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Abstract: In this paper, a representation of the information-disturbance theorem based on

the quantum Kolmogorov complexity that was defined by P. Vitányi has been examined. In

the quantum information theory, the information-disturbance relationship, which treats the

trade-off relationship between information gain and its caused disturbance, is a fundamental

result that is related to Heisenberg’s uncertainty principle. The problem was formulated

in a cryptographic setting and the quantitative relationships between complexities have

been derived.
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1. Introduction

The quantum theory enables us to process information in ways that are not feasible in the classical

world. Quantum computers can solve difficult problems such as factoring [1] or searching [2] in

drastically small time steps. Quantum key distribution [3,4] achieves information-theoretic security

unconditionally. This field of the quantum information theory has been intensively studied during the last

two decades. While most of the studies in this field investigate how Shannon’s information theory was

modified or restricted by the quantum theory, there is another information theory called the algorithmic

information theory [5,6]. In contrast to Shannon’s theory, which defines information using a probability

distribution, the algorithmic information theory assigns the concept of information to individual objects

by using a computation theory. Although the algorithmic information theory has been successfully

applied to various fields [7], its quantum versions were only recently proposed [8–11]. We believe there
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have only been a few applications so far [12–14]. In this research, we study how quantum Kolmogorov

complexity, which was defined by Vitányi, can be applied to demonstrate quantum effects in a primitive

information-theoretic operation.

We study the algorithmic information-theoretic representation of an information-disturbance

relationship [15–17], which addresses a fundamental observation that information gain destroys quantum

states. In particular, an operation that yields information gain with respect to an observable spoils

quantum states that were prepared with respect to its conjugate (noncommutative) observable. This

relationship indicates the impossibility of jointly measuring noncommutative observables, which is

therefore related to Heisenberg’s uncertainty principle. In addition, it plays a crucial role in quantum

cryptography. Because a state is inevitably spoiled when an eavesdropper obtains information, legitimate

users can notice the existence of the eavesdropper [18]. In this study, we formulate the problem in

a cryptographic setting and derive quantitative relationships. Our theorem, characterizing both the

information gain and the disturbance in terms of the quantum Kolmogorov complexity, demonstrates

a trade-off relationship between these complexities.

This paper is organized as follows. In the next section, we give a brief review of quantum Kolmogorov

complexity defined by Vitányi. In Section 3, we introduce a toy quantum cryptographic model and

describe our main result on the basis of this model. The paper ends a short discussion.

2. Quantum Kolmogorov Complexity Based on Classical Description

Recently some quantum versions of Kolmogorov complexity were proposed by a several researchers.

Svozil [9], in his pioneering work, defined the quantum Kolmogorov complexity as the minimum

classical description length of a quantum state through a quantum Turing machine [19,20]. As is easily

seen by comparing the cardinality of a set of all the programs with that of a set of all the quantum states,

the value often becomes infinity. Vitányi’s definition [8], while similar to Svozil’s, does not have this

disadvantage. Vitányi added a term that compensates for the difference between a target state and an

output state. Berthiaume, van Dam and Laplante [10] defined their quantum Kolmogorov complexity

as the length of the shortest quantum program that outputs a target state. The definition was settled and

its properties were extensively investigated by Müller [21,22]. Gacs [11] employed a different starting

point related to the algorithmic probability to define his quantum Kolmogorov complexity.

In this paper we employ a definition given by Vitányi [8]. His definition based on the classical

description length is suitable for quantum information-theoretic problems which normally treat classical

inputs and outputs. In order to explain the definition precisely, a description of one-way quantum Turing

machine is needed. It is utilized to define a prefix quantum Kolmogorov complexity. A one-way quantum

Turing machine consists of four tapes and an internal control. (See [8] for more details.) Each tape is

a one-way infinite qubit (quantum bit) chain and has a corresponding head on it. One of the tapes

works as the input tape and is read-only from left-to-right. A program is given on this tape as an initial

condition. The second tape works as the work tape. The work tape is initially set to be 0 for all the

cells. The head on it can read and write a cell and can move in both directions. The third tape is called an

auxiliary tape. One can put an additional input on this tape. The additional input is written to the leftmost

qubits and can be a quantum state or a classical state. This input is needed when one treats conditional

