of information elements and information

lattices were originally motivated by network communication problems—in [1]. Shannon wrote:

The present note outlines a new approach to information theory which is aimed specifically

at the analysis of certain communication problems in which there exist a number of sources

simultaneously in operation.

and

Another more general problem is that of a communication system consisting of a large

number of transmitting and receiving points with some type of interconnecting network

between the various points. The problem here is to formulate the best system design

whereby, in some sense, the best overall use of the available facilities is made.

It is interesting to note that current research of information inequalities are mostly motivated by network

coding capacity problems.

Certainly, we do not claim that all the ideas in this paper are our own. For example, as we pointed

out previously, the notions of information elements and information lattices were proposed as early as

the 1950s by Shannon [1]. However, this paper of Shannon’s is not well recognized, perhaps owing

to the abstruseness of the ideas. Formalizing these ideas and connecting them to current research by

re-exposing internal structure relation as in Theorems 2 and 3 is one of the primary goals of this paper.

For all other results and ideas that have been previously published, we separate them from those of our

own by giving detailed references to their original sources.

Our review focuses on one possible connection between group theory and information theory: the

parallelism between information lattices and subgroup lattices. Over the years, other connections have

been made between group theory and information theory, which are beyond the scope of our focus.
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Johnson and Suhov [8] have studied the behavior of the entropy of convolutions of independent random

variables on compact groups, providing an explicit exponential bound on the rate of convergence of

entropy to its maximum. Harremoës [9] presented a simplified proof of convergence. Chirikjian [10,11]

has shown how classical inequalities used in information theory, such as those of de Bruijn, Fisher,

Cramér, Rao, and Kullback, carry over in a natural way from Euclidean space to unimodular Lie

groups. That connection is motivated by problems relating to information gathering in mobile robotics,

satellite attitude control, tomographic image reconstruction, biomolecular structure determination, and

quantum information theory. Indeed, Chirikjian [11] points out the following in the context of connecting

“Shannon’s brand of information theory” and Lie groups:

Despite their relatively long and roughly parallel history, surprisingly few connections

appear to have been made between these two vast fields. The only attempts to do so

known to the author include those of Johnson and Suhov from an information-theoretic

perspective, Willsky from an estimation and controls perspective, and Maksimov and Roy

from a probability perspective.

(The references cited above are Johnson and Suhov [8,12], Willsky [13], Maksimov [14], and Roy [15].)

The connections between group theory and information theory identified above are concerned with

information theoretic analysis of random objects that take values in groups—the group is the state space

of the random variable being studied. In contrast, the connection between group theory and information

theory that we draw in this paper is on the group-theoretic nature of information itself (in terms of

information elements), quite apart from the state spaces of random objects. We hope to make this point

clear in our development.

1.4. Organization

The paper is organized as follows. In Section 2, we introduce a “being-richer-than” partial order

between information elements and study the information lattices induced by this partial order. In

Section 3, we formally establish isomorphisms between information lattices and subgroup lattices.

Section 4 is devoted to the quantitative aspects of information lattices. We show that the entropy structure

of information lattices can be approximated by the log-index structure of their corresponding subgroup

lattices. As a consequence of this approximation result, in Section 5, we show that any continuous

law holds for the entropies of common and joint information if and only if the same law holds for the

log-indices of subgroups. As an application of this result, we show a result, which is rather surprising,

that unlike joint information neither the submodularity nor the supermodularity law holds for common

information in general. We conclude the paper with a discussion in Section 6.

2. Information Lattices

2.1. “Being-Richer-Than” Partial Order

Recall that every information element can be identified with its corresponding sample-space-partition.

Consider two sample-space-partitions Π and Π′. We say that Π is finer than Π′, or Π′ is coarser than Π,

if each part of Π is contained in some part of Π′.
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Definition 3. For two information elements m1 and m2, we say that m1 is richer than m2, or m2 is poorer

than m1, if the sample-space-partition of m1 is finer than that of m2. In this case, we write m1 ≥ m2.

It is easy to verify that the above defined “being-richer-than” relation is a partial order.

We have the following immediate observations:

Proposition 4. m1 ≥ m2 if and only if H(m2|m1) = 0.

As a corollary to the above proposition, we have

Proposition 5. If m1 ≥ m2, then H(m1) ≥ H(m2).

The converse of Proposition 5 does not hold in general.

With respect to representative random variables of information elements, we have

Proposition 6. Suppose random variables X1 and X2 represent information elements m1 and m2

respectively. Then, m1 ≥ m2 if and only if X2 = f(X1) for some function f .

A similar result to Proposition 6 was previously observed by Renyi [16] as well.

The “being-richer-than” relation is very important to information theory, because it characterizes

the only universal information-theoretic constraint put on all deterministic coders (decoders)—the input

information element of any coder is always richer than the output information element. For example,

partially via this principle, Yan et al. recently characterized the capacity region of general acyclic

multi-source multi-sink networks [17]. Harvey et al. [18] obtained an improved computable outer bound

for general network coding capacity regions by applying this same principle under a different name called

information dominance—the authors of the paper acknowledged: “...information dominance plays a key

role in our investigation of network capacity.”

2.2. Information Lattices

Recall that a lattice is a set endowed with a partial order in which any two elements have a unique

supremum and a unique infimum with respect to the partial order. Conventionally, the supremum of two

lattice elements x and y is also called the join of x and y; the infimum is also called the meet. In our case,

with respect to the “being-richer-than” partial order, the supremum of two information elements m1 and

m2, denoted m1 ∨m2, is the poorest among all the information elements that are richer than both m1 and

m2. Conversely, the infimum of m1 and m2, denoted m1 ∧m2, is the richest among all the information

elements that are poorer than both m1 and m2. In the following, we also use m12 to denote the join of

m1 and m2, and m12 the meet.

Definition 4. An information lattice is a set of information elements that is closed under the join ∨ and
meet ∧ operations.

Recall the one-to-one correspondence between information elements and sample-space-partitions.

