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Abstract: The remarkable connections between gravity and thermodynamics seem to 
imply that gravity is not fundamental but emergent, and in particular, as Verlinde 
suggested, gravity is probably an entropic force. In this paper, we will argue that the idea 
of gravity as an entropic force is debatable. It is shown that there is no convincing analogy 
between gravity and entropic force in Verlinde’s example. Neither holographic screen nor 
test particle satisfies all requirements for the existence of entropic force in a thermodynamics 
system. Furthermore, we show that the entropy increase of the screen is not caused by its 
statistical tendency to increase entropy as required by the existence of entropic force, but in 
fact caused by gravity. Therefore, Verlinde’s argument for the entropic origin of gravity is 
problematic. In addition, we argue that the existence of a minimum size of spacetime, 
together with the Heisenberg uncertainty principle in quantum theory, may imply the 
fundamental existence of gravity as a geometric property of spacetime. This may provide a 
further support for the conclusion that gravity is not an entropic force. 
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1. Introduction 

It is still a controversial issue whether gravity is fundamental or emergent. The solution of this 
problem may have important implications for a complete theory of quantum gravity. A remarkable 
indication for the nature of gravity comes from the deep study of black hole thermodynamics, which 
suggests that general connections between gravity and thermodynamics may exist [1–4]. Inspired by 
these theoretical developments, Jacobson argued that the Einstein equation can be derived from the 
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proportionality of entropy and horizon area, together with the first law of thermodynamics, and he 
concluded that the Einstein equation is a thermodynamics equation of state [5]. Padmanabhan further 
showed that the equations of motion describing gravity in any diffeomorphism invariant theory can be 
given a thermodynamic re-interpretation, which is closely linked to the structure of action functional 
[6,7]. These results suggest that gravity may be explained as an emergent phenomenon and has a 
thermodynamics or entropic origin (see, e.g., [8] for a review). Recently Verlinde proposed a new 
argument for emergent gravity, mainly based on the holographic principle [9]. He argued and 
explicitly claimed that gravity is an entropic force, which is caused by a change in the amount of 
information associated with the positions of bodies of matter. This idea is interesting and, if right, may 
have important implications for the origin of gravity and its unification with the quantum. In this 
paper, we will critically examine the idea of gravity as an entropic force, focusing more on the 
physical explanation.

2. Verlinde’s Argument 

Verlinde’s argument can be basically formulated as follows. Consider a small piece of a 
holographic screen. A particle of mass m approaches it from the side at which space has already 
emerged. First, it is assumed that before the particle merges with the microscopic degrees of freedom 
on the screen, it already influences the amount of information that is stored on the screen, and the 
corresponding change of entropy on the screen is: 

xmckS B Δ=Δ
�

π2 (1)

where xΔ  is the displacement of the particle near the screen and comparable with the Compton 
wavelength of the particle, Bk  is the Boltzmann constant, c is the speed of light, and �  is Planck’s 
constant divided by π2 . Next, it is assumed that the holographic principle holds, and the number of 
the used bits on the screen is:

�G
AcN

3

= (2)

where A  is the area of the screen, and G is a constant that will be identified with Newton’s constant 
later. Thirdly, it is assumed that the screen has a total energy E, which is divided evenly over the bits 
N, and the temperature of the screen T is determined by the equipartition rule: 

TNkE B2
1= (3)

Lastly, it is assumed that the mass M, which would emerge in the part of space enclosed by the 
screen, satisfies the relativistic mass-energy relation: 

2McE = (4)

How does force arise then? Here Verlinde used an analogy with osmosis across a semi-permeable 
membrane. When a particle has an entropic reason to be on one side of the membrane and the 
membrane carries a temperature, it will experience an effective entropic force equal to: 
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STxF Δ=Δ (5)

Then he claimed that in the above interacting process between a holographic screen and a particle, 
the particle will also experience an entropic force in a similar way. Moreover, he showed that this 

force satisfies Newton’s law of gravity, namely 2R
MmGF = , based on Equations (1)–(5) and the area 

relation 24 RA π= . Inspired by these interesting results, Verlinde thus concluded that gravity is an 
entropic force.

