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Abstract:



In the present paper, we propose a large sample asymptotic approximation for the sampling and posterior distributions of differential entropy when the sample is composed of independent and identically distributed realization of a multivariate normal distribution.
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1. Introduction


Entropy has been an active topic of research for over 50 years and much has been published about this measure in various contexts. In statistics, recent developments have investigated how to estimate entropy from data, either in a parametric [1,2,3] or nonparametric framework [4,5], as well as the reliability and convergence properties of these estimators [6,7].



By contrast, relatively little is known about the statistical distribution of entropy, even in the simple case of a multivariate normal distribution. For instance, the differential entropy [image: there is no content] of a D-dimensional random variable X that is normally distributed with mean μ and covariance matrix Σ is given by


[image: there is no content]



(1)




If [image: there is no content] are N independent and identically distributed realizations of X and S the corresponding sum of square, then the sample differential entropy [image: there is no content] is used as the so-called plug-in estimator for [image: there is no content]. However, [image: there is no content] is also a random variable whose sampling distribution could be studied. Ahmed et al. provided the exact expression for the mean and variance of this variable [1]. Similarly, in a Bayesian framework, given [image: there is no content], what are the probable values of [image: there is no content]? We are not aware of any study in this direction for multivariate normal distributions (but see, e.g., [8,9] for the posterior moments of entropy in the case of multinomial distributions). In the present paper, we provide an asymptotic approximation for both the sampling distribution of [image: there is no content] and, in a Bayesian framework, the posterior distribution of [image: there is no content] given [image: there is no content]. To this aim, we first calculate the moments of [image: there is no content] in the same condition as above. We then use this result to provide a closed form expression for the cumulant-generating function of [image: there is no content], from which we derive closed form expressions for the cumulants, together with asymptotic expansions when [image: there is no content]. Using the characteristic function of U, we then provide an asymptotic normal approximation for the distribution of this variable. We finally apply these result to the sample and posterior entropy of multivariate normal distributions.




2. General Result


Assume that S is distributed according to a Wishart distribution with [image: there is no content] degrees of freedom and scale matrix Σ, i.e., [10] (Chapter 7)


[image: there is no content]








where [image: there is no content] is the normalizing constant,


[image: there is no content]



(2)




Direct calculation show that we have, for [image: there is no content],


E|S||νΣ|t=∫|S||νΣ|t·1[image: there is no content]|Σ|-ν2|S|ν-D-12exp-12tr(Σ-1S)dS =[image: there is no content][image: there is no content]ν-Dt∫1[image: there is no content]|Σ|-ν+2t2|S|(ν+2t)-D-12exp-12tr(Σ-1S)dS(3) =[image: there is no content][image: there is no content]ν-Dt








provided that the integral sums to one, i.e., [image: there is no content] or, equivalently, [image: there is no content].



2.1. Cumulant-Generating Function, Cumulants, and Central Moments of U


Cumulant-generating function Let U be the function defined in the introduction, i.e.,


[image: there is no content]



(4)




and [image: there is no content] its cumulant-generating function. [image: there is no content] is the log of the quantity calculated in Equation (3)


gU(t)=Dtlnν+lnZD(ν-2t)-ln[image: there is no content]



(5)




[image: there is no content] and [image: there is no content] can be expressed using Equation (2), leading to


[image: there is no content]



(6)







Cumulants By construction, the nth cumulant of U is given by [image: there is no content]. In the present case, [image: there is no content] can be obtained by direct derivation, yielding for the cumulants


[image: there is no content]



(7)




and


[image: there is no content]



(8)




for [image: there is no content], where ψ is the digamma function, i.e., [image: there is no content], and [image: there is no content] its nth derivative [11] (pp. 258–260). For any [image: there is no content], [image: there is no content] is always strictly positive. It is an increasing function of D and a decreasing function of ν. It tends to 0 when ν tends to infinity. For a proof of these properties, see the appendix.



