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Abstract: Following the recent successful experimental manipulation of entangled 13C

atoms on the surface of Diamond, we calculate the decoherence of the electron spin

in Nitrogen Vacancy NV centers of Diamond via a nonperturbative treatment of the

time-dependent Greens function of a Central-Spin model in order to identify the Replica

Symmetry Breaking mechanism associated with intersystem mixing between the ms = 0

sublevel of the 3A2 and 1A1 states of the NV − centers, which we identify as mediated via

the meta-stability of 13C nuclei bath processes in our calculations. Rather than the standard

exciton-based calculation scheme used for quantum dots, we argue that a new scheme is

needed to formally treat the Replica Symmetry Breaking of the 3A2 → 3E excitations of

the NV − centers, which we define by extending the existing Generalized Master Equation

formalism via the use of fractional time derivatives. Our calculations allow us to accurately

quantify the dangerously irrelevant scaling associated with the Replica Symmetry Breaking

and provide an explanation for the experimentally observed room temperature stability of

Diamond for Quantum Computing applications.

Keywords: topological mixing; replica symmetry breaking; entanglement; quantum

computing; CP violation

1. Introduction

Recently, several experimental groups [1–4] have investigated the feasibility of processing Quantum

Information via the manipulation of optically excited electron spins [5] in Diamond, with a focus on
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Diamonds’ optically active Nitrogen Vacancy (NV ) centers. These NV centers are formed by the

substitutional change of a Carbon for a Nitrogen atom in the Diamond lattice, which can create a lattice

vacancy, and optical experiments have indicated that these point defects have trigonal symmetry C3v,

where the C3-axis is the crystallographic [111]-direction of the NV center [6]. Explicitly, this point

symmetry group C3v is defined as the group of rotations of a 3-sided pyramid in 3-dimensions about

a point which leaves the origin invariant, and consequently, C3v is a subgroup of the rotation group of

3-dimensional space SO(3) [7]. In this article we essentially argue that this has important consequences

when we come to define qubits via the NV centers using standard association of the qubit with the

Sz eigenvectors of a spin state represented via SU(2) � SO(3)/�2, which have not been discussed

elsewhere. A simple way is to picture the allowed group operations of C3v as the possible reflections

of the vertices of 3-sided pyramid which sits inside a sphere (where all vertices touch the surface).

Assigning the integers 1, 2 and 3 to the vertices of the 3-sided pyramid (opposite to the fixed origin) the

Young tableaux [7] for the irreducible representations of the allowed states in C3v are

A1 ≡ 1 2 3 , E ≡ 1 2
3

or 1 3
2

, A2 ≡
1
2
3

(1)

note that the state E can be antisymmetrized in two possible ways (with respect to 2 or 3), whereas

the state A1 is totally symmetric, and the state A2 is totally antisymmetric under the C3v symmetry

operations, where in the above notation rows symmetrize whilst columns antisymmetrize [7]. There

are two known charged states of the NV point defect, which are the neutral and negatively charged

NV 0 and NV − centers [8,9], although the term NV center is usually taken to refer just to the NV −

center. Applying a magnetic field along one of the four equivalent [111]-directions leaves three of the

C3v subgroups of an NV center magnetically degenerate, implying that the optically excited electrons

come from a triplet state [6]. However, it was not initially clear whether the measured optical (Electron

Paramagnetic Resonance) signals for Diamond corresponded to the transition 1A1 → 3A2 → 1E or
3A2 → 3E, although this is now settled, with 3A2 understood as the electron spin triplet ground state

of the NV − center [6,10]. This NV − center ground state consists of six electrons (an additional one

having been acquired from the lattice) and the ms = 0 level has a zero-field splitting of D = 2.88GHz

into a singlet and doublet [11]. A more detailed picture of the experimental difficulties associated with

the identification of the nature of the ground state transitions of the two NV charged states are given

in [12–14].

In the above experimental studies [1–4] the proposal has been to form qubits consisting of a single

electron spin in the NV − center by optically exciting the 3A2 state [12]. This state then slowly decoheres

via the spectral diffusion of the nuclear spin polarizations of the neighboring nuclear spins which are

coupled to the single electron in the absence of optical excitation (for example, by the flip-flop transitions

of the nuclear spins [15]). Diamond offers several advantages over conventional Quantum Dot materials,

such as GaAs for this purpose [11,16], because the density of states is relatively low (with a low

electron-phonon coupling), whilst the oscillator strength for the electron dipole transition is relatively

large (i.e., Diamond is hard and optically active) [10,17]. These properties of Diamonds NV centers

are true in particular for the electron’s coupling to the 13C atoms which have a natural abundance of

1.1% [2]. Consequently, it has been reported that (inhomogeneous) electron spin-dephasing times of
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T ∗
2 = 0.5− 6 μs can be achieved in Diamond, at 300 K-without the need for cryogenic cooling [1,4,18],

which makes Diamond an attractive candidate for Quantum Information Processing. Following [12],

however, we argue that whilst it is clear that a successful qubit can be constructed from the spin

polarization the 3A2 state (as has been successfully demonstrated in [1,4,9,16,17]) it is not at all clear

why this state should be so highly stable from a calculational standpoint, with such a relatively long

decoherence time, given the current understanding of the mechanism of spectral diffusion [19,20].