3. Understanding Entropy Force 

In order to see whether gravity is an entropic force or not, we need to first understand the concept of 
an entropic force. An entropic force can be defined as an effective macroscopic force that originates in 
a thermodynamics system by its statistical tendency to increase entropy. As a typical example, let us 
see the elasticity of a polymer molecule, which was also discussed by Verlinde [9].  

A polymer molecule is a large molecule composed of repeating structural units, typically connected 
by covalent chemical bonds. The simplest polymer architecture is a linear chain, and it can be modeled 
by joining together many monomers of fixed length, where each monomer can freely rotate around the 
points of attachment and direct itself in any spatial direction. Each of these configurations has the same 
energy. When the polymer molecule is immersed into a heat bath, it tends to put itself into a randomly 
coiled configuration since this configuration has higher entropy. There are many more such 
configurations when the molecule is short compared to when it is stretched into an extended 
configuration. The statistical tendency to reach a maximal entropy state then generates the elastic force 
of a polymer, which is a typical entropic force. 

We can further determine the entropic force by introducing an external force F to pull the polymer 
out of its equilibrium state and then examining the balance of forces. For example, one can fix one 
endpoint of the polymer at the origin and pull the other endpoint of the polymer apart along the x-axis.
The entropy of the system can be written as ),(log),( xEkxES B Ω= , where ),( xEΩ  denotes the 
volume of the configuration space for the entire system as a function of the total energy E of the heat 
bath and the average stretch length of the polymer (in this case the position x of the pulled endpoint). 
One can then determine the entropic force by analyzing the micro-canonical ensemble given by 

),( xFxE +Ω , where the external force is introduced as an external variable dual to the length x of the 
polymer, and imposing the extremal condition for entropy. This gives xSTF ∂∂= / , where the 
temperature T is defined by EST ∂∂= //1 . By the balance of forces, the entropic force, which tries to 
restore the polymer to its equilibrium position, will be equal to the external force F. For the polymer 
the entropic force can be shown to obey Hooke’s law, i.e., the entropic force is proportional to the 
stretched length.

The entropic force can also be understood in terms of the first law of thermodynamics. The 
principle is an expression of energy conservation, according to which the increase in the internal 
energy of a system is equal to the amount of energy added by heating the system minus the amount lost 
as a result of the work done by the system on its surroundings. When the internal energy of a system 
does not change during the studied process, the law can be simply written as STxF Δ=Δ . In the 
following we will analyze the entropic force of the polymer in terms of this equation.  
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We have three interacting systems in total, namely a heat bath, a polymer immersed in it, and an 
external system connected to the polymer. There is no entropic force when the polymer is in its 
equilibrium state with maximum entropy. Only when the polymer leaves its maximum entropy state 
can an entropic force appear. We assume that the internal energy of the polymer remains constant 
during the change of its entropy. When the polymer is pulled out of equilibrium by an external force, 
the work done by the force will be equal to the energy increase of the heat bath according to the first 
law of thermodynamics. In the l.h.s of the equation STxF Δ=Δ , F  is the external force, xΔ  is the 
displacement of the polymer, and xFΔ  is the work done on the polymer by the external system. In the 
r.h.s of the equation, T  is the temperature of the polymer, SΔ  is the entropy decrease of the polymer, 
and STΔ  is the heat loss of the polymer. The work is equal to the heat loss, and the internal energy of 
the polymer keeps constant. Moreover, the heat flows from the polymer to the heat bath, and the heat 
loss of the polymer is equal to the energy increase of the heat bath. As a result, the total energy of the 
three systems is conserved [10]. In short, energy flows from the external system to the polymer and 
further to the heat bath, and the corresponding causal chain is: External system � Polymer � Heat 
bath. During this process, the entropy of the polymer decreases, and the entropy of the heat bath 
increases. When keeping the polymer at a fixed length the entropic force will be equal to the external 
force, which is xSTF ΔΔ= /  according to the above equation, and their directions are opposite.