Central moments Cumulants and central moments are related as follows: If we denote by μ, [image: there is no content], γ and [image: there is no content] the mean, variance, skewness and excess kurtosis of U, respectively, we have [image: there is no content], [image: there is no content]=κ2, [image: there is no content], and [image: there is no content]=κ4/κ22. Note that, by definition, μ is equal to the expression of Equation (7) and [image: there is no content] to that of Equation (8) with [image: there is no content].





2.2. Asymptotic Expansion


When ν is large, ψ can be approximated using the following asymptotic expansion [11] (p. 260)


[image: there is no content]








where [image: there is no content] refers to Landau notation and stands for any function [image: there is no content] for which there exists [image: there is no content] so that [image: there is no content] is bounded for z≥[image: there is no content]. This leads to


ψν+1-d2=lnν+1-d2-1ν+1-d-13(ν+1-d)2+O1ν3=lnν2+ln1+1-dν-1ν1+1-dν-13ν21+1-dν2+O1ν3=lnν2+1-dν-121-dν2-1ν1-1-dν-13ν2+O1ν3=lnν2-dν+1-3d26ν2+O1ν3








Incorporating this expansion in Equation (7) yields for the first cumulant [image: there is no content] or, equivalently, the mean μ


[image: there is no content]=μ=D(D+1)2ν+2D3+3D2-D12ν2+O1ν3



(9)




For the cumulants and central moments of order 2 and up, we use the following approximation of [image: there is no content] [11] (p. 260)


[image: there is no content](z)=(-1)n-1(n-1)!zn+n!2zn+1+O1zn+2



(10)




Each term in the sum of Equation (8) can therefore be approximated as


ψ(n-1)ν+1-d2=(-1)n-22n-1(n-2)!νn-11+1-dνn-1+2n-1(n-1)!νn1+1-dνn+O1νn+1=(-1)n-22n-1(n-2)!νn-11-(n-1)(1-d)ν+2n-1(n-1)!νn+O1νn+1=(-1)n-22n-1(n-2)!νn-1+2n-1(n-1)!dνn+O1νn+1








leading to an approximation of [image: there is no content] of the form


[image: there is no content]=2n-1D(n-2)!νn-1+2n-1D(D+1)(n-1)!2νn+O1νn+1



(11)




Taking n equal to 2, 3, and 4 respectively yields for the cumulants of order 2, 3, and 4


[image: there is no content]



(12)






[image: there is no content]



(13)






[image: there is no content]



(14)




We can now provide asymptotic approximations for the corresponding central moments. The variance [image: there is no content]=κ2 is given by Equation (12). Approximation for the skewness [image: there is no content] can be obtained from Equations (12) and (13) as


[image: there is no content]=4Dν21+D+1ν+O1ν22Dν-321+D+12ν+O1ν2-32=2Dν1+D+14ν+O1ν2








[image: there is no content] being asymptotically positive, the distribution is skewed on the right. Finally, the approximation for [image: there is no content]=κ4/κ22 can be expressed as


[image: there is no content]=16Dν31+3(D+1)2ν+O1ν22Dν-21+D+12ν+O1ν2-2=4Dν1+D+12ν+O1ν3








which is asymptotically positive, corresponding to a leptokurtic distribution.




2.3. Asymptotic Distribution of  U


We now use the previous results to prove that U is asymptotically normally distributed with mean [image: there is no content] and variance [image: there is no content]. To this aim, set


[image: there is no content]