The intersystem crossings of the excitations of the 3A2 ground state of NV − are slightly unusual [12],

and are essentially the subject of our discussion. For the NV − state, measurements indicate that the

linearly polarized optical excitation of the 3A2 → 3E transition and the average photon emission rate are

strongly enhanced for the ms = 0 over the ms = ±1 levels, which has been attributed to a crossing to

the singlet 1A1 level and intersystem mixing [21]. Furthermore, optical measurements with an applied

external electric field have shown the disappearance of certain 3E excitation lines, which has again been

attributed to an intersystem mixing [10]. Specifically, in the absence of an applied field it is known

that the 3E splitting is caused by spin-spin or axial λLzSz spin-orbit interaction but that this cannot

cause an Sz and Sx,y mixing, whereas with an applied electric field orthogonal to z the 3E sublevels can

split and mix as ± (F 2
x + F 2

y )
1/2, where F is the applied field strength [10]. Therefore the spin-orbit

coupling of the central electrons in the NV − centers may be sufficient to induce an intersystem crossing

to states with a different spin symmetry, i.e., the singlet state [22]. The unusual aspect of this is that if

(as calculated in the [12]) the 1E singlet excitation of NV − in fact lies below the 1A1 singlet level, then

this spin polarization should occur in the Sx,y direction rather than Sz.

Intuitively, the two excitons corresponding to the excitations of the ground state of the NV 0 center

(2E → 2A1 [23]) and NV − center (3A2 → 1A1(
1E) → 3E) are not formally related: they correspond

to two different representations of the same fundamental group C3v [24], and are therefore physically

different systems (not least of all because they correspond to systems with different electric charges). In

one case the NV center has five electrons, whilst in the other the NV center has picked up an itinerant

electron from the lattice and has 6 electrons, and so intuitively the dynamics of the NV 0 center and NV −

center are uncoupled. However, it is our argument in this article that it is not the case. Physically, we

argue that the theory which explains the experimentally observed pattern of intersystem mixing of the

excitations of 3A2 (and subsequent decoherence of spin polarization) involves including the source of the

itinerant electron which gives rise to the triplet 3A2: We make this distinction in order to fully define the

system that the proposed qubit [12] is entangled with. Mathematically, the common sense intuition for

why these two ground states (the NV 0 center doublet 2E, and NV − center triplet 3A2) are unrelated can

be expressed formally by saying that, within the path integral for a multiply connected space, paths in

different homotopy classes cannot be continuously deformed into each other. However, the mathematical

subtlety that defies this common sense intuition arises from noticing that although such paths cannot be

deformed into each other, they can have the same weight in the path integral of the multiply connected

space and, moreover, these weights form a one-dimensional unitary representation of the fundamental

group of the space [25]. Physically, we intuitively understand that this means that when a proposed qubit

decoheres it does not do so to a unique state of the system, but rather to a continuum of degenerate states,

and we say that the qubit state has obtained some entanglement phase angle θ, where qubit representation

|φ〉 → eiθ|φ〉. To be clear, the actual mechanism of decoherence of the single electron spin that we
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consider in this article is the conventional spectral diffusion that has been considered previously [15],

which occurs in the absence of optical excitation of the 3A2 state and therefore preserves the parity of the

qubit. However, it is our new argument that this qubit does not simply decohere to become entangled with

the bath, but with a bath which is also decohering to become entangled with itself and, therefore, that this

slowly changes the definition of the SO(3) rotational symmetry of the electron spin to make it evolve

into an oblate spheroid (relative to its initial spin projection). Whilst previous calculational schemes have

treated the nuclear spin bath dynamics [19,20], these schemes have been restricted to short-time regimes

and localised electron states, which we are now able to go beyond in our new approach. The limitation

we have resolved is that there is generally a two-scale process involved in bath dynamics: The range

of the nuclear dipole interaction strength and the cluster size of the frozen cores of nuclear spins that

form through the flip-flop processes [19], and it was not previously understood to be possible to define

a expansion program that is simultaneously valid at two very different scales. However, we have now

used topology to define geodesics for the system such that there are no expansion parameters: Rather

the two charged states of Diamond are separated via an exact branch point in the time evolution of the

system. Hence, the new mechanism we consider in this article for Diamond does not itself drive the spin

decoherence of the qubit, but rather it rescales the time-dependence via the time-evolving decoherence

of the bath which, we argue, accounts for the relatively long decoherence time of the qubits formed

in Diamond.

Conventionally, calculating the tensor product of any two irreducible representation allows us to

accurately determine which are the allowed transitions of, either, the 2E → 2A1 exciton of the NV 0

center, or (completely independently), the 3A2 → 1A1(
1E) → 3E exciton of the NV − center, on the

basis of whether the resulting tensor product contains as a subgroup the totally symmetric irreducible

representation of C3v. Similarly, if the resulting tensor product contains as a subgroup the electric dipole

moment, this allows us to determine which transitions are optically allowed (the 3A2 → 1A1(
1E) → 3E

transitions are therefore not), and following similar reasoning, the conventional explanation for the zero

mode splitting of the NV − center is that it arises from the spin-spin dipole interaction (to a first order

approximation) since this is the simplest parity-preserving self-interaction that involves the triplet [26].