Kolmogorov complexity. The fourth tape works as the output tape. It is assumed that after halting the
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state over this tape will not be changed. The internal control is a quantum system described by a finite

dimensional Hilbert space which has two special orthogonal vectors |q0〉 (initial state) and |qf〉 (halting

state). After each step one makes a measurement of a coarse grained observable on the internal control

{|qf〉〈qf |,1− |qf〉〈qf |} to know if the computation halts. Although there are subtle problems [23–26] in

the halting process of the quantum Turing machine, we do not get into this problem and employ a simple

definition of the halting. A computation halts at time t if and only if the probability to observe qf at time

t is 1, and at any time t′ < t the probability to observe qf is zero. By using this one-way quantum Turing

machine, Vitányi defined the quantum Kolmogorov complexity as the length of the shortest description

of a quantum state. That is, the programs of quantum Turing machine are restricted to classical ones,

while the auxiliary inputs can be quantum states. We write U(p, y) = |x〉 if and only if a quantum Turing

machine U with a classical program p and an auxiliary (classical or quantum) input y halts and outputs

|x〉. The following is the precise description of Vitányi’s definition.

Definition 1 [8] The (self-delimiting) quantum Kolmogorov complexity of a pure state |x〉 with respect
to a one-way quantum Turing machine U with y (possibly a quantum state) as conditional input given
for free is

KU(|x〉| y) := min
p,|z〉

{l(p) + �− log |〈z|x〉|2� : U(p, y) = |z〉}

where l(p) is the length of a classical program p, and �a� is the smallest integer larger than a.

The one-wayness of the quantum Turing machine ensures that the halting programs compose a prefix

free set. Because of this, the length l(p) is defined consistently. The term �− log |〈z|x〉|2� represents

how insufficiently an output |z〉 approximates the desired output |x〉. This additional term has a natural

interpretation using the Shannon-Fano code. Vitányi has shown the following invariance theorem, which

is very important.

Theorem 1 [8] There is a universal quantum Turing machine U , such that for all machines Q, there is
a constant cQ, such that for all quantum states |x〉 and all auxiliary inputs y we have:

KU(|x〉| y) ≤ KQ(|x〉| y) + cQ

Thus the value of quantum Kolmogorov complexity does not depend on the choice of a quantum Turing

machine if one neglects the unimportant constant term cQ. Thanks to this theorem, one often writes K

instead of KU . Moreover, the following theorem is crucial for our discussion.

Theorem 2 [8] On classical objects (that is, finite binary strings that are all directly computable) the
quantum Kolmogorov complexity coincides up to a fixed additional constant with the self-delimiting
Kolmogorov complexity. That is, there exists a constant c such that for any classical binary sequence |x〉,

min
q
{l(q) : U(q, y) = |x〉} ≥ K(|x〉| y) ≥ min

q
{l(q) : U(q, y) = |x〉} − c

holds.

According to this theorem, for classical objects it essentially suffices to treat only programs that exactly

output the object.
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3. Information-Disturbance Trade-Off

In this section, we treat a toy model of quantum key distribution in order to discuss the

information-disturbance relationship. Let us first review a standard scenario of quantum key distribution

called BB84. Suppose that there exist three players Alice, Bob, and Eve. Alice and Bob are legitimate

users. Alice encodes a message in qubits with one of the bases X or Z, and sends them to Bob. After

confirming the receipt of the qubits by Bob, she announces the basis that was used by her for encoding.

If there is no eavesdropper, Bob can perfectly recover the message by simply measuring the qubits by

using the disclosed basis. Conversely, if there exists an eavesdropper Eve, the state received by Bob

is destroyed and he will be unable to recover the message in that case. More precisely, according to

the information-disturbance theorem in Shannon’s information-theoretical representation, Bob’s state is

inevitably spoiled when Eve employs an attack that helps her obtain information about the messages

encoded in the conjugate basis. In order to accomplish the key distribution protocol, Alice and Bob

perform an error correction followed by a privacy amplification.