Consequently, each information lattice corresponds to a partition lattice (with respect to the

“being-finer-than” partial order on partitions), and vice versa. This formally confirms the assertions

made in [1]: “they (information lattices) are at least as general as the class of finite partition lattices.”
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Since the collection of information lattices could be as general as that of partition lattices, we should

not expect any special lattice properties to hold generally for all information lattices, because it is

well-known that any finite lattice can be embedded in a finite partition lattice [19]. Therefore, it is

not surprising to learn that information lattices are in general not distributive, not even modular.

2.3. Joint Information Element

The join of two information elements is straightforward. Consider two information elements m1

and m2 represented respectively by two random variables X1 and X2. It is easy to check that the joint

random variable (X1, X2) represents the join m12. For this reason, we also call m12 (or m1 ∨m2) the

joint information element of m1 and m2. It is worth pointing out that the joint random variable (X2, X1)

represents m12 equally well.

2.4. Common Information Element

In [1], the meet of two information elements is called common information. More than twenties

years later, the same notion of common information was independently proposed and first studied in

detail by Gács and Körner [20]. For the first time, it was demonstrated that common information

could be far less than mutual information. (“Mutual information” is rather a misnomer because it

does not correspond naturally to any information element [20].) Unlike the case of joint information

elements, characterizing common information element via their representing random variables is much

more complicated. See [20,21] for details.

In contrast to the all-familiar joint information, common information receives far less attention.

Nonetheless, it has been shown to be important to cryptography [22–25], indispensable for characterizing

of the capacity region of multi-access channels with correlated sources [26], useful in studying

information inequalities [27,28], and relevant to network coding problems [29].

2.5. Previously Studied Lattices in Information Theory

Historically, at least three other lattices [30–32] have been considered in attempts to characterize

certain ordering relations between information elements. Two of them, studied respectively in [30]

and [32], are subsumed by the information lattices considered in this paper.

3. Isomorphisms between Information Lattices and Subgroup Lattices

In this section, we discuss the qualitative aspects of the parallelism between information lattices

generated from sets of information elements and subgroup lattices generated from sets of subgroups. In

particularly, we establish isomorphism relations between them.

3.1. Information Lattices Generated by Information Element Sets

It is easy to verify that both the binary operations “∨” and “∧” are associative and commutative.

Thus, we can readily extend them to cases of more than two information elements. Accordingly, for a
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given set {mi : i ∈ [n]} of information elements, we denote the joint information element of the subset

{mi : i ∈ α}, α ⊆ [n], of information elements by mα and the common information element by mα.

Definition 5. Given a set M = {mi : i ∈ [n]} of information elements, the information lattice generated

by M, denoted LM, is the smallest information lattice that contains M. We call M the generating set of
the lattice LM.

It is easy to see that each information element in LM can be obtained from the information elements

in the generating set M via a sequence of join and meet operations. Note that the set {mα : α ⊆ [n]}
of information elements forms a meet semi-lattice and the set {mβ : β ⊆ [n]} forms a join semi-lattice.

However, the union {mα,m
β : α, β ⊆ [n]} of these two semi-lattices does not necessarily form a

lattice. To see this, consider the following example constructed with partitions (since partitions are in

one-to-one correspondence with information elements). Let {πi : i = [4]} be a collection of partitions

on the set {1, 2, 3, 4} where π1 = 12|3|4, π2 = 14|2|3, π3 = 23|1|4, and π4 = 34|1|2. See Figure 1

for the Hasse diagram of the lattice generated by the collection {πi : i = [4]}. It is easy to see that

(π1 ∧ π2)∨(π3 ∧ π4) = 124|3∨ 234|1 = 24|1|3, but 24|1|3 /∈ {πα, π
β : α, β ∈ [4]}. Similarly, we have

(π1 ∧ π3)∨(π2 ∧ π4) = 13|2|4 /∈ {πα, π
β : α, β ∈ [4]}.

Figure 1. Lattice Generated by {πi : i = [4]}.

1|2|3|4

123|4 124|3 134|2 234|1

1234

12|3|4 14|2|3 13|2|4 24|1|3 23|1|4 34|1|2
π3 π4π1 π2

3.2. Subgroup Lattices

Consider the binary operations on subgroups—intersection and union. We know that the intersection

G1 ∩ G2 of two subgroups is again a subgroup. However, the union G1 ∪ G2 does not necessarily form

a subgroup. Therefore, we consider the subgroup generated from the union G1 ∪ G2, denoted G12 (or

G1 ∨G2). Similar to the case of information elements, the intersection and “∨” operations on subgroups

are both associative and commutative. Therefore, we readily extend the two operations to the cases

with more than two subgroups and, accordingly, denote the intersection ∩i∈[n]Gi of a set of subgroups

{Gi : i ∈ [n]} by G[n] and the subgroup generated from the union by G[n]. It is easy to verify that

the subgroups G[n] and G[n] are the infimum and the supremum of the set {Gi : i ∈ [n]} with respect

to the “being-a-subgroup-of” partial order. For notation consistency, we also use “∧” to denote the

intersection operation.

Note that, to keep the notation simple, we “overload” the symbols “∨” and “∧” for both the join

and the meet operations with information elements and the intersection and the “union-generating”

operations with subgroups. Their actual meaning should be clear within context.
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Definition 6. A subgroup lattice is a set of subgroups that is closed under the ∧ and ∨ operations.

For example, the set of all the subgroups of a group forms a lattice.

Similar to the case of information lattices generated by sets of information elements, we consider in

the following subgroup lattices generated by a set of subgroups.

Definition 7. Given a set G = {Gi : i ∈ [n]} of subgroups, the subgroup lattice generated by G, denoted
LG, is the smallest lattices that contains G. We call G the generating set of LG.

Note that the set {Gα : α ⊆ [n]} forms a semilattice under the meet ∧ operation and the set

{Gβ : β ⊆ [n]} forms a semilattice under the join ∨ operation. However, as in the case of information

lattices, the union {Gα, G
β : α, β ⊆ [n]} of the two semilattices does not necessarily form a lattice.

In the remainder of this section, we relate information lattices generated by sets of information

elements and subgroup lattices generated by collections of subgroups and demonstrate isomorphism

relations between them. For ease of presentation, as a special case we first introduce an isomorphism

between information lattices generated by sets of coset-partition information elements and their

corresponding subgroup lattices.