To see explicitly how this argument is modified for our discussion we consider three (degenerate) qubit

spin-1/2 states that are defined via Sz eigenvectors of a spin state represented via SU(2) � SO(3)/�2,

and place each on the vertices of the 3-sided pyramid defined for the irreducible representations of the

allowed states in C3v

1 ⊗ 2 ⊗ 3 =

(
1
2
3

)
⊕ 1 2

3
⊕ 1 3

2
⊕ 1 2 3 (2)

and as we would expect this reproduces the picture for the allowed states for the ground state doublet
2E (as constructed from parity symmetric qubits). However, if we generalize the definition of the

qubits so that they are defined via PSL2(�) (the fundamental group of linear transformations between

spin-1/2 states defined on �2-an oblate spheroid generalization of the spherically symmetric case) the

triplet state in brackets is then also allowed [27,28]. To compare the NV 0 and NV − projection onto the

spin-1/2 qubit states, we can define the relationship between the irreducible representations of both
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states (denoted
∏

σj
for NV 0, and

∏
σ′

j
for NV −) via the fusion algebra (Littlewood-Richardson)

coefficients [25,28] ∏
σj

⊗
∏
σk

=
⊕
σ′

j

λ
σ′

j

σjSk

∏
σ′

j

(3)

where j is the total number of NV centers being considered as defining the system. For the simplest

(qubit parity symmetric) case with j = k, the above identity corresponds to the defining relation between

the fundamental and adjoint representations of SU(2), with 2 ⊗ 2 = 1 ⊕ 3 and the coefficients are the

familiar Clebsch-Gordon coefficients. However, if we generalize the qubit definition so that they are

not parity symmetric with (j �= k) we can still generate the same fusion coefficients if we define there

to be a �2 symmetry describing the electric charge conjugation operation C for the two representations

j and k (which are slightly different ellipses). Physically, our argument is that the itinerant electron

has already entangled with the system by having been dragged across the lattice in a non-ergodic way

(losing energy via the dissipative process we consider in this article) in such a way that the proposed qubit

defined via 3A2 should be really identified initially as e−iθ|φ〉. Indeed, such a vibronic coupling picture

was one of the initial motivations for the introduction of the Berry phase θ to discuss the Jahn-Teller

effect [24]. Our argument is that it is a mechanism of CP (charge–parity) violation that gives rise to the

entanglement phase angle θ and zero-field splitting of the 3A2 state. The CP violation is rarely mentioned

outside High Energy Physics because it is known that the coupling constants involved in defining this

process for the electromagnetic interaction have to be strong (although in principle the mechanism is

only a second order electromagnetic effect) [29]. However, our argument is that the itinerant electron that

allows the formation of the 3A2 ground state is not a fundamental particle, but rather the concatenation of

a series of dissipative processes across the lattice, which makes it strongly coupled [30]. This modifies

the conventional argument used to describe the zero-mode splitting of the NV − center [26] by identifying

that if the single electron spins in Diamond are effectively made more oblate as function of time, via

the dissipative processes of the bath, then higher order spin-spin moments (quadropole, octopole etc.)

can rescale to become degenerate with the spin-spin dipole interaction, which provides a competing

(and degenerate) mechanism for generating the zero-field splitting. Therefore, whilst conventionally the
3A2 → 1A1(

1E) → 3E transitions are optically forbidden (and the spin decoherence mechanism of

the 3A2 qubit occurs in the dark [1–4]), in our new approach we say that the small probability that this

tunneling occurs in the dark is greatly enhanced because time is effectively rescaled via the degeneracy

of the mechanism for generating the zero-field splitting.

The basic differential conductance transport calculation that is important for building a Quantum

Computing device using these NV centers Diamond (and manipulating these centers via electrical

currents) is the decoherence of the single electron spin associated with the NV center [20]. As shown

above, at least in principle, this NV center can then be manipulated as a qubit for Quantum Information

processing [1–4]. We argue, however, that the calculation of this decoherence mechanism for the special

case of Diamond shares stronger parallels with the determination of the Replica Symmetry Breaking

mechanisms of other models of Statistical Mechanics, such as Sherrington-Kirkpatrick spin-glasses [31].

Namely, that in broad terms, we are interested in determining the expectation of the NV − center spin
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S which is interacting with a number of 13C nuclear spins defined through the general spin operators of

the Hamiltonian

H(n) =
n∑

a=1

HJ({σ(a)}), HJ =
∑
i,k

σiJi,kσj −
∑
i

hiσi (4)

with n the number of replicas of the same spin configuration, via the general interaction couplings Ji,k,

but which is also subject to averaging of the two different possible charged states of the NV centers

(a = 1, 2)

〈S〉 = 1

n!