Motivated by this protocol, we introduce its toy version in order to investigate a universal relationship

between information gain and disturbance. There are three players Alice, Bob and Eve. Alice chooses an

N -bit message y ∈ {0, 1}N and a basis X or Z for its encoding. We write the standard basis of a qubit as

{|0〉, |1〉}, which are eigenstates of Z. Its conjugate basis is written as {|0〉, |1〉}, which are eigenstates

of X and are defined as |0〉 := 1√
2
(|0〉 + |1〉) and |1〉 := 1√

2
(|0〉 − |1〉). She prepares a quantum state of

N qubits described by a Hilbert space HA := C2⊗C2⊗ · · ·⊗C2 (N times) as follows. If her choice of

basis is X , she encodes her message y = y1y2 · · · yN ∈ {0, 1}N as |y〉 := |y1〉⊗ |y2〉⊗ · · ·⊗ |yN〉 ∈ HA.

If her choice of basis is Z, she encodes her message y as |y〉 := |y1〉 ⊗ |y2〉 ⊗ · · · ⊗ |yN〉 ∈ HA. Alice

sends thus prepared N qubits to Bob. Eve, whose purpose is to obtain information about the message,

makes her apparatus interact with the qubits sent from Alice to Bob and divides the whole system into

two parts. This process is described by a completely-positive map (CP-map)

Λ : S(HA) → S(HB ⊗HE)

where HB (resp. HE) denotes a Hilbert space of the system distributed to Bob (resp. Eve), and S(H)

is a set of all density operators on a Hilbert space H. Alice then announces the basis X or Z that she

had used for encoding. Bob and Eve try estimating the message by using the quantum state and the

information of the basis. Note that in this protocol HB and HE may be general quantum systems. In

particular, HB may not be qubits. Thus in contrast to the standard quantum key distribution protocol,

Bob may not measure X or Z to obtain information. Bob knows the basis used for encoding and the

form of CP-map Λ. Thus Bob and Eve are equal in their knowledge on classical information. Only the

distributed quantum states differ with each other. According to the information-disturbance relationship

in Shannon’s information-theoretical setting, if Eve’s attack helps her obtain large information about the

message encoded in the X basis, Bob cannot obtain large information about the message encoded in

the Z basis. If the message is chosen probabilistically [27], this relationship is expressed in the formula

as [17]:

I(A : E|basis = X) + I(A : B|basis = Z) ≤ N
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where A represents the random variable of the message and E (resp. B) represents the random variable

of the outcome of the measurement performed by Eve (resp. Bob), and I(·, ·) denotes Shannon’s

mutual information.

We formulate the above problem in the algorithmic information-theoretical setting. Let us denote the

quantum state obtained by Bob (resp. Eve) corresponding to the message z (resp. x) encoded with the

basis Z (resp. X) by ρBz ∈ S(HB) (resp. σE
x ∈ S(HE)). That is, ρBz and σE

x are defined by

ρBz = trHE
(Λ(|z〉〈z|))

σE
x = trHB

(Λ(|x〉〈x|))

where trHE
(resp. trHB

) denotes a partial trace over HE (resp. HB). Motivated by the above result in

Shannon’s formulation, we expect that there will exist some trade-off relationship between K(x|σE
x , X)

and K(z|ρBz , Z) [28]. K(x|σE
x , X) is the quantum Kolmogorov complexity of the message x encoded

with X for Eve. Note that Eve has quantum state σE
x , and knows X (and Λ). K(z|ρBz , Z) is the quantum

Kolmogorov complexity of the message z encoded with Z for Bob. He has quantum state ρBz , and knows

Z (and Λ). The following is our main theorem.

Theorem 3 There exists a trade-off relationship for the number of messages that have low complexity.
For any integers l,m ≥ 0,

∣∣∣{z|K(z|ρBz , Z) ≤ l}
∣∣∣+

∣∣∣{x|K(x|σE
x , X) ≤ m}

∣∣∣ ≤ 2N
(
1 + 2

l+m−N
2

+c
)

holds, where |A| denotes the cardinality of a set A and c is a constant depending on the choice of the
quantum Turing machine. Note that the right-hand side of the above inequality gives a nontrivial bound
for l,m satisfying l +m ≤ N − 2c.