3.3. Special Isomorphism Theorem

We endow the sample space with a group structure—the sample space in question is taken to be

a group G. For any subgroup of G, by Lagrange’s theorem [33], the collection of its cosets forms a

partition of G. Certainly, the coset-partition, as a sample-space-partition, uniquely defines an information

element. A collection G = {Gi : i ∈ [n]} of subgroups of G, in the same spirit, identifies a set

M = {mi : i ∈ [n]} of information elements via this subgroup–coset-partition correspondence.

Remark: throughout the paper, groups are taken to be multiplicative, and cosets are taken to be

right cosets.

It is clear that, by our construction, the information elements in M and the subgroups in G are in

one-to-one correspondence via the subgroup–coset-partition relation. It turns out that the information

elements on the entire information lattice LM and the subgroups on the subgroup lattice LG are in

one-to-one correspondence as well via the same subgroup–coset-partition relation. In other words,

both the join and meet operations on information lattices are faithfully “mirrored” by the join and meet

operations on subgroup lattices.

Theorem 1. (Special Isomorphism Theorem) Given a set G = {Gi : i ∈ [n]} of subgroups, the subgroup
lattice LG is isomorphic to the information lattice LM generated by the set M = {mi : i ∈ [n]}
of information elements, where mi, i ∈ [n], are accordingly identified via the coset-partitions of the
subgroups Gi, i ∈ [n].

The theorem is shown by demonstrating a mapping, from the subgroup lattice LG to the information

lattice LM, such that it is a lattice-morphism, i.e., it honors both join and meet operations, and is bijective

as well. Naturally, the mapping φ : LG → LM assigning to each subgroup Gi ∈ LG the information

element identified by the coset-partition of the subgroup Gi is such a morphism. Since this theorem and

its general version, Theorem 2, are crucial to our later results—Theorems 3 and 5—and certain aspects

of the reasoning are novel, we include a detailed proof for it in Appendix A.
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3.4. General Isomorphism Theorem

The information lattices considered in Section 3.3 is rather limited—by Lagrange’s theorem,

coset-partitions are all equal partitions. In this subsection, we consider arbitrary information lattices—we

do not require the sample space to be a group. Instead, we treat a general sample-space-partition as an

orbit-partition resulting from some group-action on the sample space.

3.4.1. Group-Actions and Permutation Groups

Definition 8. Given a group G and a set A, a group-action of G on A is a function (g, a) �→ g(a), g ∈ G,
a ∈ A, that satisfies the following two conditions:

• (g1g2)(a) =
(
g1(g2(a)

)
for all g1, g2 ∈ G and a ∈ A;

• e(a) = a for all a ∈ A, where e is the identity of G.

We write (G,A) to denote the group-action.

Now, we turn to the notions of orbits and orbit-partitions. We shall see that every group-action (G,A)

induces unambiguously an equivalence relation as follows. We say that x1 and x2 are connected under a

group-action (G,A) if there exists a g ∈ G such that x2 = g(x1). We write x1
G∼ x2. It is easy to check

that this “being-connected” relation
G∼ is an equivalence relation on A. By the fundamental theorem of

equivalence relations, it defines a partition on A.

Definition 9. Given a group-action (G,A), we call the equivalence classes with respect to the
equivalence relation G∼, or the parts of the induced partition of A, the orbits of the group-action.
Accordingly, we call the induced partition the orbit-partition of (G,A) .

3.4.2. Sample-Space-Partition as Orbit-Partition

In fact, starting with a partition Π of a set A, we can go in the other direction and unambiguously

define a group action (G,A) such that the orbit-partition of (G,A) is exactly the given partition Π.

To see this, note the following salient feature of group-actions: For any given group-action (G,A),

associated with every element g in the group is a mapping from A to itself and any such mappings must

be bijective. This feature is the direct consequence of the group axioms. To see this, note that every

group element g has a unique inverse g−1. According to the first defining property of group-actions, we

have (gg−1)(x) = g (g−1(x)) = e(x) = x for all x ∈ A. This requires that the mappings associated with

g and g−1 to be invertible. Clearly, the identity e of the group corresponds to the identity map from A

to A.

With the observation that under group-action (G,A) every group element corresponds to a

permutation of A, we can treat every group as a collection of permutations that is closed under

permutation composition. Specifically, for a given partition Π of a set A, it is easy to check that all

the permutations of A that permute the elements of the parts of Π only to the elements of the same

parts form a group. These permutations altogether form the so-called permutation representation of G

(with respect to A). For this reason in the following, without loss of generality, we treat all groups
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as permutation groups. We denote by GΠ the permutation group corresponding as above to a partition

Π—GΠ acts naturally on the set A by permutation, and the orbit partition of (GΠ, A) is exactly Π.

From group theory, we know that this orbit-partition–permutation-group-action relation is

a one-to-one correspondence. Since every information element corresponds definitively to a

sample-space-partition, we can identify every information element by a permutation group. Given a

set M = {mi : i ∈ [n]} of information elements, denote the set of the corresponding permutation groups

by G = {Gi : i ∈ [n]}. Note that all the permutations in the permutation groups Gi, i ∈ [n], are

permutations of the same set, namely the sample space. Hence, all the permutation groups Gi, i ∈ [n],

are subgroups of the symmetric group S|Ω|, which has order |Ω|!. Therefore, it makes sense to take

intersection and union of groups from the collection G.

3.4.3. From Coset-Partition to Orbit-Partition—From Equal Partition to General Partition

In fact, the previously studied coset-partitions are a special kind of orbit-partitions. They are

orbit-partitions of group-actions defined by the native group multiplication. Specifically, given a

subgroup G1 of G, a group-action (G1, G) is defined such that g1(a) = g1 ◦ a for all g1 ∈ G1

and a ∈ G, where “◦” denotes the native binary operation of the group G. The orbit-partition

of such a group-action is exactly the coset-partition of the subgroup G1. Therefore, by taking a

different kind of group-action—permutation rather than group multiplication—we are freed from the

“equal-partition” restriction so that we can correspond arbitrary information elements identified with

arbitrary sample-space-partitions to subgroups. It turns out information lattices generated by sets of

information elements and subgroup lattices generated by the corresponding sets of permutation groups

remain isomorphic to each other. Thus, the isomorphism relation between information lattices and

subgroup lattices holds in full generality.