∑
∏

S(q∏(a),
∏

(b)), qa,b =
1

N

∑
i

σa
i σ

b
i (5)

The additional level of complexity that this introduces is that the system can then exist in a regime in

which the above θ-replica symmetry that we have identified is broken, but the additional ultrametricity

condition which bounds the expectation of both sides of (3) is not satisfied [31], so there is an additional

scaling behavior which we quantify in this article. This is the scaling regime where, for example, the

charge conjugation symmetry C is broken but the parity symmetry P is not, which is the physical theory

that is relevant for describing the qubit defined by the spin polarization of the 3A2 triplet state but which,

we argue, cannot be identified directly. The relevant type of disorder in this new mechanism is bond

disorder, but our argument is that it only applies within a convex hull of the space of random-field

disordered states, because of the dissipative dynamics of spin polarization decoherence.

In this article we consider the dynamics of the model whereby the two ground states of the NV

center—the 2E doublet and 3A2 triplet—are topologically coupled via a replica symmetry defined

via the fusion coefficients in (3). This article forms a continuation of the argument we developed

in [32,33], where we proposed that the ultrametricity regime of replica symmetry breaking models

is the most applicable method for modeling quantum memory. In this article we probe the same

basic mechanism via a GME approach for Diamond, but use the relatively new approach of using

fractional time derivatives to introduce topological mixing (replica symmetry breaking) into a standard

formalism, rather than compute the convexity of the hull of the eigenvalue spectra explicitly as we did

in [32,33]. Physically, whilst our qubit basis |0〉 is (conventionally) defined with respect to the NV −

center triplet ground state 3A2, our qubit basis state |1〉 requires detailed knowledge of the dissipative

processes involved in moving the itinerant electron around the lattice system, which accurately reflects

the experimental picture of the intersystem mixing between the ms = 0 sublevel of the 3A2 and 1A1(
1E)

states of the NV − centers. It is important to note that, although we are considering an operator-product

expansion of topological mixing between two ground states with different electric charges, the itinerant

electron which creates these different ground states is neither spontaneously created nor destroyed in this

process—it remains part of the complete system (associated with another NV center when not forming

the local NV − state), and we merely shift its location across a globally neutrally charged system to

locally create either the triplet or doublet ground state of the NV center.

2. Central-Spin Model

Experimentally, there is some evidence that intersystem mixing is important for understanding NV

centers in Diamond [6,21,22]. However, the reason why the identity in (3) is important for calculations
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of the spin decoherence of a single electron spin in Diamond is that the general three point correlator of

a Dirac particle (such as an electron) scales as [34]

〈
ψ1(0)ψ1(0)ψ2(t)ψ2(t)ψ3(t

′)ψ3(t
′)
〉
= |t|d |t− t′|d (6)

where 0 < t < t′ is the location of each particle and d is the scaling dimension. Furthermore, this three

point correlation function is only analytic for t �= t′, and it is not possible to interchange t, t′ without

encountering some singularity when these two points collide (formally, this is known as dangerously

irrelevant scaling [34]). However, from (3), because we are including intersystem mixing simple time

dependent correlators 〈S−(0)S+(t)〉 will actually be of the form of (6) and, therefore, may be singular

at some undetermined additional point t′. To be clear, the experimental proposal for making qubits

from Diamond in [1–4] is to form a qubit via a single spin in the NV − center coupled to a bath of the

neighboring 13C nuclear spins, which slowly decoheres via the spectral diffusion of the nuclear spin

polarizations (for example, by the flip-flop transitions of the nuclear spins [15]). However, here we

are proposing a new and different mechanism for the spin decoherence of this system which has not

appeared elsewhere in the experimental or theoretical (exciton) literature. Namely, that if intersystem

mixing is included in this model (between the ms = 0 sublevel of 3A2 and 1A1), then the spectral

diffusion of the bath nuclei (by, flip-flop processes other internuclei interactions) can potentially become

dangerously irrelevant.

Our model is defined by the Hamiltonian for a single electron spin in the 3A2 state of the NV − center

of Diamond interacting via: the spin coupling of the electron, the spin coupling of the 13C nuclei, the

Hyperfine coupling between the electron and a spin-bath of 13C nuclear spins, and the dipole-dipole

interaction between the 13C bath nuclei [19], which is given via the following Central-Spin model

Hamiltonian [35–38]

H = εSBSz +
N∑
i=1

εIBIz
i +

N∑
i=1

AiS.I
z
i +

N∑
i=1

N∑
i �=j, j=1

εdd
r3ij

[(Ii.nij) (Ij.nij)− Ii.Ij] (7)

where Sz is the z-component (longitudinal) of the electron spin in the triplet of the 3A2 state (with the

z-axis oriented in the [111]-direction of the NV center), Iz
i is the z-component (longitudinal) of the spin

of the ith 13C nucleus in the spin-bath, S is the electron spin in the singlet of the 3A2 state, Ii is the spin

of the ith 13C nucleus in the spin-bath, N is the number of bath nuclei and nij is a unit vector linking

the centers of the ith and jth 13C nuclear dipole moments with separation rij . The remaining constants

defining the relative strength of the couplings of the Zeeman, Hyperfine and dipole-dipole interactions

in Diamond and are given by εS = 115.6μeV T−1, εI = 0.1196μeV T−1, Ai = 0.09873μeV , and

εdd = 1.2566 × 10−4 μeV [36]. We choose the nij such that the centers of the 13C nuclear dipole

moments are simply arranged in a line, in the plane of the applied external magnetic field (the

longitudinal/z-direction), which allows us to model the applied external electric field results in [6] as

well as the singlet 1A1 level and intersystem mixing in [21]. It is important to note that there is a

hidden zero-field splitting term in (7) given via our new approach (which otherwise uses a conventional

formalism). Namely, that since we are considering a rescaling of the oblateness of the S spin operators,

via (6), this generates an explicit gap between the 3A2 and E2 states, via the fusion coefficients in (3).