Proof: The proof has three parts. (i) An entanglement-based protocol which is related to the original one

is introduced. (ii) It is shown that the number of messages that have low complexity can be represented

by an expectation value of a certain observable in the entanglement-based protocol. (iii) The uncertainty

relation is applied to show a trade-off relationship.

(i) Let us analyze the protocol. Instead of the original protocol, we treat an entanglement-based

protocol (E91-like protocol), which is related to the original one. It runs as follows. Alice prepares N

pairs of qubits. She prepares each pair in the EPR state, |φ〉 := 1√
2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉). Therefore, the

whole state can be written as |φN〉 := |φ〉⊗|φ〉⊗· · ·⊗|φ〉 (N times) in a Hilbert space HA′ ⊗HA, where

HA′ � HA � ⊗NC2. Alice sends qubits described by HA to Bob. Before the qubits reach Bob, Eve

makes them interact with her own apparatus, and divides the whole system into two parts. The whole

dynamics is described by (idS(HA′ ) ⊗ Λ) : S(HA′ ⊗HA) → S(HA′ ⊗HB ⊗HE), where idS(HA′ ) is an

identity map on S(HA′). We denote by Θ the whole state over HA′ ⊗HB ⊗HE after this process. That

is, it is defined by Θ = (idHA′ ⊗ Λ)(|φN〉〈φN |). Alice then measures her qubits with the basis X or Z,

and announces the basis used.

It can be shown [17] that this entanglement-based protocol is equivalent with the original protocol

with a probabilistically [27] chosen message. In fact, we can see the following correspondence. Define

Zz for z ∈ {0, 1}N , a projection operator on HA′ , by Zz := |z〉〈z|. {Zz} forms a projection-valued

measure (PVM). Probability to obtain z ∈ {0, 1}N in its measurement is PZ(z) := tr(Θ(Zz ⊗ 1B ⊗
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1E)) =
1
2N

. In addition, a posteriori state [29] on HB ⊗HE is calculated as Λ(|z〉〈z|), whose restriction

on HB is nothing but ρBz ∈ S(HB). Similarly, define Xx for x ∈ {0, 1}N , a projection operator on

HA′ , by Xx = |x〉〈x|. It is easy to see that {Xx}x∈{0,1}N forms a PVM on HA′ . For each x ∈ {0, 1}N ,

probability to obtain x in its measurement is PX(x) =
1
2N

. A posteriori state [29] on HB ⊗HE becomes

Λ(|x〉〈x|), whose restriction on HE is σE
x .

(ii) We fix a universal quantum Turing machine U and discuss the quantum Kolmogorov complexity

with respect to it. Firstly let us consider the complexity for Bob when the message z is encoded with Z.

Bob knows Z and has a quantum system described by HB whose state is ρBz . This system is identified

with the auxiliary input tape. That is, we investigate KU(z|ρBz , Z). Thanks to theorem 2, it suffices to

consider only the programs that exactly output the message z because the message is a classical object.

That is, we regard

Kc,U(z|ρBz , Z) := min
q:U(q,ρBz ,Z)=|z〉

l(q)

which satisfies Kc,U(z|ρBz , Z) ≥ KU(z|ρBz , Z) ≥ Kc,U(z|ρBz , Z)− c′ for some constant c′.
Let us denote Tz ⊂ {0, 1}∗ a set of all programs that output z with auxiliary inputs ρBz and Z. A

relationship Kc,U(z|ρBz , Z) = mint∈Tz l(t) follows. Although different programs may have different

halting times, thanks to the lemma proved by Müller (Lemma 2.3.4. in [22]), there exists a CP-map