3.4.4. Isomorphism Relation Remains Between Information Lattices and Subgroup Lattices

Similar to Section 3.3, we consider a set M = {mi, i ∈ [n]} of information element. Unlike in

Section 3.3, the information elements mi, i ∈ [n] considered here are arbitrary. As we discussed in

the above, with each information element mi we associate a permutation group Gi according to the

orbit-partition–permutation-group-action correspondence. Denote the set of corresponding permutation

groups by G = {Gi, i ∈ [n]}.

Theorem 2. (General Isomorphism Theorem) The information lattice LM is isomorphic to the subgroup
lattice LG.

The arguments for Theorem 2 are similar to those for Theorem 1—we demonstrate that the

orbit-partition–permutation-group-action correspondence is a lattice isomorphism between LM and LG.

4. An Approximation Theorem

From this section on, we shift our focus to the quantitative aspects of the parallelism between

information lattices and subgroup lattices. In the previous section, by generalizing from coset-partitions

to orbit-partitions, we successfully established an isomorphism between general information lattices and
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subgroup lattices. In this section, we shall see that not only is the qualitative structure preserved, but also

the quantitative structure—the entropy structure of information lattices—is essentially captured by their

isomorphic subgroup lattices.

4.1. Entropies of Coset-partition Information Elements

We start with a simple and straightforward observation for the entropies of coset-partition information

elements on information lattices.

Proposition 7. Let {Gi : i ∈ [n]} be a set of subgroups of group G and {mi : i ∈ [n]} be the
set of corresponding coset-partition information elements. The entropies of the joint and common
information elements on the information lattice, generated from {mi : i ∈ [n]}, can be calculated
from the subgroup-lattice, generated from {Gi : i ∈ [n]}, as follows

H(m[n]) = log
|G|

| ∧i∈[n] Gi| (1)

and

H(m[n]) = log
|G|

| ∨i∈[n] Gi| (2)

Proposition 7 follows easily from the isomorphism relation established by Theorem 2.

Note that the right hand sides of both Equations (1) and (2) are the logarithms of the indices of

subgroups. In the following, we shall call them, in short, log-indices.

Proposition 7 establishes a quantitative relation between the entropies of the information elements

on coset-partition information lattices and the log-indices of the subgroups on the isomorphic subgroup

lattices. This quantitative relation is exact. However, the scope of Proposition 7 is rather restrictive—it

applies only to certain special kind of “uniform” information elements, because, by Lagrange’s theorem,

all coset-partitions are equal partitions.

In Section 3, by generalizing from coset-partitions to orbit-partitions we successfully removed the

“uniformness” restriction imposed by the coset-partition structure. At the same time, we established a

new isomorphism relation, namely orbit-partition–permutation-group-action correspondence, between

information lattices and subgroup lattices. It turns out that this generalization maintains an “rough”

version of the quantitative relation established in Proposition 7 between the entropies of information

lattices and the log-indices of their isomorphic permutation-subgroup lattices. As we shall see in the

next section, the entropies of the information elements on information lattices can be approximated, up

to arbitrary precision, by the log-indices of the permutation groups on their isomorphic subgroup lattices.

4.2. Subgroup Approximation Theorem

To discuss the approximation formally, we introduce two definitions as follows.

Definition 10. Given an information lattice LM generated from a set M = {mi, i ∈ [n]} of information
elements, we call the real vector (

H(m) : m ∈ LM

)
whose components are the entropies of the information elements on the information lattice LM generated
by M, listed according to a certain prescribed order, the entropy vector of LM, denoted h(LM).
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The entropy vector h(LM) captures the informational structure among the information elements of M.

Definition 11. Given a subgroup lattice LG generated from a set G = {Gi, i ∈ [n]} of subgroups of a
group G, we call the real vector

1

|G|
(
log

|G|
|G′| : G

′ ∈ LG

)

whose components are the normalized log-indices of the subgroups on the subgroup lattice LG generated
by G, listed according to a certain prescribed order, the normalized log-index vector of LG, denoted
l(LG).

In the following, we assume that l(LG) and h(LM) are accordingly aligned.

Theorem 3. Let M = {mi, i ∈ [n]} be a set of information elements. For any ε > 0 there exists an
N > 0 and a set GN = {Gi : i ∈ [n]} of subgroups of the symmetry group SN of order N ! such that

‖h(LM)− l(LGN )‖ < ε (3)

where “‖·‖” denotes the norm of real vectors.

Theorem 3 extends the approximation carried out by Chan and Yeung in [2], which is limited to joint

entropies. The approximation procedure we carried out to prove Theorem 3 is similar to that of Chan

and Yeung [2]—both use Stirling’s approximation formula for factorials. But, with the group-action

relation between information elements and permutation groups being exposed, and the isomorphism

between information lattices and subgroup lattices being revealed, the approximation procedure becomes

transparent and the seemingly surprising connection between information theory and group theory

becomes mathematically natural. For these reasons, we included a detailed proof in Appendix B.

5. Parallelism between Continuous Laws of Information Elements and those of Subgroups

As a consequence of Theorem 3, we shall see in the following that if a continuous law holds in general

for information elements, then the same law must hold for the log-indices of subgroups, and vice versa.

In the following, for reference and comparison purposes, we first review the known laws concerning

the entropies of joint and common information elements. These laws, usually expressed in the form of

information inequalities, are deemed to be fundamental to information theory [34].

5.1. Laws for Information Elements

5.5.1. Non-Negativity of Entropy

Proposition 8. For any information element m, we have H(m) ≥ 0.

5.1.2. Laws for Joint Information

Proposition 9. Given a set {mi, i ∈ [n]} of information elements, if α ⊆ β, α, β ⊆ [n], then
H(mα) ≤ H(mβ).
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Proposition 10. For any two sets of information elements {mi : i ∈ α} and {mj : j ∈ β}, the following
inequality holds:

H(mα) +H(mβ) ≥ H(mα∪β) +H(mα∩β)

This proposition is mathematically equivalent to the following one.