However, rather than explicitly calculating this term in what follows, we will continuously rescale this
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contribution back into the dynamics in our new determination of the decoherence time of the 3A2 qubit in

Diamond, such that the oblate deformation then defines a geodesic across the multiply defined space that

spans the NV − and NV 0 representations given in (3), and the transformation |φ〉 → eiθ|φ〉 generates an

explicitly parity invariant qubit to match with the state measured in the experimental proposal in [1–4].

3. The Generalized Master Equation

Unfortunately, by including a dipole-dipole interaction in (7) in addition to the Hyperfine interaction,

it is not possible to solve this system exactly, since the Hamiltonian in (7) can only be expressed in

Jordan-normal form (and not fully diagonalized) [19,36]. However, it is possible to treat the intersystem

mixing model in (3) via the General Master Equation prescription in [20] by making the simple, yet

rigorous, step of changing time from being a linear to a nonlinear variable t → tν .

Via Sturm-Liouville theory (in the absence of the dipole-dipole interaction), the longitudinal and

transverse spin components of a single electron in the Central-Spin model are exactly separable, which

yields the following Nakajima-Zwanzig generalized master equations (GMEs) [20]

〈Ṡz〉t = Nz(t)− i

∫ t

0

dt′ Σzz(t− t′)〈Sz〉t′ (8)

〈Ṡ+〉t = iωn〈S+〉t − i

∫ t

0

dt′ Σ++(t− t′)〈S+〉t′ (9)

where Nz = i/2t(Σ↑↑(t)−Σ↓↓(t)),Σzz and Σ++ are given by matrix elements of the reduced self energy

Σ(t− t′), ωn ≡ B(εS − εI) + hI , with hI as the eigenvalue of the initial angular momentum eigenstates

of the bath, and B is the applied field strength. Using these two relations, the time dependence of the

single electron spin polarization can then be evaluated via Laplace transform. Importantly, however,

the above relations have nonperturbative expansions for ωn/N > 1 and so the self-energy contributions

do not resum and can grow as a function of time. For arbitrary initial polarizations in the high field

limit, however, the above self-energies can be re-parameterized as continuous functions of the Hyperfine

couplings (via Ak → x) and in the Born approximation (with Σzz = Σ
(2)
zz (I±(s))) this yields the functions

I±(s) =
1

4N

∑
k

A2
k

s∓ iAk

2

→ I±(s) =
d

m

∫ 1

0

dx
x| ln x|ν
s∓ ix

, ν =
d

m
− 1 (10)

where s is the Laplace variable, m is the z projection of the nuclear spin, and d the dimension of

the system [20]. Hence, for ν < 1 the single electron spin decoherence envelope will be oscillatory

and is governed by nuclei close to the central electron (Markovian), whereas for ν > 1, the single

electron spin decoherence envelope will be slowly decaying and governed by the nuclei farthest away

(non-Markovian).

However, in the intersystem mixing problem we considered in (7), the Markovian and non-Markovian

regimes can become interchanged and, therefore, in a renormalization group sense ν is then a

dangerously irrelevant scaling parameter [39–41]. To treat this dangerously irrelevant scaling rigorously,

we follow the recent approach of using fractional derivatives to treat diffusion problems [42–44], and
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replace the definition of the time derivatives of the single electron spin in (8) and (9) by the following

generalized (Caputo) fractional time derivative [45,46]

Dν
0 ∗t
(
S−(t)S+(0)

)
=

1

Γ(1− ν)

∫ t

0

dt′
1

(t− t′)ν
∂

∂t′
(
S−(t′)S+(0+)

)
(11)

where S−(t) and S+(0) are time evolution operators for the single electron spin in (3) at time t′ = 0

and t′ = t [47]. This fractional derivative approach is based on the generalization of the Brownian

motion of the paths that are required for Euclidean Feymann path integrals in quantum mechanics to

Lévy random processes [44]. Rather than the GME being meromorphically continued into poles in (10),

formally, the GME defined through (11) is meromorphically continued onto the annulus corresponding to

one-dimensional unitary representation of the fundamental group of the multiply connected space [25].