ΓU,Z : S(HB ⊗HI) → S(HO) satisfying for any t ∈ Tz

ΓU,Z(ρ
B
z ⊗ |t〉〈t|) = |z〉〈z|

where HI is a Hilbert space for programs, and HO = ⊗NC2 is a Hilbert space for outputs. From this

lemma, we obtain an important observation. If Tz ∩ Tz′ �= ∅ holds for some z �= z′, ρBz and ρBz′ are

perfectly distinguishable. In fact, as a CP-map does not increase the distinguishability of states, the

relationships for t ∈ Tz ∩ Tz′

ΓU,Z(ρ
B
z ⊗ |t〉〈t|) = |z〉〈z|

ΓU,Z(ρ
B
z′ ⊗ |t〉〈t|) = |z′〉〈z′|

and their distinguishability on the right-hand sides imply the distinguishability of ρBz and ρBz′ . For each

t ∈ {0, 1}∗ we define Ct ⊂ {0, 1}N as Ct = {z|t ∈ Tz}. That is, z ∈ Ct is a message which can be

reconstructed by giving a program t to the Turing machine U with an auxiliary input ρBz and Z. Owing

to the distinguishability between ρBz and ρBz′ , for z, z′ ∈ Ct, there exists a family of projection operators

{Et
z}z∈Ct on HB satisfying for any z, z′ ∈ Ct,

Et
zE

t
z′ = δzz′E

t
z∑

z∈Ct
Et

z ≤ 1

tr(ρBz E
t
z′) = δzz′

As we are interested in minimum length programs, we define Dt := {z|t = argmins∈Tz
l(s)}, which is

a subset of Ct. z ∈ Dt is a message that has t as its minimum length program for reconstruction. It is

still possible that Dt ∩ Dt′ �= ∅. That is, there may be a message z whose shortest programs are not
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unique. In such a case, we choose one of the programs to avoid counting doubly. For instance, this can

be done by introducing a total order < in all the programs {0, 1}∗, and by defining Et = {z|z ∈ Dt, z /∈
Dt′ for all t′ < t with l(t) = l(t′)}. As this Et is a subset of Ct, for any z, z′ ∈ Et

Et
zE

t
z′ = δzz′E

t
z∑

z∈Et
Et

z ≤ 1

tr(ρBz E
t
z′) = δzz′

hold.

For any program t ∈ {0, 1}∗ we define a projection operator Pt :=
∑

z∈Et(Zz ⊗ Et
z ⊗ 1E). For any

integer l ≥ 0, we consider a projection operator P̂l :=
∑

t:l(t)≤l Pt, whose expectation value with Θ

becomes

tr(ΘP̂l) =
∑

t:l(t)≤l

∑
z∈Et

PZ(z)tr(ρ
B
z E

t
z)

=
∑

t:l(t)≤l

∑
z∈Et

PZ(z)

=
1

2N

∣∣∣{z|Kc,U(z|ρBz , Z) ≤ l}
∣∣∣ (1)

Similarly, we treat Kc,U(x|σE
x , X). We can introduce Sx ⊂ {0, 1}∗ a set of all programs that output x

with auxiliary inputs σE
x and X . Kc,U(x|σE

x , X) = mins∈Sx l(s) holds. We can define Js := {x|s ∈ Sx}
for each s and introduce a family of projection operators {F s

x}x∈Fs on HE that satisfies

tr(F s
xσ

E
x′) = δxx′

for each x, x′ ∈ Js and so on. Gs := {x|s = argmint∈Sx
l(t)} and Fs := {z|z ∈ Gs, z /∈ Gs′ for all

s′ < s with l(s) = l(s′)}, are also defined. We consider a family of projection operators {F s
x}x∈Fs .

Similarly, for any program s ∈ {0, 1}∗, we define a projection operator Qs :=
∑

x∈Fs
(Xx ⊗ 1B ⊗ F s

x)

and consider for any integer m ≥ 0, Q̂m :=
∑

s:l(s)≤m Qs, whose expectation value with respect to Θ is

written as

tr(ΘQ̂m) =
1

2N

∣∣∣{x|Kc,U(x|σE
x , X) ≤ m}

∣∣∣ (2)

(iii) Our purpose is to obtain a trade-off relationship between (1) and (2). It is obtained by applying

the uncertainty relation, which is often regarded as the most fundamental inequality characterizing

quantum mechanics. Among the various forms of the uncertainty relation, we employ the Landau-Pollak

uncertainty relation for arbitrary numbers of projection operators [30]. For a finite family of projection

operators {Ai} and any state ρ, it holds that

∑
i

tr(ρAi) ≤ 1 +

⎛
⎝∑

i �=j

‖AiAj‖2
⎞
⎠

1/2

We apply this inequality for a family of projection operators {Pt, Qs} (l(t) ≤ l, l(s) ≤ m) and the state