When one lets the stretched polymer gradually return to its equilibrium position, while allowing the 
force to perform work on the external system, the work done by the entropic force will be equal to the 
energy decrease of the heat bath according to the first law of thermodynamics. In the l.h.s of the 
equation STxF Δ=Δ , F  is the entropic force, xΔ  is the displacement of the polymer, and xFΔ  is the 
work done by the polymer on the external system. In the r.h.s of the equation, T  is the temperature of 
the polymer, SΔ  is the entropy increase of the polymer, and STΔ  is the heat of the polymer extracted 
from the heat bath. The work is equal to the heat gain, and the total energy of the three systems is also 
conserved. During this process, the entropy of the polymer increases, and the entropy of the heat bath 
decreases. Moreover, energy flows from the heat bath to the polymer and further to the external 
system, and the corresponding causal chain is Heat bath � Polymer � External system. By the 
equation STxF Δ=Δ  we can also find the entropy force is xSTF ΔΔ= / .

Before ending this section we will stress several important features of entropic force, which are 
relevant to the analysis of Verlinde’s argument that follows. First, entropic force results entirely from 
the statistical tendency of a thermodynamics system to increase its entropy, not from any energy effect. 
The energy of the system is conserved when the entropic force is in action. In this sense, entropic force 
has a purely entropic origin. But how can a force be generated without any energy effect? This leads us 
to the second important feature of entropic force, namely that the existence of a heat bath is 
indispensable for entropic force. Although an entropic force is independent of the details of the 
microscopic dynamics, its existence depends on the existence of interaction between the microscopic 
components of the studied system and environment or heat bath. For example, there is no entropic 
force for an isolated polymer in a vacuum. Due to the interaction, the system is constantly subject to 
random collisions from microscopic components of the heat bath, and each of these collisions sends 
the system from its current microscopic state to another. This will lead the system to its maximum 
entropy state, the state with the maximum number of microscopic states, and the statistical tendency to 
reach a maximum entropy state then generates an entropic force. In most familiar situations, the 
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interaction has an eletromagnetic origin. In this sense, it may be not wholly right to say that entropic 
force has a purely entropic origin. 

Thirdly, the magnitude of an entropic force is only related to the properties of the system and the 
surrounding heat bath, e.g., the size of the system and the temperature of the heat bath. For example, 
the entropic force of a polymer is proportional to its stretched length and the temperature of the heat 
bath. In particular, the magnitude of an entropic force is not related to the properties of any external 
system. For instance, the entropic force of a polymer is irrelevant to the mass of the external system 
connected to the polymer. Lastly, an entropic force always points in the direction of increasing 
entropy. An external force exerted on a system can point in the direction of decreasing its entropy, 
while the entropic force generated by the system must point in the direction of increasing its entropy. 
When the system reaches its maximum entropy, the entropic force becomes zero.  

4. Why Gravity Is Not an Entropy Force 

After we have understood what an entropic force is, we can next examine Verlinde’s argument for 
the entropic origin of gravity. In his example of gravity, there are two systems, namely a holographic 
screen and a test particle. Verlinde argued that the gravitational interaction between the holographic 
screen and the particle is an entropic force. In order to see whether an entropic force exists in the 
example and whether gravity is an entropic force, we need to, parallel to the polymer example, answer 
the following two questions concerning Verlinde’s example: Which is the heat bath? And which is 
the polymer?  

Option 1: Verlinde’s answer. 