Practically, evaluating spin correlators in this fractional derivative formalism leads to an overall constant

in front the correlators compared to the conventional GME, since the Fourier transform of a fractional

derivative is given by [48]

F [Dν
θ

(
S−(t)S+(0)

)]
= −ψθ

ν(t)F
[
S−(t)S+(0)

]
, ψθ

ν(t) = |t|νei sgn(t)θπ/2 (12)

Moreover, this constant ψθ
ν(t) defines the renormalization scale parameter for the intersystem mixing

between the ms = 0 sublevel of 3A2 and 1A1 in the NV centers and, therefore, this new approach

formally defines a regularization of electron spin decoherence via a ζ-function prescription [33,43,49]

as a generalization of the Laplace transform approach in (10).

4. Discrete Fourier Transform

In the nonperturbative regime, electron spin decoherence can be calculated from (8) and (9) using

a range of numerical schemes [50]: exact diagonalization [38,51,52], loop-cluster expansion [19,36]

and via discrete Fourier transform. In the following analysis we use a discrete Fourier transform method,

since we are able to keep the long-time cutoff fixed in a discrete Fourier Transform via the lattice spacing,

which allows us to make an accurate comparison of |t|ν for different field strengths and polarizations. The

advantage of this approach is about having a proper regularization of the GME in a treatment which also

includes a full dipole-dipole interaction and the intersystem mixing of the NV center. To be clear, writing

the Hamiltonian in block-diagonal form in the product basis |ψ〉 = |S⊗ I1 ⊗ I2...⊗ IN〉 and treating the

off-diagonal Hyperfine-interaction components as a perturbation, we yield an energy-dependent Greens

function of the form

H =

(
H11 H12

H21 H22

)
(13)

G(ε) = (ε−H11)
−1H12(ε−H22)

−1H21(ε−H11)
−1 (14)

The above is not a well-defined problem because [H,Sz] �= 0 if there is intersystem mixing between the

ms = 0 sublevel of 3A and 1A in the NV centers.

We calculate the decoherence of the transverse electron spin by using a discrete Fourier transform

to calculate time-dependent Greens function of the Hamiltonian in (1), for up to a maximum of

N = 8 nuclei. Although N = 8 is an experimentally relevant number for current entanglement



Entropy 2011, 13 958

studies [2,3,16], this small bath size can further justified for larger quantum dot systems via the

convergence of Chebyshev polynomials [50]. Explicitly, if the state vector of the spin-bath is

represented via

|χ〉 =
NB∑
k=1

αk| β1 β2 ... βNB−1 〉,
NB∑
k=1

|αk|2 = 1 (15)

where β is either 0 or 1 (depending on whether the ith bath nuclei is spin up or spin down), αk is a

random variable, and there are NB = 2N bath states, then, since the off-diagonal elements are of the

order 2−NB/
√
NB, agreement with the electron spin polarization to 6% of the value for the full system

(of N ∼ 106) can be obtained from sampling clusters of just N = 8 nuclei. Furthermore, this limit

(2−NB/
√
NB) is an exact bound for the random Lévy random processes that form the (canonical) basis

of our approach, and this formally sets the accuracy of approximating the electron spin correlators via a

system consisting of N = 8 nuclei [53]. Furthermore, the values of the Hyperfine interaction couplings

in (7) can be randomly picked between 0μeV and 0.09873μeV (as we did for this analysis) without

significantly impacting on the accuracy of the spin correlator measurements, i.e., the dominant source of

error is the size of the spin bath which yields an error of 6%.

As is discussed in [54], a discrete Fourier transform is essentially a family of unitary operators whose

eigenvalues have a multiplicity of 4. Consequently, for the purpose of comparing the efficiency of

methods, the slow step which limits the computational speed at which the discrete operations can be

processed in this calculation is the resolution of this choice of branch point for the eigenvalues, or

more correctly, the pivoting that is required to perform this. In [54] the computational complexity of

the discrete Fourier transform is explicitly identified by constructing the Weil representation defined

over the finite field SL2(�p) in order to find the prime spectra of the transform. The number of steps

required for the calculation is found to be N logN , whereas the asymptotic lower bound on a brute force

diagonalization calculation is at best N2. Hence, the discrete Fourier transform is generically faster than

brute force diagonalization.

We obtain the energy-dependent Greens function of the Central spin model for Diamond via an exact

inversion of the Hamiltonian in (1) using Gauss-Jordan elimination

[G(ε)]i,j = [ (ε−H)−1 ]i,j (16)

where G(ε) is then a 22N+2 matrix defined in the product basis |ψ〉 = |S ⊗ I1 ⊗ I2... ⊗ IN〉. We

repeat this calculation for M discrete values of energy, ε, where Gn(ε) = G(ε)|ε=nΔε with Δε = E/M

and E the finite energy domain of the system, which we choose to be of O(εS). The time-dependent

Greens function of the Hamiltonian in (3) is then given by the following discrete Fourier transform,

Gk(t) = G(t)|t=kΔτ , which we evaluated using the numerically efficient Four-Step Fast Fourier

Transform [55]

Gk= qP+Q(t) =

p∑
r=1

(
e2πi rq/p

(
e2πi rQ/pP

P∑
R=1

GRP+r(ε)e
2πiRQ/P

))
(17)