(15)




with [image: there is no content] and [image: there is no content]. The logarithm of the characteristic function of [image: there is no content] reads


lnϕ[image: there is no content](t)=lnEexpitU-aνbν=-itabν+lnEexpitνbU=-itabν+lnϕUitνb=lnϕUitνb+O1ν








where [image: there is no content] is the characteristic function of U. We proved Equation (3) as an analytic identity for [image: there is no content]. This expression will, however, be valid in the range where [image: there is no content] is analytic. We can thus obtain an expression for [image: there is no content] by replacing t by [image: there is no content] in Equation (3), leading to


lnϕUitνb=lnZDν-2itνb[image: there is no content]+itDνlnνb=ln2ν-2itνbD2πD(D-1)2∏d=1DΓν-2itνb+1-d22νD2πD(D-1)2∏d=1DΓν+1-d2+itDνlnνb(16)=itDνblnν2+∑d=1DlnΓν-2itνb+1-d2Γν+1-d2








We then use Stirling’s approximation [11] (p. 257)


[image: there is no content]








to approximate each term of the sum in the second term of the right-hand side of Equation (16) when ν is large, yielding


lnΓν-2itνb+1-d2Γν+1-d2=ν-2itνb-d2lnν-2itνb+1-d2-ν-2itνb+1-d2-ν-d2lnν+1-d2+ν+1-d2+O1ν=ν-2itνb-d2lnν2+ln1-2itbν+1-dν+itνb-ν-dνlnν2+ln1+1-dν+O1ν=-itνblnν2+itνb+ν-2itνb-d2-2itbν+1-dν+2t2b2ν+O1ν3/2-ν-d21-dν+O1ν3/2+O1ν=-itνblnν2-t2b2+O1ν








We consequently have for the characteristic moment of [image: there is no content]


lnϕ[image: there is no content](t)=lnϕUitνb+O1ν=-Dt2b2+O1ν=-t22+O1ν








As ν tends towards infinity, ϕ[image: there is no content](t) achieves pointwise convergence toward [image: there is no content], which is continuous in [image: there is no content]. According to Lévi’s continuity theorem, [image: there is no content] therefore converges in distribution to the standard normal distribution,


[image: there is no content]=U-D(D+1)2ν2Dν∼[image: there is no content]N(0,1)












3. Application to Differential Entropy


We can use the results of the previous section to obtain the exact and asymptotic cumulants of the sample and posterior entropy when the data are multivariate normal.



3.1. Sampling Distribution


The differential entropy [image: there is no content] of a D-dimensional random variable X that is normally distributed with (known) mean μ and (unknown) covariance matrix Σ is given by Equation (1). Let [image: there is no content] be N independent and identically distributed realizations of X. Set S the sum of square, i.e.,


[image: there is no content]



(17)




S follows a Wishart distribution with [image: there is no content] degrees of freedom and scale matrix Σ [12] (Th. 7.2.2). Define the sample differential entropy corresponding to the N realizations as [image: there is no content]. Using the fact that [image: there is no content], we obtain that [image: there is no content], where U was defined in Equation (4). The mean and variance of [image: there is no content] can therefore be expressed as functions of the corresponding central moments of U, i.e., [image: there is no content] [Equations (7) and (9)] and [image: there is no content]=κ2 [Equations (6) and (12)], leading to the following closed form expressions and approximations


 [image: there is no content]=h(Σ)-μ2(18)=h(Σ)-D2lnN2+12∑d=1DψN+1-d2(19)=h(Σ)-D(D+1)4N-2D3+3D2-D24N2+O1N3








and


 Var[h(S/N)|ν,Σ]=[image: there is no content]4(20)=14∑d=1Dψ′N+1-d2(21)=D2N+D(D+1)4N2+O1N3








Furthermore, use of Section 2.3 shows that, given N and Σ, [image: there is no content] is asymptotically normally distributed with mean [image: there is no content] and variance [image: there is no content]. If μ is unknown, we replace μ by the sample mean m in Equation (17). S is then still Wishart distributed with scale matrix Σ but [image: there is no content] degrees of freedom [12] (Cor. 7.2.2). The exact expectation and variance of [image: there is no content] are therefore given by Equations (18) and (20), respectively where N is replaced by [image: there is no content]. Performing asymptotic expansion of this expression leads to


[image: there is no content]








and


[image: there is no content]








Furthermore, since the first-order approximation is the same for [image: there is no content] for [image: there is no content], both quantities have the same asymptotic distribution.