According to Verlinde, the holographic screen serves as the heat bath, and the particle can be 
regarded as the end point of the polymer that is gradually allowed to go back to its equilibrium 
position ([9], p. 25). He further suggested that the particle can be thought of as being immersed in the 
heat bath representing the screen in the holographic description, and by the time that the particle 
reaches the screen it will become part of the thermal state, just like the polymer. 

As already admitted by Verlinde, however, it is not appropriate to view the screen as a heat bath. 
The reason is that the screen is not exactly at thermal equilibrium ([9], p. 26). If assuming the screen at 
an equipotential surface is in equilibrium, then the entropy needed to get the Unruh temperature will 
appear to be very high and violate the Bekenstein bound that states that a system contained in region 
with radius R and total energy E cannot have entropy larger than ER. Verlinde tried to solve this 
problem by rescaling the value of Planck’s constant. This rescaling would affect the values of the 
entropy and the temperature in opposite directions: T will get multiplied by a factor, and S will be 
divided by the same factor. He also briefly proposed another possible solution based on a description 
that uses weighted average over many screens with different temperatures. Although Verlinde 
admitted that there is something to be understood, he still concluded that gravity is an entropic force.

In the following, we will point out some other problems of Verlinde’s analogy between gravity and 
entropic force. First, although the particle can be regarded as a polymer in some sense, it seemingly 
has no well-defined temperature and entropy. As a result, it seems meaningless to talk about the 
entropy increase of the polymer-like particle or its statistical tendency to increase entropy, but the 
latter is required by the existence of an entropic force as we have seen in the polymer example. 
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Furthermore, even if the particle has appropriate temperature and entropy, they will be very different 
from those of the screen, and thus the resulting entropic force for the polymer-like particle will be 
different from Newton’s gravity. In fact, the temperature and entropy of the particle does not appear in 
Verlinde’s derivation, where there are only the temperature and entropy of the screen. Secondly, 
during the process of the polymer-like particle going back to its equilibrium position ([9], p. 25), 
energy flows into the heat-bath-like screen. This is also inconsistent with the energy-flow feature of 
entropic force; energy should flow out of the heat bath for such a process. This leads us to the third 
problem. As we have known from the polymer example, during the process of a polymer returning to 
its equilibrium position, it is the entropy of the polymer that increases, while the entropy of the heat 
bath decreases. However, the entropy of the screen as a heat bath increases when the particle as a 
polymer returns to its equilibrium position. Therefore, there is also an obvious inconsistency in the 
analogy. To sum up, Verlinde’s answer is problematic. It is improper to view the holographic screen as 
a heat bath and the particle a polymer. Moreover, no entropic force exists when assuming this view.  

Option 2: The screen is taken as a heat bath, and the particle is taken as an external system.  

Can an entropic force exist for this option? The answer is negative too. As we have seen from the 
analysis of Option 1, there is no convincing analogy between the screen and a heat bath. Thus, an 
environment suitable for the existence of entropic force is not available either for this option. Besides, 
the gravitational interaction is related to the mass of the external particle, while entropic force should 
only depend on the properties of the system (in this case the heat bath) and be irrelevant to the mass of 
any external particle. As a result, gravity cannot be an entropic force no matter whether entropic force 
exists for this option.  

Option 3: The screen is taken as a polymer, and the particle is taken as an external system.  

This option is suggested by the observation that the system whose entropy increases during the 
interacting process is the screen, not the particle, and it is the polymer, not the heat bath, that increases 
its entropy during similar process in the polymer example. Thus the screen is more like a polymer than 
like a heat bath. Besides, this option is also supported by the above observation that the gravitational 
interaction undergone by the particle points in direction of the entropy increase of the screen, which is 
consistent with the direction feature of entropic force. However, gravity cannot be an entropic force for 
this option either when considering the magnitude feature of entropic force. The gravitational 
interaction between the screen and the particle is related to the masses of both systems, while the 
entropic force originating from the polymer-like screen is irrelevant to the properties of the particle 
taken as an external system. In fact, there is no entropic force either for this option, as there is no heat 
bath here. As we have pointed out in the last section, a heat bath is indispensable for the existence of 
an entropic force.