0 < r, q < p, 0 < R,Q < P, pP = M (18)
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where Δτ = T/M with T as the finite time domain of the system, and where the short range cutoff is

set via ET = � and M = 214, [37]. The time-dependence of the transverse spin of the single electron in

the ms = 0 3A2 state of the NV − center in Diamond is then given by the expectation

〈S+〉t = 〈ψ†
0 G

†(t)Sz G(t)ψ0〉 = Θ(t)〈ψ0|S−(t)S+(0+) |ψ0〉 (19)

where the initial single electron state is defined to be ψ0 = ( |0〉+ |1〉 ) /√2, following [19,35,36]. Note

that our fractional derivative approach in (12) means that the above expectation for the transverse electron

spin is real (and negative) and is also not normalised to unity. This allows us to quantify the nucleation of

the 13C bath dynamics via the factor |t|ν in (12) corresponding to the renormalization scale dependence

of intersystem mixing between the ms = 0 sublevel of 3A2 and 1A1 in the NV centers.

5. Transverse Single Electron Spin Decoherence

We compare our numerical results in the first instance with the perturbative GME results for the

Central Spin model with a single electron obtained in [20] for the limits of large applied external

magnetic fields and a fully polarized initial system. We expect the behavior of the NV centers of

Diamond to be broadly similar in these limits where the intersystem mixing effects are less relevant

for Diamond. The zeroth order dynamics result for the transverse single electron spin in (3) is given by

〈S+〉t = 〈S+〉0 exp[−t2/2τ 2c + i(B(εS − εI) + pN)t] (20)

where p is the fraction of initially polarized states, and τc is the transverse electron decoherence time,

which from the perturbative expansion of (3) is expected to be relevant to order 2(k + 1) when the

self-energy is suppressed by a factor of (ωn/N)k. From the second term in the exponent in (20), it

follows that the decoherence time, τc, becomes independent of the applied field strength for large values

of field, and that the nonperturbative regime is therefore delineated by N |Bz|  | A
gμB

| ∼ O(10Gauss).

Hence, the models we generate consisting of N = 2 − 6 nuclear spins will (loosely) be closer to the

nonperturbative bound than the models we generate consisting of N = 8 nuclear spins.

In Figure 1 we plot our evaluation of the time dependence of the transverse spin component of the

single electron state corresponding to the intersystem mixing between the ms = 0 sublevel of 3A2 and
1A1 in the NV centers, 〈S+〉t, for spin baths of N = 8 and N = 6 13C nuclei in Diamond. Clearly,

the initial expectation values of the electron spin differ substantially from unity in both Figures. This

indicates that the renormalization parameter ψθ
ν(t) (which normalizes these expectation values to unity

via (12)) is small and negative, and that the intersystem mixing is therefore important to the dynamics

of the electron spin decoherence in Diamond in these physical regimes, as we would expect from the

experimental studies in [6,21,22]. The overall negative sign factor of the expectation values comes from

our initial choice of phase for ψθ
ν(t), where the initial electron state was chosen to be perpendicular to

the applied external magnetic field direction oriented along the [111]−direction of the NV crystal axis,

where θ = π/2.

In the left plot of Figure 1 (for N = 8 nuclei) the applied external magnetic field is varied between

0 − 100Gauss, and in the right plot (for N = 6 nuclei at 100Gauss) the angle between the applied

field and z-component of electron spin is varied between θ = 0 − π/2. The transverse single electron

spin decoherence time increases in the left plot from 1 μs to 7 μs as a function of decreasing applied
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field strength (although not noticeably so at the scale in Figure 1), and increases in the right plot as a

function of increasing θ (polarization) from 2 μs to 6 μs. These trends follow the broad expectations of

the zeroth order result in (16): decreasing B prevents the electron from dephasing, whereas increasing

the initial polarization increases the dephasing. These results are also consistent with the experimental

measurements in [10] where an electric field was applied orthogonally to z, such that the 3E sublevels

split and mixed as ± (F 2
x + F 2

y )
1/2, where F is the applied field strength. Our results are also

consistent with the angular dependence of the direction of the applied magnetic field direction that was

experimentally measured for this system in [10]. In all Figures our results support the experimental

observations reported in [6,21,22], that although the spin-orbit coupling is relatively weak, it is sufficient

to induce an intersystem mixing between the singlet states ms = 0 sublevel of 3A2 and 1A1. Physically,

this happens because in a small applied field the electron only has a small amount of angular momentum

as it precess around the applied field direction. Therefore, the rate of change of angular momentum

into the spin bath is a relatively slow process for smaller values of applied field since the change is less

energetically favorable. However, electron spins which are initially perpendicular to the nuclear spin

bath spins have a greater initial angular momentum projection onto the spin bath, and are therefore less

stable and undergo a faster angular momentum exchange.