Proposition 11. For any three information elements m1, m2, and m3, the following inequality holds:

H(m12) +H(m23) ≥ H(m123) +H(m2)

Note that H(m2) = H(m2).

Proposition 10 (or equivalently 11) is usually called the submodularity law for entropy function.

Propositions 8, 9, and 10 are known, collectively, as the polymatroidal axioms [35,36]. Up until very

recently, these are the only known laws for entropies of joint information elements.

In 1998, Zhang and Yeung discovered a new information inequality, involving four information

elements [36].

Proposition 12. (Zhang-Yeung Inequality) For any four information elements mi, i = 1, 2, 3, and 4, the
following inequality holds:

3H(m13) + 3H(m14) +H(m23) +H(m24) + 3H(m34)

≥ H(m1) + 2H(m3) + 2H(m4) +H(m12) + 4H(m134) +H(m234) (4)

This newly discovered inequality, classified as a non-Shannon type information inequality [34],

proved that our understanding on laws governing the quantitative relations between information elements

is incomplete. Recently, six more new four-variable information inequalities were discovered by

Dougherty et al. [37].

Information inequalities such as those presented above were called “laws of information” [34,38].

Seeking new information inequalities is currently an active research topic [27,36,39,40]; see Chan’s

review of recent progresses [41]. In fact, they should be more accurately called “laws of joint

information”, since these inequalities involves only joint information only. We shall see below laws

involving common information. Note that recent work [42,43] have started to explore group theoretic

approaches to network coding.

5.1.3. Common Information v.s. Mutual Information

In contrast to joint information, little research has been done to laws involving common information.

So far, the only known non-trivial law involving both joint information and common information is stated

in the following proposition, discovered by Gács and Körner [20].

Proposition 13. For any two information element m1 and m2, the following inequality holds:

H(m12) ≤ I(m1;m2) = H(m1) +H(m2)−H(m12)

Note that m1 = m1 and m2 = m2.
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5.1.4. Laws for Common Information

Dual to the non-decreasing property of joint information, it is immediately clear that entropies of

common information are non-increasing.

Proposition 14. Given a set {mi, i ∈ [n]} of information elements, if α ⊆ β α, β ⊆ [n], then
H(mα) ≥ H(mβ).

Comparing to the case of joint information, one might naturally expect a supermodularity law to hold

for common information, as a dual counterpart to the submodularity law of joint information. In other

words, it is natural to conjecture:

Conjecture 1. For any three information elements m1, m2, and m3, the following inequality holds:

H(m12) +H(m23) ≤ H(m123) +H(m2) (5)

This conjecture is natural because of the intrinsic duality between the join and meet operations of

information lattices. Due to the combinatorial nature of common information [20], it is not immediately

obvious whether this conjecture holds. With the help of our approximation results established in

Theorems 3 and 5, we find that neither the conjecture nor its converse holds. In other words, common

information observes neither the submodularity nor the supermodularity law.

5.2. Continuous Laws for Joint and Common Information

As a consequence of Theorem 3, we shall see in the following that if a continuous law holds for

information elements, then the same law must hold for the log-indices of subgroups, and vice versa.

To convey this idea, we first present the simpler case involving only joint and common information

elements. To state our result formally, we first introduce two definitions.

Definition 12. Given a set M = {mi : i ∈ [n]} of information elements, consider the collection
M = {mα,m

β : α, β ⊆ [n]} of join and meet information elements generated from M. We call the
real vector (

H(mα), H(mβ) : α, β ⊆ [n], α, β �= Φ
)

whose components are the entropies of the information elements of M, the entropy vector of M, denoted
by hM.

Definition 13. Given a set G = {Gi : i ∈ [n]} of subgroups of a group G, consider the set
G = {Gα, G

β : α, β ⊆ [n]} of the subgroups generated from G. We call the real vector

1

|G|
(
log

|G|
|Gα| , log

|G|
|Gβ| : α, β ⊆ [n], α, β �= Φ

)

whose components are the normalized log-indices of the subgroups in M, the normalized log-index

vector of G, denoted by lG .

In this context, we assume that the components of both lG and hM are listed according to a common

fixed order. Moreover, we note that both the vectors hM and lG have dimension 2n+1 − n− 2.
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Theorem 4. Let f : R2n+1−n−2 → R be a continuous function. Then, f(hM) ≥ 0 holds for all sets M
of n information elements if and only if f(lG) ≥ 0 holds for all sets G of n subgroups of any group.

Theorem 4 is a special case of Theorem 5.

Theorem 4 and its generalization—Theorem 5—extend the result obtained by Chan and Yeung in [2]

in the following two ways. First, Theorems 4 and 5 apply to all continuous laws, while only linear

laws were considered in [2]. Even though so far we have not yet encountered any nonlinear law for

entropies, it is highly plausible that nonlinear information laws may exist given the recent discovery that

at least certain part of the boundary of the entropy cones involving at least four information elements are

curved [44]. Second, our theorems encompass both common information and joint information, while

only joint entropies were considered in [2]. For example, laws such as Propositions 13 and 14 cannot

even be expressed in the setting of [2]. In fact, as we shall see later in Section 5.4, the laws of common

information depart from those of joint information very early—unlike joint information, which obeys the

submodularity law, common information admits neither submodularity nor supermodularity. For these

reasons, we believe that our extending the subgroup approximation to common information is of interest

in its own right.

5.3. Continuous Laws for General Lattice Information Elements

In this section, we extend Theorem 4 to all the information elements in information lattices, not

limited to the “pure” joint and common information elements. In the following, we introduce some

necessary machinery to formally present the result in full generality.

Note that an element from the lattice generated from a set X has its expression built from the

generating elements of the lattice in the similar way that terms are built from literals in mathematical

logic. In particular, we define lattice-terms as follows:

Definition 14. An expression E is called a lattice-term formed from a set X of literals if either E is a
literal from X or E is formed from two lattice-terms with either the join or the meet symbols: E = x ◦ y,
where x and y are lattice-terms and ◦ is either the join symbol ∨ or the meet symbol ∧.

