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Abstract: Since Euclidean global AdS2 space represented as a strip has two boundaries,

the state-operator correspondence in the dual CFT1 reduces to the standard map from the

operators acting on a single copy of the Hilbert space to states in the tensor product of

two copies of the Hilbert space. Using this picture we argue that the corresponding states

in the dual string theory living on AdS2 × K are described by the twisted version of the

Hartle–Hawking states, the twists being generated by a large unitary group of symmetries

that this string theory must possess. This formalism makes natural the dual interpretation of

the black hole entropy—as the logarithm of the degeneracy of ground states of the quantum

mechanics describing the low energy dynamics of the black hole, and also as an entanglement

entropy between the two copies of the same quantum theory living on the two boundaries of

global AdS2 separated by the event horizon.
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1. Introduction and Summary

With the help of radial quantization, local operators in a conformal field theory in d dimensions

(CFTd) can be mapped in a one-to-one fashion to states in the same CFT on Sd−1× RR, with RR labelling

the time direction. This takes a somewhat trivial form in d = 1. Since S0 is a collection of two points,

the states live in the Hilbert space H ⊗ H of two copies of the CFT1. On the other hand the absence

of spatial separation makes all operators in the Hilbert space H of a single copy of the CFT1 local.

Thus the state-operator correspondence reduces to the standard map between operators M̂ in H and

states 〈a|M̂ |b〉|a〉 ⊗ |b〉 in the tensor product of two copies of H. In particular the identity operator gets

mapped to the maximally entangled state |a〉 ⊗ |a〉 between the two copies of H.
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This picture takes a geometric form for a class of CFT1 which are dual to string theory on AdS2 ×K

for some compact manifold K. These geometries typically arise as the near horizon geometries of black

holes in the extremal limit [1,2]. In this case K contains the compactification manifold as well as the

angular coordinates of the asymptotic space-time. When we represent global AdS2 as an infinite strip,

the two copies of the CFT1 live on the two boundaries of the strip. Furthermore as argued in [3,4] and

reviewed in Section 2, a single copy of the dual CFT1 just consists of a finite number (N ) of degenerate

states representing the ground states of the black hole in a given charge sector. Thus two copies of the

CFT1 living on the two boundaries of AdS2 will contain N2 states. By AdS/CFT correspondence [5]

we expect the dual string theory on global AdS2 to also contain N2 states. One of these states is easy

to identify—the Hartle-Hawking vacuum of string theory on AdS2 × K [6]. This is dual to the identity

operator in CFT1 and hence represents the maximally entangled state between the two copies of the

CFT1. Our goal in this note will be to identify possible origin of the other states in string theory on

AdS2 ×K which are expected to exist according to the AdS2/CFT1 correspondence.

It is generally expected that AdS2 cannot support any finite energy excitation since this will destroy

the asymptotic boundary condition [7]. (This argument assumes that K is compact. If K contains a

non-compact piece, e.g., RR2, then there is no gap in the spectrum and hence in the infrared limit we can

get finite energy excitations. We can use local fields to generate the corresponding states in string theory

in AdS2 × K, leading to non-trivial correlators [8–10].) This is not a problem for us since in CFT1 all

states are of the same energy (which we can take to be zero by a shift) and hence we need to look only for

zero energy excitations in AdS2. However, this rules out the usual procedure for constructing excitations

in AdS2 using local fields in the bulk [11,12], since this typically produces finite energy excitations.

Some suggestions for constructing zero energy excitations in AdS2 were made in [7]. However the

fragmented geometries of the type discussed in [7] will be absent if the charge carried by the black hole

is primitive, since this prevents the total flux to be split into multiple aligned fluxes each through one

AdS2 throat. This still leaves open the possibility of contribution from the scaling solutions described

in [13–16] involving three or more throats, with fluxes through different throats aligned along different

directions in the charge lattice. But given that the phase space associated with these configurations

has finite volume preventing the centers to come arbitrarily close to each other in the quantum theory

[17–19], it is more natural to count their effect as part of multi-centered black holes rather than as part of

a single AdS2 throat. In any case in N = 4 supersymmetric string theories there is reasonable evidence

that solutions with three or more centers do not contribute to the index [20,21], and hence we must look

for different states.