Figure 1. Time dependence of the transverse component of the single electron spin, 〈S+〉t,
for spin baths of N = 8 and N = 6 13C atoms in Diamond. For N = 8 the applied field

is varied in 0–100 G, whereas for N = 6 the applied field direction is varied relative to the

z-axis at 100G. The renormalization scale parameters for these expectations are given via

Figure 2.
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In Figure 2 we plot the applied external magnetic field dependence of the logarithm of expectation

value of the transverse single electron spin log (〈S+〉T ). From (12), this gives a measure of the relative

differences in the renormalization parameter ν as a function of applied field strength. From Figure

2, evidently the smaller systems (N = 2–6) which are closer to the nonperturbative bound have larger

associated values of ν, whereas the larger systems (N = 8) which are furthest from the nonperturbative

bound have a smaller value of ν. This indicates that the renormalization scale parameter ψθ
ν(t) is

generally larger for smaller systems, and the clear jump in the value of ν between spin baths of size

N = 2–6 and N = 8 indicates that the intersystem mixing has a different effect on systems in the
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Markovian and non-Markovian regimes. Comparing these results for a Replica Symmetry Breaking

mechanism for Sherrington-Kirkpatrick spin-glasses [31], we can see that the experimentally effective

range of the comparable bond-disorder model would be approximately three times the distance between

NV centers. Strictly, however, the relevant type of disorder in this new mechanism is neither bond nor

random-field disorder, but rather both, defined within a convex hull set by the random-field disorder

through the rescaling via dissipative dynamics mechanism of spin polarization decoherence that we have

identified above. Similarly, the decoherence mechanism is strictly neither spin-echo nor free induction

decay, but a dynamical combination whereby the spin-echo boundaries (the qubit definition e−iθ|0〉, |1〉)
rescale as a function of time. Our results are consistent with the measured experimental decoherence

times for isotopically purified samples with very low concentrations of 13C reported in [18] (using

our renormalization scale parameter in Figure 2 we obtain T2 ∼ (0.5μs)1/2 = 2.2ms), although our

argument is that our change in the definition of the qubit will become more important for practical

quantum computing applications where the fusion coefficients in (3) become increasingly important.

Therefore, although dangerously irrelevant in the renormalization group sense, in the physical regimes

we have considered in this study it appears that the intersystem mixing between the ms = 0 sublevel of
3A2 and 1A1 in the NV centers is stablised by an increased number of 13C bath nuclei, and it is tempting

to speculate that this is the mechanism which makes Diamond robust enough for Quantum Information

Processing at room temperature.

Figure 2. Applied field strength dependence of the logarithm of the argument of the Caputo

integral in (13), for spin baths of N = 2− 8 13C atoms in Diamond.
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6. Summary

A recent experimental proposal for making qubits from Diamond in [1–4] is to form a qubit via a

single electron spin in the NV − center coupled to a bath of the neighboring 13C nuclear spins, which

slowly decoheres via the spectral diffusion of the nuclear spin polarizations (for example, by the flip-flop

transitions of the nuclear spins [15]). Here we have proposed a new and different mechanism for the

spin decoherence of this system which is not based on the current theoretical (exciton) literature, but

rather on the fusion rules for the mixing of the irreducible representations of the C3v which is justified

for two dimensional quantum spin systems in [25,56]. This has allowed us to include the experimentally
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relevant [6,21,22] intersystem mixing is between the ms = 0 sublevel of 3A2 and 1A1, via the transition
3A2 → 1A1(

1E) → 3E. We have argued that central to understanding the level ordering of the singlets

in this exciton [12] (and their role in the spin relaxation of the qubit formed from the spin polarization

of the 3A2 NV − ground state [1–4]) is a need to clarify the role that the itinerant electron plays in

defining the NV 0 and NV − ground states. In our new approach the irreducible representation of the

itinerant electron is noticed to be isomorphic to the qubit on the basis of their respective characterization

either via a �2 electric charge symmetry or the parity of the qubits. We have solved the dynamics

of this system in a way in which both the itinerant electron and qubit are entangled via the same

dissipative dynamics mechanism, and argued that this does not imply that we are coupling the dynamics

of two different electric charge states, but rather defining a theory in which the itinerant electron is

considered to be part of a larger charge neutral system. The �2 electric charge symmetry is therefore

neither created nor destroyed globally—only locally. We have calculated the transverse electron spin

decoherence for the NV − center in Diamond, modeled as a Central-Spin electron spin coupled to a

bath of up to eight entangled 13C nuclei, with an additional dipole-dipole interaction also included

between these bath nuclei. Our approach is based on a ζ-function regularization [33] of intersystem

mixing between the ms = 0 sublevel of 3A2 and 1A1 in the NV centers, which we have calculated via a

fractional time derivative [45–48] generalization of the standard GME approach [20]. Our results for the

decoherence time of the transverse electron spin of the NV center are consistent with recent experimental

measurements for (proximal) spin baths of this size [1–4,16], and furthermore, our investigation of the

regularization of our approach indicates that the stability of the dangerously irrelevant scaling we have

identified via our analysis improves as a function of increasing bath size. It is therefore tempting to

speculate that the intersystem mixing between the ms = 0 sublevel of 3A2 and 1A1 in the NV centers

is the mechanism which makes Diamond robust enough for Quantum Information Processing at room

temperature. By treating time as a nonlinear variable we have been able to accurately quantify the

metastability of 13C nuclei in the spin bath as they exchange angular momentum with both ms = 0

sublevel of 3A2 and 1A1 in the NV centers, via the renormalization parameter, ψθ
ν(t).
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