Θ. As PtPt′ = 0 for t �= t′ and QsQs′ = 0 for s �= s′ hold thanks to Et ∩ Et′ = Fs ∩ Fs′ = ∅, we obtain

tr(ΘP̂l) + tr(ΘQ̂m) ≤ 1 +

⎛
⎝2

l(t)≤l∑
t

l(s)≤m∑
s

‖PtQs‖2
⎞
⎠

1/2
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The term ‖PtQs‖ of the right-hand side is computed as follows. As the operator norm ‖PtQs‖ is written

as ‖PtQs‖ = sup|Ψ〉:‖|Ψ〉‖=1 ‖PtQs|Ψ〉‖, we need to bound ‖PtQs|Ψ〉‖ for any normalized vector |Ψ〉.

‖ ∑
z∈Et

∑
x∈Fs

(ZzXx ⊗ Et
z ⊗ F s

x)|Ψ〉‖ =

⎛
⎝∑

z∈Et

∑
x∈Fs

〈Ψ|(XxZzXx ⊗ Et
z ⊗ F s

x)|Ψ〉
⎞
⎠

1/2

=

⎛
⎝∑

z∈Et

∑
x∈Fs

tr(μt,s
z,xXxZzXx)〈Ψ|1A ⊗ Et

z ⊗ F s
x |Ψ〉

⎞
⎠

1/2

where we used Et
zE

t
z′ = 0 for z �= z′ and F s

xF
s
x′ = 0 for x �= x′, and μt,s

z,x is a posteriori state [29] defined

as a unique state satisfying the above equality.

As |tr(μt,s
z,xXxZzXx)| ≤ ‖XxZzXx‖ = 1

2N
holds, we obtain

⎛
⎝∑

z∈Et

∑
x∈Fs

tr(μt,s
z,xXxZzXx)〈Ψ|1A ⊗ Et

z ⊗ F s
x |Ψ〉

⎞
⎠

1/2

≤ 1

2N/2

⎛
⎝∑

z∈Et

∑
x∈Fs

〈Ψ|1A ⊗ Et
z ⊗ F s

x |Ψ〉
⎞
⎠

1/2

≤ 1

2N/2

where we have used
∑

z∈Et E
t
z ≤ 1B and

∑
x∈Fs

F s
x ≤ 1E . As |{t|l(t) ≤ l}| ≤ 2l+1 and

|{s|l(s) ≤ m}| ≤ 2m+1 hold, we obtain

tr(ΘP̂l) + tr(ΘQ̂m) ≤ 1 + 2
l+m−N+3

2

This inequality with (1) and (2) derives

∣∣∣{z|Kc,U(z|ρBz , Z) ≤ l}
∣∣∣+

∣∣∣{x|Kc,U(x|σE
x , X) ≤ m}

∣∣∣ ≤ 2N
(
1 + 2

l+m−N+3
2

)

Taking into consideration the relationship between Kc,U and KU , we finally obtain

∣∣∣{z|K(z|ρBz , Z) ≤ l}
∣∣∣+

∣∣∣{x|K(x|σE
x , X) ≤ m}

∣∣∣ ≤ 2N
(
1 + 2

l+m−N
2

+c
)

where c is a constant. Q.E.D.

Let us consider the implication of the above theorem. As noted in the theorem, a nontrivial bound

is given only for l + m ≤ N − 2c. This situation is attained when one considers the asymptotic

behavior of a family of protocols governed by increasing N . We consider {z|K(z|ρBz , Z) ≤ pZN}
and {x|K(x|σE

x , X) ≤ pxN} for some pZ , pX ∈ [0, 1]. If pZ and pX satisfy pZ + pX < 1, for a

sufficiently large N > 0, the right-hand side of the above theorem behaves as 2N(1+O(2−εN)) for some

ε > 0. That is, for any pZ , pX ∈ [0, 1) satisfying pX + pZ < 1, there exists ε > 0 such that it holds

|{z|K(z|ρBz , Z) ≤ pZN}|+ |{x|K(x|σE
x , X) ≤ pXN}| ≤ 2N(1 +O(2−εN))

This type of argument is common in the algorithmic information theory.