3.2. Posterior Distribution


With the same assumptions as above, and assuming a non-informative Jeffreys prior for Σ, i.e.,


[image: there is no content]








the posterior distribution for Σ given the N realizations of X is inverse Wishart with [image: there is no content] degrees of freedom and scale matrix [image: there is no content] [13]. This implies that [image: there is no content], the concentration matrix, is Wishart distributed with n degrees of freedom and scale matrix [image: there is no content]. Results of Section 3.1 therefore apply to h(Υ/n)-h([image: there is no content]). But, since for any matrix A, [image: there is no content], we have that h(Υ/n)-h([image: there is no content]) is equal to [image: there is no content] or, equivalently, to [image: there is no content]. As a consequence,


(22)[image: there is no content]=h(S/n)+D2lnν2-12∑d=1DψN-d2(23)=h(S/n)+D(D+1)4N+2D3+9D2+5D24N2+O1N3








and


Var[h(Σ)|n,S]=14∑d=1Dψ′N-d2=D2N+D(D+3)4N2+O1N3








Also, [image: there is no content] is asymptotically normally distributed with mean [image: there is no content] and variance [image: there is no content].





4. Application to Mutual Information and Multiinformation


Similar results can also be derived about the first cumulant of mutual information and multiinformation, its generalization to more than two variables. The mutual information between two sets of variables [image: there is no content] (of dimension [image: there is no content]) and [image: there is no content] (of dimension [image: there is no content]) is defined as


I([image: there is no content],[image: there is no content])=H([image: there is no content])+H([image: there is no content])-H([image: there is no content],[image: there is no content])








For multivariate normal variables, we have


I([image: there is no content],[image: there is no content])=i(Σ)=h([image: there is no content])+h([image: there is no content])-h(Σ)



(24)




where [image: there is no content] and [image: there is no content] are the two block diagonal elements of Σ and where h was defined in Equation (1).



4.1. Sampling Mean


Define the sample mutual information as [image: there is no content]. Using Equation (24), direct calculation shows that we have


[image: there is no content]








An asymptotic approximation for [image: there is no content] can be obtained by direct use of Equation (19). For [image: there is no content] and [image: there is no content], we proceed as follows. If S is Wishart distributed with N degrees of freedom and scale matrix Σ, then [image: there is no content] ([image: there is no content]) is also Wishart distributed with N degrees of freedom and scale matrix [image: there is no content] [12] (Th. 7.3.4). Equation (19) can therefore be applied to matrix [image: there is no content] with the proper scale matrix, yielding


E[h([image: there is no content]/N)|N,Σ]=E[h([image: there is no content]/N)|N,[image: there is no content]]=h([image: there is no content])-Dj(Dj+1)4N-2Dj3+3Dj2-Dj24N2+O1N3








[image: there is no content] consequently reads


E[i(S/N)|N,Σ]=i(Σ)+[image: there is no content][image: there is no content]2N1+[image: there is no content]+[image: there is no content]+12N+O1N3








A similar result can be obtained for the generalization of i to K sets of variables [image: there is no content] (of size [image: there is no content]) as a measure called total correlation [14], multivariate constraint [15], δ [16], or multiinformation [17]. In that case, we have


E[i(S/N)|N,Σ]=i(Σ)+∑i<jDiDj2N+∑i≠jDiDjDi+∑k≠i,j[image: there is no content]+14N2+O1N3








and, in the particular case where each [image: there is no content] is one-dimensional (i.e., [image: there is no content]=1),


[image: there is no content]












4.2. Posterior Mean


A similar argument can be applied to the Bayesian posterior mean of i. Using Equation (24) again, we have


E[i(Σ)|N,S]=E[h([image: there is no content])|N,S]+E[h([image: there is no content])|N,S]-E[h(Σ)|N,S]