Option 4: The screen and the particle are taken as the two ends of a polymer.  

This option is consistent with the magnitude feature of an entropic force; the gravitational 
interaction between the screen and the particle is related to the properties of both systems, while the 
entropic force of a polymer also depends on the properties of the whole polymer, in this case including 
both the screen and the particle. However, there is an obvious objection to this option, namely that 
there is no thermal equilibrium between the screen and the particle. Moreover, as we have argued 
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before, it is also problematic to view the particle as a polymer. Besides, since there is no heat bath, 
there is no entropic force either for this option. Note that although constant quantum vacuum 
fluctuations exist in the emergent space between the screen and the particle, the temperature of this 
Minkowski vacuum is precisely zero, and the in-between space is not a heat bath. Even if we assume 
the existence of an in-between gravitational field beforehand, and further regard it as an approximate 
heat bath, an environment suitable for the existence of entropic force is still unavailable. The reason is 
that the gravitational field is not in equilibrium with the screen and particle. Moreover, since the 
average temperature of the field is in general much lower than that of the screen or horizon, energy 
cannot spontaneously flow from the field to the screen due to a pure entropic reason.

After examining all these possible options, we find that there is no convincing analogy between 
gravity and entropic force in Verlinde’s example. Neither the holographic screen nor the particle 
satisfies all the requirements for the existence of entropic force in a thermodynamics system.  

Lastly, we will present a general objection to viewing gravity as an entropic force in Verlinde’s 
example. The objection concerns the energy increase of the screen. During the interaction between the 
screen and the particle, the energy of the screen also increases along with its entropy increase [11]. 
Moreover, the amount of its entropy increase just corresponds to the amount of its energy increase. 
This already indicates that gravity cannot be a pure entropic effect, because, unlike the polymer 
example, energy is obviously input to the screen during the process, especially in the same amount as 
required by the increase of entropy. We can strengthen this conclusion by further analyzing the causal 
relationship between energy increase and entropy increase. It is well known that energy increase can 
cause entropy increase, but the (spontaneous) entropy increase cannot cause energy increase (on the 
contrary, energy will decrease if the entropy-increasing system does work. When no work is done by 
the entropy-increasing system, its energy is conserved in case of no input energy). Therefore, the 
entropy increase of the screen is in fact caused by its energy increase, not by a statistical tendency to 
increase entropy, which is essentially required for the existence of an entropic force. As a result, the 
interaction between the screen and the particle is not an entropic effect, and gravity is not an entropic 
force either [12].

The entropy increase of the screen results from its energy increase. Where does the increased 
energy come from then? When assuming a gravitational field exists between the screen and the particle 
as usual, it is easy to answer this question. It is the gravitational field that provides the increased 
(matter) energy for the screen [13]. In other words, the energy flow originates from the work done by 
the gravitational field through the force, gravity [14]. This is essentially different from the process of 
energy gain of the polymer. In the polymer example, the energy gain of the polymer comes from the 
heat bath through a pure thermodynamics process. Can a similar thermodynamics process explain the 
energy increase of the screen? The answer is negative. As we have argued in the analysis of Option 4, 
there is no well-defined heat bath here. Even if the gravitational field can be taken as an approximate 
heat bath, its average temperature will be in general much lower than that of the screen or horizon, and 
thus energy cannot spontaneously flow from the field to the screen due to a pure entropic reason. In a 
word, the increased energy of the screen can only come from the work done by the gravitational field. 

Although the above argument seems reasonable, one question still needs to be answered before we 
can reach a definite conclusion, namely why the force F, derived from the formula STxF Δ=Δ , is just 
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gravity for the interacting process between a holographic screen and a particle when assuming the 

formula xmckS B Δ=Δ
�

π2  as Verlinde did ([9], p. 7).  