To look for clues for where the zero energy states might come from, let us examine the state-operator

correspondence in the dual CFT1. A linearly independent basis of operators in the CFT1 is provided

by the set of all N × N Hermitian matrices. We shall find it more convenient to work with N × N

unitary matrices instead; if we have sufficiently large number of these matrices then any other matrix

can be expressed as linear combinations of these matrices. The correlation functions in CFT1 on S1 are

then traces of products of these matrices. Furthermore, since all the N states in CFT1 are degenerate,

these U(N) transformations generate exact symmetries of the theory. By AdS2/CFT1 correspondence

this symmetry must be present in the dual string theory as well. Thus to compute these correlation

functions in the dual string theory on AdS2×K we represent Euclidean global AdS2 as a disk so that the
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boundary on which CFT1 lives becomes a circle, and then compute a U(N) twisted partition function in

which we require the fields to satisfy a twisted boundary condition along the boundary of AdS2 [22,23],

the twist being related to the product of the matrices in CFT1 whose correlation function we wish to

compute. This suggests that when we represent AdS2 as a strip, we can construct the states in string

theory on AdS2 × K via Euclidean path integral as in the case of Hartle-Hawking state, albeit with a

twisted boundary condition in the asymptotic past. This way the matrix elements between these states

naturally produces the twisted partition function.

Formally this prescription gives a complete map between the CFT1 operators and correlation functions

and the corresponding quantities in string theory on AdS2 ×K. The main problem of realizing this idea

is that at present we do not know of any explicit construction of such U(N) symmetries in string theory

on AdS2 × K. However there are special cases where we can realize a small part of this symmetry.

Typically as we move around in the moduli spaces of a supersymmetric string theory, we encounter

special points at which there are enhanced discrete symmetries (not to be confused with enhanced

continuous symmetries). Since typically the black hole microstates get transformed into each other

under this discrete symmetry, this has a non-trivial embedding in U(N). The dual string theory on

AdS2 × K also has this symmetry manifest and we can use this to construct the twisted states in AdS2.

While this is far from providing a complete construction of all the states of string theory on AdS2 × K,

this at least demonstrates that it is possible to construct non-trivial states in AdS2 without destroying the

asymptotic boundary conditions. To this end we note that even if the near horizon geometry possesses an

enhanced discrete symmetry, it need not be a symmetry of the asymptotic theory where the moduli can

take different values. Thus our ability to construct these special states is not tied to the existence of some

symmetry at infinity that allows us to distinguish different black holes trivially by doing appropriate

scattering experiments, e.g., in [24,25].

This picture also incorporates naturally the dual interpretation of the entropy of an extremal black

hole. It has been known since the work of Bekenstein and Hawking that black holes carry entropy. One

natural explanation of this entropy is that a single black hole represents a large collection of quantum

states, and the black hole entropy is given by the logarithm of the degeneracy of microstates the black

hole represents. Indeed one of the major successes of string theory has been to reproduce the black hole

entropy from the counting of states in the microscopic description of the black hole [26,27]. On the other

hand the geometry of the black hole, which includes a horizon, suggests an alternate interpretation: the

black hole entropy represents the result of entanglement between the degrees of freedom living outside

the horizon and the degrees of freedom living inside the horizon [28–40]. (For a different viewpoint on

the relationship between black hole entropy and entanglement see [41] and references therein.) In the

framework of AdS2/CFT1 correspondence we see that both interpretations are equally good. The black

hole entropy lnN can be interpreted as the logarithm of the degeneracy of a single copy of the CFT1

living on one of the boundaries of AdS2, or as the entanglement entropy between the two copies of CFT1

living on the two boundaries of AdS2 in the Hartle-Hawking vacuum. Since the latter corresponds to a

maximally entangled state, its entanglement entropy is given by lnN .

This observation of course is not new—it is the zero temperature version of the well-known

connection between black holes and thermofield dynamics. Given any thermal system, there is a standard

doubling trick that allows us to express the thermal averages as quantum mechanical expectation values
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in an auxiliary system containing two copies of the original Hilbert space [42–48], and the thermal

entropy of the original system can be regarded as the entanglement entropy of the auxiliary system. This

correspondence was exploited in [33,49–52] to identify the two copies of the Hilbert space as being

associated with the two boundaries of the extended space-time for a black hole solution. In a related

development it was observed in [40] that if we take the global AdS2 space-time that arises in the near

horizon geometry of a black hole in the extremal limit and calculate the entanglement entropy between

the quantum theories living on the two boundaries of this global AdS2, then in the classical limit the result