Definition 15. Suppose that Ei, i ∈ [k], are lattice-terms generated from a literal set of size n:
X = {x1, · · · , xn}. We call an expression of the form

f
(
H(E1), · · · , H(Ek)

)

where f represents a function from R
k to R and H represents the entropy function, an n-variable

generalized information expression.

We evaluate an n-variable generalized information expression f
(
H(E1), · · · , H(Ek)

)
against a set

M = {mi : i ∈ [n]} of information elements by substituting xi with mi respectively, calculating

the entropy of the information elements obtained by evaluating the lattice-terms Ei according to the

semantics of the join and meet operations on information elements, and then obtaining the corresponding

function value. We denote this value by

f
(
H(E1), · · · , H(Ek)

)∣∣
M
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Definition 16. If an n-variable generalized information expression f
(
H(E1), · · · , H(Ek)

)
is evaluated

non-negatively for any set of n information elements, i.e.,

f
(
H(E1), · · · , H(Ek)

)∣∣
M
≥ 0, for all M

then we call
f
(
H(E1), · · · , H(Ek)

) ≥ 0

an n-variable information law.

Similar to generalized information expressions, we define generalized log-index expression
as follows.

Definition 17. we call an expression of the form

f
(
L(E1), · · · , L(Ek)

)

where f represents a function from R
k to R and L represents the normalized log-index function of

subgroups, an n-variable generalized log-index expression.

We evaluate an n-variable generalized log-index expression f
(
L(E1), · · · , L(Ek)

)
against a set

G = {Gi : i ∈ [n]} of subgroups of a group G by substituting xi with Gi respectively, calculating

the log-index of the subgroups obtained by evaluating the lattice-terms Ei according to the semantics

of the join and meet operations on subgroups, and then obtaining the corresponding function value. We

denote this value by

f
(
L(E1), · · · , L(Ek)

)∣∣
G

Definition 18. If an n-variable generalized log-index expression f
(
H(E1), · · · , H(Ek)

)
is evaluated

non-negatively for any set of n subgroups of any group, i.e.,

f
(
L(E1), · · · , L(Ek)

)∣∣
G
≥ 0, for all G

then we call
f
(
L(E1), · · · , L(Ek)

) ≥ 0

an n-variable subgroup log-index law.

With the above formalism and corresponding notations, we are ready to state our equivalence result

concerning the generalized information laws.

Theorem 5. Suppose that f is continuous. Then an n-variable information law

f
(
H(E1), · · · , H(Ek)

) ≥ 0

holds if and only if the corresponding n-variable subgroup log-index law

f
(
L(E1), · · · , L(Ek)

) ≥ 0

holds.
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Proof. To see one direction, namely that f
(
L(E1), · · · , L(Ek)

)≥ 0 implies that

f
(
H(E1), · · · , H(Ek)

)≥ 0, assume that there exists a set M of information elements such that

f
(
H(E1), · · · , H(Ek)

)∣∣
M

= a for some a < 0. By the continuity of the function f and Theorem 3,

we are guaranteed to be able to construct, from the information lattice generated from M, some

subgroup lattice LG such that the value of the function f at the normalized log-indices of the

correspondingly constructed subgroups is arbitrarily close to a < 0. This contradicts the assumption

that f
(
L(E1), · · · , L(Ek)

)∣∣
G
≥ 0 holds for all sets G of n subgroups of any group.

On the other hand, for any normalized log-indices of the subgroups from subgroup lattices, it can

be readily interpreted as the entropies of information elements by taking permutation representation

for the subgroups on the subgroup lattice and then producing an information lattice, according to the

orbit-partition-permutation-group-action correspondence. Therefore, that f
(
H(E1), · · · , H(Ek)

)∣∣
M

≥
0 holds for all sets M implies that f

(
L(E1), · · · , L(Ek)

)∣∣
G
≥ 0 holds for all sets G.

5.4. Common Information Observes Neither Submodularity Nor Supermodularity Laws

As discussed in the above, appealing to the duality between the join and the meet operations, one

might conjecture, dual to the well-known submodularity of joint information, that common information

would observe the supermodularity law. It turns out that common information observes neither the

submodularity (6) nor the supermodularity (7) law—neither of the following two inequalities holds

in general:

H(m12) +H(m23) ≥ H(m123) +H(m2) (6)

H(m12) +H(m23) ≤ H(m123) +H(m2) (7)

Because common information is combinatorial in flavor—it depends on the “zero pattern” of joint

probability matrices [20]—it is hard to directly verify the validity of (6) and (7). However, thanks to

Theorem 5, we are able to construct subgroup counterexamples to invalidate (6) and (7) indirectly.

To show that (7) fails, it suffices to find three subgroups G1, G2, and G3 such that

|G1 ∨G2||G2 ∨G3| < |G1 ∨G2 ∨G3||G2| (8)

Consider G = S5, the symmetry group of order 5!, and its subgroups G1 = 〈(12345)〉,
G2 = 〈(12)(45)〉, and G3 = 〈(12543)〉. The subgroup G1 is the permutation group generated

by permutation (12345), G2 by (12)(45), and G3 by (12543). (Here, we use the standard cycle

notation to represent permutations.) Consequently, we have G1 ∨G2 = 〈(12345), (12)(45)〉,
G2 ∨G3 = 〈(12543), (12)(45)〉, and G1 ∨G2 ∨G3 = 〈(12345), (12)(45), (12543)〉. It is easy to see

that both G1 ∨G2 and G2 ∨G3 are dihedral groups of order 10 and that G1 ∨G2 ∨G3 is the alternative

group A5, hence of order 60. The order of G2 is 2. Therefore, we see that the subgroups G1, G2, and G3

satisfy (8). By Theorem 5, the supermodularity law (7) does not hold in general for common information.

Similar to the case of supermodularity, the example with G2 = {e} and G1 = G3 = G, |G| �= 1,

invalidates the group version of (6). Therefore, according to Theorem 5, the submodularity law (6) does

not hold in general for common information either.
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6. Discussion

This paper builds on some of Shannon’s little-recognized legacy and adopts his interesting concepts

of information elements and information lattices. We formalize all these concepts and clarify the

relations between random variables and information elements, information elements and σ-algebras, and,

especially, the one-to-one correspondence between information elements and sample-space-partitions.