In fact, this result can be readily understood after we have known that the entropy increase of the 
screen results from its energy increase and the energy comes from the work done by the gravitational 
field. Since: 

2R
MmGF =  (Newton’s law of gravity) 

and:     22
1

2
1

cR
GM

kc
a

k
T

BB

��

ππ
==  (Unruh’s formula),  

there must exist the following relation:  

xmckS B Δ=Δ
�

π2

in accordance with the formula STxF Δ=Δ .
Then it is not surprising that when assuming: 

xmckS B Δ=Δ
�

π2

(and Unruh’s formula or holographic principle), Newton’s law of gravity naturally follows [15].
It is worth noting that this argument does not depend on the distance between the screen and the 

particle, and the particle needs not to be near the screen. The general formula is: 

x
R

mcRkS B Δ
′

=Δ 2

2

2
�

π ,

where R  is the radius of the spherical screen, and R′  is the distance between the particle and the 
center of the screen [16]. Therefore, why Verlinde’s “entropic force” is gravity is because it is just the 
work done by gravity that results in the increase in entropy [17]. 

To sum up, although Verlinde’s derivation is right, it does not prove in physics that gravity is an 
entropic force [18]. Moreover, a detailed analysis shows that gravity is not an entropic force in the 
gravitational system he considered. In particular, the gravitational interaction between a holographic 
screen and a test particle is caused neither by the entropy increase of the screen nor by its statistical 
tendency to increase entropy; rather, the entropy increase of the screen is caused by gravity [19].

5. Further Discussions 

The connections between gravity and thermodynamics seem so remarkable that one cannot help 
conjecturing that gravity has a thermodynamics or entropic origin. From a general point of view, 
however, this opinion is at least debatable. To begin with, the temperature and entropy of various 
horizons are all derived from the vacuum fluctuations of quantum fields in curved spacetime. Then 
how can one re-ascribe these emergent properties to the thermodynamics of spacetime itself? It seems 
that there is a huge gap between them in physics. Next, although the existing arguments based on 
thermodynamical analysis can derive the Einstein equation [20], they do it only with the help of the 
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principle of equivalence together with some other assumptions. In other words, they can answer how 
matter curves spacetime only after assuming matter indeed curves spacetime. They do not explain why 
matter curves spacetime or why gravity is a curved spacetime phenomenon, which is the very nature of 
gravity according to general relativity. Only after one explains this particular nature, can one 
understand the origin of gravity and answer whether gravity is emergent or not. In the following, we 
will present a tentative answer. It is argued that the existence of a minimum size of spacetime, together 
with the Heisenberg uncertainty principle in quantum theory, might help to explain why matter 
curves spacetime.  

According to the Heisenberg uncertainty principle in quantum mechanics we have:  

p
x

Δ
≥Δ

2
�

(6)

The momentum uncertainty of a particle, pΔ , will result in the uncertainty of its position, xΔ . This 
poses a limitation on the localization of a particle in the nonrelativistic domain. There is a more strict 
limitation on xΔ  in the relativistic domain. A particle at rest can only be localized within a distance of 
the order of its reduced Compton wavelength, namely:  

cm
x

02
�≥Δ (7)

where 0m  is the rest mass of the particle. The reason is that when the momentum uncertainty pΔ  is 
greater than cm02  the energy uncertainty EΔ  will exceed 2

02 cm , but this will create a particle  

anti-particle pair from the vacuum and make the position of the original particle invalid. It then follows 
that the minimum localization length of a particle at rest can only be the order of its reduced Compton 
wavelength. Using the Lorentz transformation, the minimum localization length of a particle moving 
with (average) velocity v  is: 

mc
x

2
�≥Δ  or 

E
cx

2
�≥Δ (8)

where 22
0 /1/ cvmm −=  is the relativistic mass of the particle, and 2mcE =  is the total energy of 

the particle. This means that when the energy uncertainty of a particle is of the order of its (average) 
energy, it has the minimum localization length. Note that Equation (8) also holds true for particles with 
zero rest mass such as photons. 