An asymptotic approximation for [image: there is no content] can be obtained by direct use of Equation (23). Now, if Σ is inverse Wishart distributed with n degrees of freedom and scale matrix S, then [image: there is no content] ([image: there is no content]) is also inverse Wishart distributed with n-[image: there is no content] ([image: there is no content], [image: there is no content]) degrees of freedom and scale matrix [image: there is no content] [18]. Application of Equation (23) with the proper degrees of freedom and scale matrix leads to


E[h([image: there is no content])|N,S]=h[[image: there is no content]/(n-[image: there is no content])]+Dj(Dj+1)4(N-[image: there is no content])+O1N2=h([image: there is no content]/n)-Dj2ln1-[image: there is no content]N+Dj(Dj+1)4N+O1N2=h[[image: there is no content]/n]+[image: there is no content][image: there is no content]2N+Dj(Dj+1)4N+O1N2








where we only retained the expansion terms of order up to [image: there is no content] for the sake of simplicity. [image: there is no content] consequently reads


E[i(Σ)|N,S]=i(S/n)+[image: there is no content][image: there is no content]2N+O1N2








For posterior multiinformation, we have


[image: there is no content]








and, in the particular case where each [image: there is no content] is one-dimensional (i.e., [image: there is no content]=1),


[image: there is no content]













5. Simulation Study


We conducted the following computations for [image: there is no content]. To assess the accuracy of the asymptotic expansion of the cumulants of sample entropy, we calculated the error made by the first and second central moments (i.e., the mean and variance of the distribution) compared to the exact values as a function of ν. As a way of comparison, we computed the same quantities for 500 different homogeneous positive definite matrices Σ (i.e., with all non-diagonal elements equal to the same value ρ, generated uniformly); for each value of Σ and ν, we generated 1,000 samples from [image: there is no content], computed the corresponding values of sample entropy, and approximated the moments by the corresponding sampling moments. The results are reported in Figure 1.


Figure 1. Error on the mean (top row) and variance (bottom row) of sample entropy for various values of D and ν when using the first-order approximation (circles), the second-order approximation (squares), or the sampling scheme (diamonds). The error was calculated as the absolute value of the difference between the approximation and the true value. For the sampling scheme are represented the median as well as the symmetrical 90% probability interval of the error. Scale on y axis is logarithmic.



[image: Entropy 13 00805 g001]







6. Discussion


In this work, we calculated both the moments of [image: there is no content] and the cumulant-generating function of [image: there is no content] when S is Wishart distributed with ν degrees of freedom and scale matrix Σ. From there, we provided an asymptotic approximation of the first four central moments of U. We also proved that U is asymptotically normally distributed. We then demonstrated the quality of the normal approximation compared to simulations. We finally applied these results to the multivariate normal distribution to provide asymptotic approximations of the sample and posterior distributions of differential entropy, as well as an asymptotic approximation of the sample and posterior mean of multiinformation.



Interestingly, the moments of [image: there is no content] and, as a way of consequence, the cumulant-generating function of U depends on the distribution that S follows only through the matrix dimension D and the degree of freedom ν, but not through Σ. This means that the exact distribution of U is also independent from that parameter and could possibly be tabulated as a function of the two integer parameters.



As mentioned in the introduction, the sample differential entropy defined in Equation (1) is equal to the plug-in estimator for differential entropy. The present work provides a quantification in the case of multivariate normal samples for the well-known negative bias for this estimator [7]. Obviously, Equation (18) confirms that, to correct from this bias, one must take the uniformly minimum variance unbiased (UMVU) estimator [1].