In addition, the above theorem gives the following corollaries, which should be meaningful for an

asymptotically large N .
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Corollary 1 There exists a trade-off relationship between maxz K(z|ρBz , Z) and maxx K(x|σE
x , X):

max
z∈{0,1}N

K(z|ρBz , Z) + max
x∈{0,1}N

K(x|σE
x , X) ≥ N −O(1)

Proof: Because for l = maxz K(z|ρBz , Z) and m = maxx K(x|σE
x , X), {z|K(z|ρBz , Z) ≤ l}| = 2N

and {x|K(x|σE
x , X) ≤ m}| = 2N hold, the right-hand side of the above theorem must be larger than

2N(1 + 1). It is only possible when l +m ≥ N − 2c holds. Q.E.D.

Corollary 2 (No-cloning theorem [31,32]) Unknown states cannot be cloned (for a sufficiently large N ).

Proof: Suppose that universal cloning is possible. Put HB � HE � HA. There should exist a CP-map

Λ satisfying both Λ(|z〉〈z|) = |z〉〈z| ⊗ |z〉〈z| and Λ(|x〉〈x|) = |x〉〈x| ⊗ |x〉〈x| for all z, x ∈ {0, 1}N .

It implies that maxz K(z|ρBz , Z) = O(1) and maxx K(x|σE
x , X) = O(1). This contradicts corollary 1.

Q.E.D.

4. Discussion

In this research, we study a quantum algorithmic information-theoretic representation of

the information-disturbance theorem. We first discuss the relationship between Shannon’s

information-theoretic theorem and our algorithmic one. Using a possible relationship between Shannon

information and Kolmogorov complexity is likely to yield an inequality

∑

z∈{0,1}N
pZ(z)K(z|ρBz , Z) +

∑

x∈{0,1}N
pX(x)K(x|σE

x , X) ≥ N − c (3)

directly from Shannon’s version. This inequality is different from our theorem derived in the present

paper. In fact, even if families {K(z|ρBz , Z)}z and {K(x|σE
x , X)}x satisfy this inequality, they may not

satisfy the inequality in our theorem. In fact, if we put |{z|K(z|ρBz , Z) = N
2
}| = 3·2N

4
, |{z|K(z|ρBz , Z) =

N}| = 2N

4
, |{x|K(x|σE

x , X) = N
3
}| = 3·2N

4
, and |{x|K(x|σE

x , X) = N}| = 2N

4
, then the left-hand side

of (3) becomes 9N
8

, but our theorem (with c = 0) is not satisfied for l = N
2

and m = N
3

. It would be

interesting to investigate an inequality for Shannon’s information that corresponds to our theorem.

As mentioned in the introduction, one of the purposes of this study is to demonstrate the usage

of quantum Kolmogorov complexity in the quantum information theory. Our derivation dealt with

Kolmogorov complexity directly without relying on the results known in Shannon’s version of the

quantum information theory. Those results imply that Kolmogorov complexity can yield meaningful

results by combining it with the uncertainty relation. Thus, quantum Kolmogorov complexity by itself

can be a powerful tool in the quantum information theory by itself.

In addition, as mentioned earlier, there are various quantum versions of Kolmogorov complexity.

It would be interesting and important to study quantum information-theoretic problems by using these

quantum versions.

While our information-disturbance theorem was formulated in a cryptographic setting, it is strongly

related to Heisenberg’s uncertainty principle, which is one of the most important characteristics of

quantum mechanics. According to Heisenberg’s original Gedanken experiment, a precise measurement

of the momentum destroys the position of a particle. If one regards Eve’s attack as the measurement

of “momentum”, the information-disturbance relationship that predicts a disturbance in the conjugate
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“position” corresponds to the Heisenberg’s setting. However, despite this similarity, there is a gap

between our information-disturbance theorem and Heisenberg’s uncertainty principle. The latter should

be formulated as a relationship that does not depend on states as was discussed in [33]. Further

investigation in this direction needs to be carried out. Besides exploring subjects related to the

uncertainty principle, several things need to be done. We hope that the quantum Kolmogorov complexity

will shed new light on the quantum information theory.
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