The above limitation is valid in continuous spacetime; when the energy and energy uncertainty of a 
particle both become arbitrarily large, its localization length xΔ  can still be arbitrarily small. 
However, the existence of a minimum size of spacetime will demand that the localization of any 
particle should have a minimum value UL , namely xΔ  should satisfy the limiting relation: 

ULx ≥Δ (9)

In order to satisfy this relation, the r.h.s of Equation (8) should at least contain another term 
proportional to the (average) energy of the particle, namely in the first order of E  it should be: 

c
EL

E
cx U

�

�

22

2

+≥Δ (10)
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This new inequality, which can be regarded as one form of the generalized uncertainty principle 
[21], can satisfy the limitation relation imposed by the discreteness of spacetime. It means that the 
localization length of a pointlike particle has a minimum value UL .

How to understand the new term demanded by the discreteness of spacetime then? Obviously it 
indicates that the (average) energy of a particle increases the size of its localized state, and the increase 
is proportional to the energy. Since there is only one particle here, the increase of its localization 
length cannot result from any interaction between it and other particles such as electromagnetic 
interaction. Besides, since the increased part, which is proportional to the energy, is very distinct from 
the original quantum part, which is inverse proportional to the energy, it is a reasonable assumption 
that the increased localization length does not come from the quantum motion of the particle either. As 
a result, it seems that there is only one possibility left, namely that the (average) energy of the particle 
influences the geometry of its background spacetime and further results in the increase of its 
localization length. We can also give an estimate of the strength of this influence in terms of the new 

term 
c
ELU

�2

2

. This term shows that the energy E  will lead to an length increase 
�2

ETLL UU≈Δ . This 

further implies that the energy E  contained in a region with size L  will change the proper size of the 
region to: 

�2
ETLLL UU+≈′ (11)

This means that a flat spacetime will be curved by the energy contained in it. When the energy is 
equal to zero or there are no particles, the background spacetime will not be changed. Since what 
changes spacetime here is the average energy, this relation between energy and proper size increase 
change is irrelevant to the quantum fluctuations. 

The above analysis based on the quantum uncertainty principle and the discreteness of spacetime 
might provide a possible basis for the Einstein equivalence principle. It implies that gravity is 
essentially a geometric property of spacetime, which is determined by the energy density contained in 
that spacetime, not only for macroscopic objects but also for microscopic particles. Moreover, the 
Einstein gravitational constant can also be determined in terms of the minimum size of discrete 
spacetime [22]. The result is: 

�
UUTLπκ 2= (12)

Note that this formula itself seems to also suggest that gravity originates from the discreteness of 
spacetime (together with the quantum principle that requires 0≠� ). In continuous spacetime where 

0=UT  and 0=UL , we have 0=κ , and thus gravity does not exist. It should be stressed that the 

existence of a minimum size of spacetime has been widely argued and acknowledged as a 
model-independent result of the proper combination of quantum mechanics and general relativity (see, 
e.g., [23] for a review). The model-independence of the argument for the discreteness of spacetime 
strongly suggests that discreteness is a more fundamental feature of spacetime. Therefore, it seems 
appropriate to analyze the implication of spacetime discreteness for the origin of gravity as above.

Certainly, if spacetime itself is emergent, then gravity must be also emergent as it is essentially a 
curved spacetime phenomenon. But even so, they should have corresponding microscopic elements in 
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the pre-spacetime theory. On the other hand, as we have argued above, gravity is probably 
fundamental in the emergent spacetime. The argument not only holds true for microscopic particles, 
but also may apply to the bits living on a holographic screen as well. This may provide a further 
support for the conclusion that gravity is not an entropic force. 
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