The posterior derivation that we presented here is a particular case of the Bayesian posterior estimate obtained by [3] with, in our case, the prior distribution for Σ taken as Jeffreys prior (i.e., [image: there is no content] and [image: there is no content] with their notations). While the same analysis as in [3] could have been performed, it would essentially lead to the same result, since we only consider the asymptotic case, where the sample is large and the prior distribution is supposed to have very little influence—provided that it does not contradict the data. The present study also shows an interesting feature of Bayesian estimation with respect to the above-mentioned negative bias. As the sample differential entropy tends to underestimate [image: there is no content] by a factor of [image: there is no content], if one takes the posterior mean as the Bayesian estimate of [image: there is no content], then the negative bias is corrected by the opposite factor.





We were also able to obtain an asymptotic approximation of the sampling and posterior expectations of mutual information and multiinformation. Contrary to the general argument developed by [7], we proved that, for multivariate normal distributions, the negative bias for differential entropy does entail a positive bias for mutual information. This result is in agreement with the fact that, under the null hypothesis of Σ diagonal matrix, corresponding to [image: there is no content], [image: there is no content] is asymptotically chi square distributed with [image: there is no content] degrees of freedom and, hence, has an expectation equal to that value [19] (pp. 306–307). Surprisingly, and unlike what was said for entropy, the positive bias of the sample multiinformation was not corrected by the Bayesian approach. A naive correction of minus the positive bias could lead to negative values, which is impossible by construction of multiinformation. Note that, using the present results alone, we were not able to obtain an asymptotic approximation for the variance of the same measures.



In the present paper, we used loose versions of the inequalities proposed in [20] to prove the monotonicity and sign of the cumulants of U (see Section 2.1 and Appendix). Note that, using the same inequalities, it seems that it would also be possible to obtain lower and upper bounds for these quantities, instead of asymptotic approximations. These bounds would be useful complements to the approximations provided in the present manuscript.
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Appendix


Results Regarding the Cumulants



The proofs differ for [image: there is no content] and [image: there is no content], [image: there is no content].



1. Results for [image: there is no content]


For [image: there is no content], set fD(ν)=[image: there is no content] as defined in Equation (7).



Result 1: [image: there is no content]is a decreasing function of ν. Derivation of [image: there is no content] with respect to ν leads to


[image: there is no content]



(25)




We use the following inequality [20]


[image: there is no content]








This implies that


[image: there is no content]








For [image: there is no content], we have [image: there is no content]. Consequently, each term in the sum of Equation (25) is strictly negative, and so is [image: there is no content]. [image: there is no content] is therefore a strictly decreasing function of ν.



Result 2: [image: there is no content] is an increasing function of D. We have


[image: there is no content]








Using the following inequality [20]


[image: there is no content]








we obtain that


[image: there is no content]








leading to


[image: there is no content]








Since [image: there is no content], we have


[image: there is no content]








and, therefore, [image: there is no content].



Result 3: [image: there is no content] is positive. [image: there is no content] is the sum of terms that are strictly positive (cf previous paragraph); it is thus strictly positive.



Result 4: [image: there is no content] tends to infinity as D increases. From the proof of Result 2, we have


[image: there is no content]








which tends to infinity when D tends to infinity.



Result 5: [image: there is no content] tends to 0 as ν increases. We use the following inequality [20]


[image: there is no content]








This implies that


[image: there is no content]








leading to


[image: there is no content]








Since [image: there is no content], we have


[image: there is no content]








Summing over d yields


[image: there is no content]








which tends to 0 when ν increases.




2. Results for [image: there is no content], [image: there is no content]


Define fD(ν)=[image: there is no content] as in Equation (6), (-1)n+1[image: there is no content] is completely monotonic. As a consequence, [image: there is no content] is a decreasing function of ν. We also use the following inequality [20]


(n-1)!xn<(-1)n+1[image: there is no content](x)<(n-1)!xn+n!2xn+1+B2Γ(n+2)2xn+2








This implies that (-1)n+1[image: there is no content](x) is strictly positive and, as a consequence, that [image: there is no content] is an increasing function of D. It also implies that [image: there is no content] tends to 0 as ν tends to infinity.
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