agrees with the Wald entropy. The argument given above shows that this must continue to hold in the full

quantum theory. While we have a prescription for computing the degeneracy of states in the full quantum

theory as a partition function of string theory in AdS2 [3], the prescription of [40] for the holographic

computation of the entanglement entropy in CFT1 involves evaluating the partition function of string

theory on a space-time with conical defect. At the classical level the two entropies calculated using

these two apparently different computations give the same result, but it is not clear that this equality will

continue to hold in the full quantum theory. In Section 7 we suggest a different approach to computing

the entanglement entropy of CFT1 holographically that does not entail any conical defect and makes the

equality of statistical and entanglement entropy manifest even in the quantum theory.

2. CFT1 and Its State-Operator Correspondence

We shall begin by reviewing the properties of the CFT1 dual to string theory on AdS2×K that arises as

the near horizon geometry of some extremal black hole. By the usual rules of AdS/CFT correspondence

this CFT1 must be given by the infrared limit of the quantum mechanics describing the dynamics of

the brane system producing the black hole. In known examples, e.g., the D1-D5-p system producing a

five dimensional black hole [26,27], or the D1-D5-p-KK monopole system producing a four dimensional

black hole [53–56], the spectrum of the underlying quantum system has a gap separating the BPS ground

states from the first excited states in a fixed charge sector. The gap is small when the charges are

large, but is nevertheless non-zero. As a third example consider a BPS black hole in type IIB string

theory compactified on a Calabi-Yau 3-fold CY3, described as a configuration of 3-brane wrapped on an

appropriate supersymmetric three cycle inside CY3. The quantum mechanics describing the system is

a (0 + 1) dimensional sigma model with the moduli space of supersymmetric 3-cycles as target space.

Again as long as this moduli space is compact we expect the spectrum of the quantum theory to be

discrete, and there will be a gap between the supersymmetric ground states and the first excited state.

We shall assume that this is always the case for the quantum system describing an extremal black hole.

Then in the infrared limit only the ground states of this quantum mechanics will survive, and the CFT1

will consist of a finite number N of degenerate states.

The usual state-operator correspondence in a d dimensional conformal field theory relates every local

operator in the conformal field theory to a state in the conformal field theory on Sd−1 × RR. For d ≥ 2

this is usually achieved by the standard map from Sd to Sd−1× RR via the coordinate transformation that

takes the north and the south poles of Sd to ±∞ of RR. In this case local operators inserted at the south

pole of Sd create the corresponding states at τ = −∞ on Sd−1 × RR. The state-operator correspondence
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in d = 1 works in a more or less similar way. First the map from S1 to S0 × RR is achieved via the

coordinate transformation

σ + iτ = 2 tan−1 tanh

(
iθ

2

)
(1)

Indeed this takes the circle labelled by θ to a pair of lines S0 × RR where S0 corresponds to the pair of

points σ = 0,−π and RR is labeled by τ . The points θ = ±π/2 are mapped to τ = ±∞, the segment

−π/2 < θ < π/2 is mapped to the line at σ = 0 and the segment π/2 < θ < 3π/2 is mapped to the line

at σ = −π. Thus CFT1 on S0 × RR actually corresponds to two copies of the CFT1. On the other hand

since for d = 1 there is no notion of spatial separation, every operator acting on the Hilbert space H of

a single copy of the CFT1 can be regarded as a local operator. Thus we are looking for a map between

the set of operators acting on a single copy of H to the set of states living on two copies of H at the

two boundaries σ = 0,−π. It is straightforward to construct such a map—the operator M̂ inserted at

θ = −π/2 on S1 creates the state

|M〉〉 = Mab |a〉(1) ⊗ |b〉(2) , Mab ≡ 〈a|M̂ |b〉 (2)

on S0× RR at τ = −∞. Here {|a〉} denotes a complete set of orthonormal basis states in H, the subscripts

(1) and (2) denote the two copies of H, and | 〉〉 denotes a state in H⊗H. For this state the density matrix

in the Hilbert space of the first copy of CFT1, obtained by tracing over the states in the second copy, is

given by

(MM †)ac |a〉〈c| (3)

Given two such states |M〉〉 and |P 〉〉, we have:

〈〈M |P 〉〉 = M∗
abPab = Tr(M †P ) (4)

This can be interpreted as the two point function of M̂ † and P̂ in CFT1 on S1, in accordance with the

usual rules of state-operator correspondence in conformal field theories.