We emphasize that such formalization is conceptually significant. As demonstrated in this paper,

beneficial to the formalization carried out, we are able to establish a comprehensive parallelism between

information lattices and subgroup lattices. This parallelism is mathematically natural and admits intuitive

group-action explanations. It reveals an intimate connection, both structural and quantitative, between

information theory and group theory. This suggests that group theory might serve a promising role as a

suitable mathematical language in studying deep laws governing information.

Network information theory in general, and capacity problems for network coding specifically,

depend crucially on our understanding of intricate structures among multiple information elements. By

building a bridge from information theory to group theory, we can now access the set of well-developed

tools from group theory. These tools can be brought to bear on certain formidable problems in areas

such as network information theory and network coding. Along these lines, by constructing subgroup

counterexamples we show that neither the submodularity nor the supermodularity law holds for common

information, neither of which is obvious from traditional information theoretic perspectives.
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44. Matúš, F. Infinitely many information inequalities. In Proceedings of the 2007 IEEE International

Symposium on Information Theory, Nice, France, 24–29 June 2007; pp. 41–44.

Appendix

A. Proof of Theorem 1

Proof. To show two lattices are isomorphic, we need to demonstrate a mapping, from one lattice to the

other, such that it is a lattice-morphism—it honors both join and meet operations—and bijective as well.

Instead of proving that LG is isomorphic to LG directly, we show that the dual of LG is isomorphic to

LM. Figuratively speaking, the dual of a lattice L is the lattice obtained by flipping L upside down.

Formally, the dual lattice L′ of a lattice L is the lattice defined on the same set with the partial order
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reversed. Accordingly, the join operation of the prime lattice L corresponds to the meet operation for the

dual lattice L′ and the meet operation of L to the join operation for L′. In the other words, we show that

LG is isomorphic to LM by demonstrating a bijective mapping φ : LG → LM such that

φ(G∨G′) = φ(G)∧φ(G′) (9)

and

φ(G∧G′) = φ(G)∨φ(G′) (10)

hold for all G,G′ ∈ LG.

Note that each subgroups on the subgroup lattice LG is obtained from the set G = {Gi : i ∈ [n]} via

a sequence of join and meet operations and each information element on the information lattice LM is

obtained similarly from the set M = {mi : i ∈ [n]}. Therefore, to show that LG is isomorphic to LM,

according to the induction principle, it is enough to demonstrate a bijective mapping φ such that

• φ(Gi) = mi, for all Gi ∈ G and mi ∈ M;

• For any G,G′ ∈ LG, if φ(G) = m and φ(G′) = m′, then

φ(G∨G′) = m∧m′ (11)

and

φ(G∧G′) = m∨m′ (12)

Naturally, we take φ : LG → LM to be the mapping that assigns to each subgroup G ∈ LG the

information element identified by the coset-partition of the subgroup G. Thus, the initial step of the

induction holds by assumption. On the other hand, it is easy to see that the mapping φ so defined is

bijective simply because different subgroups always produce different coset-partitions and vice versa.

Therefore, we are left to show that Equations (11) and (12) holds.

We first show that φ satisfies Equation (11). In other words, we show that the coset-partition of the

intersection subgroup G ∩ G′ is the coarsest among all the sample-space-partitions that are finer than

both the coset-partitions of G and G′. To see this, let Π be a sample-space-partition that is finer than both

the coset-partitions of G and G′ and π be a part of Π. Since Π is finer than the coset-partitions of G, π

must be contained in some coset C of G. For the same reason, π must be contained in some coset C ′ of

G′ as well. Consequently, π ⊆ C ∩ C ′ hold. Realizing that C ∩ C ′ is a coset of G ∩ G′, we conclude

that the coset-partition of G ∩ G′ is coarser than Π. Since Π is chosen arbitrary, this proves that the

coset-partition of the intersection subgroup G ∩G′ is the coarsest among all the sample space partitions

that are finer than both the coset-partitions of G and G′. Therefore, Equation (11) holds for φ.

The proof for Equation (12) is more complicated. We use an idea called “transitive closure”.

Similarly, we need to show that the coset-partition of the subgroup G∨G′ generated from the union of G

and G′ is the finest among all the sample-space-partitions that are coarser than both the coset-partitions

of G and G′. Let Π be a sample-space-partition that is coarser than both the coset-partitions of G and G′.
Denote the coset partition of the subgroup G∨G′ by Π̄. Let π̄ be a part of Π̄. It suffices to show that π̄

is contained in some part of Π. Pick an element x from π̄. This element x must belong to some part π of

Π. It remains to show π̄ ⊆ π. In other words, we need to show that y ∈ π for any y �= x, y ∈ πij . Note
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that π is a part of the coset-partition of the subgroup Gi ∨Gj . In other words, π is a coset of Gi ∨Gj .

The following reasoning depends on the following fact from group theory [33].

Proposition 15. Two elements g1 and g2 belong to a same (right) coset of a subgroup if and only if g1g−1
2

belongs to the subgroup.

Since x and y belong to a same coset π̄ of the subgroup G∨G′, we have yx−1 ∈ G∨G′. Note that

any element g from G∨G′ can be written in the form of g = a1b1a1b2 · · · aKbK where ak ∈ G and

bk ∈ G′ for all k ∈ [K]. Suppose yx−1 = g = a1b1a1b2 · · · aKbK . We have

y = a1b1a2b2 · · · aKbKx

In the following we shall show that y belongs to π by induction on the sequence a1b1 · · · aKbK .

First, we claim bKx ∈ π. To see this, note that x ∈ π. Since (bKx)x
−1 = bK ∈ G′, by Proposition 15,

we know that bKx and x belong to a same coset CK of G′. By assumption, the partition Π is coarser

than the coset-partition of G′, the coset CK must be contained in π, since it already contains an element

x of CK .

For the same reason, with bKx ∈ π̄ showed, we can see that aKbKx belongs to π as well, because

(aKbKx)(bKx)
−1 = aK ∈ G implies aKbKx and bKx belong to a same coset of G.

Continuing the above argument inductively on the sequence a1b1 · · · aKbK , we can finally have

a1b1 · · · aKbKx ∈ π. Therefore, we have y ∈ π. This concludes the proof.

B. Proof of Theorem 3

Proof. The approximation process is decomposed into three steps. The first step is to “dilate” the sample

space such that we can turn a non-uniform probability space into a uniform probability space. The sample

space partitions of the information elements are accordingly “dilated” as well. After dilating the sample

space, depending on the approximation error tolerance, i.e., ε, we may need to further “amplify” the

sample space. Then, we follow the same procedure as in Section 3.4 and construct a subgroup lattice

using the orbit-partition–permutation-group-action correspondence.

We assume the probability measure P on the sample space are rational. In other words, the

probabilities of the elementary event pi = Pr{ωi}, ωi ∈ Ω are all rational numbers, namely pi =
pi
qi

for some pi, qi ∈ N. This assumption is reasonable, because any finite dimensional real vector can be

approximated, up to an arbitrary precision, by some rational vector.

Let M be the least common multiple of the set {qi} of denominators. We “split” each sample point in

Ω into Mpi
qi

points. Note that Mpi
qi

is integral. We need to accordingly “dilate” the sample space partitions

of the information elements. Specifically, for each part π of the partition of every information element

mi, its “dilated” partition π′, in the dilated sample space Ω̂, contains exactly all the sample points that

are “split” from the sample points in π. The dilated sample space Ω̂ has size of
∑

ωi∈Ω
Mpi
qi

. To maintain

the probability structure, we assign to each sample point in the dilated sample space Ω̂ probability 1

|Ω̂| .
In other words, we equip the dilated sample space with a uniform probability measure. It is easy to

check that the entire (quantitative) probability structure remains the same. Thus, we can consider all the

information elements as if defined on the dilated probability space.
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If necessary, depending on the approximation error tolerance ε, we may further “amplify” the dilated

sample space Ω̂ by K times by “splitting” each of its sample points into to K points. At the same time,

we scale the probability of each sample point in the post-amplification sample space down by K times

to 1

K|Ω̂| . By abusing of notation, we still use Ω̂ to denote the post-amplification sample space. Similar to

the “dilating” process, all the partitions are accordingly amplified.

Before we move to the third step, we compute entropies for information elements in terms of the

cardinality of the parts of its dilated sample space partition. Consider an information element mi. Denote

its pre-dilation sample space partition by Πi = {πj
i , j ∈ [J ]} and its post-amplification sample space

partition by Π̂i = {π̂j
i , j ∈ [J ]}. It is easy to see that the entropy H(mi) can be calculated as follows:

H(mi) = −
∑
j∈[J ]

Pr{πj
i } log Pr{πj

i }

= −
∑
j∈[J ]

Pr{π̂j
i } log Pr{π̂j

i }

= −
∑
j∈[J ]

|π̂i
j|

|Ω̂| log
|π̂i

j|
|Ω̂|

(13)

All the entropies of the other information elements, including the joint and common information

elements, on the entire information lattices can be computed in the exactly same way in terms of the

cardinalities of the parts of their dilated sample space partitions.

In the third step, we follow the same procedure as in Section 3.4, and construct, based on the

orbit-partition–permutation-group-action correspondence, a subgroup lattice that isomorphic to the

information lattice generated by the set of information elements {mi : i ∈ [n]}. More specifically, the

subgroup lattice is constructed according to their “post-amplification” sample space partitions. Suppose,

on the constructed subgroup lattice, the permutation groups Gi corresponds to the information element

mi. As in the above, the “post-amplification” sample space partition of mi is Π̂i = {π̂j
i , j ∈ [J ]}. Then,

the cardinality of the permutation group is simply

|Gi| =
∏
j∈J

π̂j
i !

According to the isomorphism relation established in Theorem 2, the above calculations remain valid for

all the subgroups on the subgroup lattices.

Recall that all the groups on the subgroup lattice are permutation groups and are all subgroups of the

symmetry group of order |Ω̂|!. So the log-index of Gi, corresponding to mi, is

log
|Ω̂|!
|Gi| = log

|Ω̂|!∏
j∈J π̂

j
i !

(14)

As we see from Equations (1) and (2) of Proposition 7, the entropies of the coset-partition information

elements on information lattices equal exactly the log-indices of their subgroups on subgroup lattices.

However, for the information lattice generated from general information elements, namely information

elements with non-equal sample space partitions, as we see from Equations (13) and (14), the entropies of

the information elements on the information lattice does not equal the log-indices of their corresponding
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permutation groups on the subgroup lattices exactly any more. But, as we can shall see, the entropies of

the information elements are well approximated by the log-indices of their corresponding permutation

groups. Recall the following Stirling’s approximation formula for factorials:

log n! = n log n− n+ o(n) (15)

“Normalizing” the log-index in Equation (14) by a factor 1

|Ω̂| and then substituting the factorials with the

above Stirling approximation formula, we get

1

|Ω̂| log
|Ω̂|
|Gi| =

1

|Ω̂|
(
|Ω̂| log |Ω̂| − |Ω̂|−(∑

j∈[J ]
|π̂j

i | log |π̂j
i | − |π̂j

i |
)
+ o(|Ω̂|)

)

Note that in the above substitution process, we combined some finite o(|Ω̂|) terms “into” one o(|Ω̂|) term.

It is clear that
∑

j∈[J ] |π̂j
i | = |Ω̂|, since {π̂j

i : j ∈ [J ]} forms a partition of Ω̂. Therefore, we get

1

|Ω̂| log
|Ω̂|
|Gi| =

1

|Ω̂|
(|Ω̂| log |Ω̂| − ∑

j∈[J ]
|π̂j

i | log |π̂j
i |+ o(Ω̂)

)
= H(mi) +

o(|Ω̂|)
|Ω̂|

So, the difference between the entropy H(mi) and the normalized log-index of its corresponding

permutation subgroup Gi diminishes for Ω̂ large.

Since both the entropy vector hM and the log-index vector lGN are of finite dimension, it follows easily

∥∥∥∥hM − lGN

N

∥∥∥∥
1

=
o(|Ω̂|)
|Ω̂| → 0

with

N = |Ω̂| = K
∑
ωi∈Ω

Mpi
qi

→ ∞, by taking K → ∞.

This concludes the proof.
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