A special state corresponding to the identity operator in the CFT1 is

|I〉〉 = |a〉(1) ⊗ |a〉(2) (5)

We shall refer to this state as the vacuum state although all states have equal energy. The corresponding

density matrix is |a〉〈a|, showing that it is a maximally entangled state. This however is not the only

maximally entangled state—it follows from (3) that for any unitary operator Ŵ the corresponding state

|W 〉〉 has density matrix |a〉〈a|, and hence describes a maximally entangled state. Furthermore (4) shows

that for unitary operators W and V , the inner product 〈〈W |V 〉〉 is given by Tr(W−1V ).

Note that in CFT1, Tr(W ) may be expressed as

〈〈I|W(1)|I〉〉 (6)

where W(1) denotes the operator W acting on the first copy of the Hilbert space. Thus CFT1 correlation

functions can be interpreted as the expectation values of the operators acting on the first copy of the

CFT1 in the vacuum state.

Our goal will be to seek possible representation of these states in dual string theory on AdS2 ×K.
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3. AdS2 Space in Different Coordinates

In this section we shall review some facts about the near horizon geometry of black holes in the

extremal limit. For higher dimensional branes one usually takes a brane solution at zero temperature and

then takes the near horizon limit to get an AdS space-time. This corresponds to looking at excitations

whose energies are small from the point of view of the asymptotic observer but large compared to the

temperature of the brane. This is not a sensible limit for a black hole since, as reviewed in Section 2, the

black hole quantum mechanics has a gap that separates the ground state from the first excited state, and

so the only low energy excitations are zero energy excitations. So the sensible infrared limit is to take

the energy scale to zero as we take the temperature to zero. (I wish to thank Hong Liu for a discussion

on this point.) This can be achieved by taking the extremal limit in an appropriately rescaled coordinate

system in which the two horizons remain finite coordinate distance away from each other [3,57]. In this

limit part of the near horizon geometry of the black hole involving the time and the radial coordinates

takes the form [7,58,59]

ds2 = a2
[
−(r2 − 1)dt2 +

dr2

r2 − 1

]
(7)

where a is some constant. Here, up to a rescaling, r and t can be identified as the radial and the time

variables of the full black hole solution. The inner and the outer horizons are at r = ±1. The metric (7)

describes a locally AdS2 space-time. This can be extended to global AdS2 with the help of the coordinate

transformation [7]:

T ± σ = 2 tan−1 tanh
1

2

(
t± 1

2
ln

r − 1

r + 1

)
(8)

In this coordinate system the metric takes the form:

ds2 =
a2

sin2 σ
(−dT 2 + dσ2) (9)

The range of (T, σ) can be taken to be (−π < σ < 0, −∞ < T < ∞). This space has two boundaries, at

σ = 0 and at σ = −π. These two boundaries lie on opposite sides of the horizon r = ±1 of the original

metric (7). The asymptotic boundary r → ∞ in the original metric (7) lies at σ = 0. Figure 1 shows

AdS2 in the (σ, T ) coordinate system where the locations of the horizons at r = ±1 have been shown by

the dashed line [7,60].

Figure 1. Global AdS2 and the location of the horizon(s). The two vertical solid lines label

the two boundaries of AdS2 at σ = −π (left) and σ = 0 (right). The dashed lines label the

locations of the event horizons of the original black hole.
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Let us now consider the Euclidean version of the metrics (7) and (9). The Euclidean version of the

metric (7) is obtained by replacing t by −iθ. This gives the metric

ds2 = a2
[
(r2 − 1)dθ2 +

dr2

r2 − 1

]
(10)

Introducing new coordinate ρ =
√
(r − 1)/(r + 1) we can express the metric as

ds2 =
4 a2

(1− ρ2)2

[
dρ2 + ρ2dθ2

]
(11)

In this coordinate it is clear that absence of conical singularity at ρ = 0 (r = 1) requires θ to be a periodic

coordinate with period 2π. The resulting two dimensional space spanned by (ρ, θ) with 0 ≤ ρ < 1,

θ ≡ θ + 2π describes a unit disk.

Euclidean version of the metric (9) is obtained by replacing T by −iτ . This gives

ds2 =
a2

sin2 σ
(dτ 2 + dσ2) (12)

This time there is no periodicity requirement of τ . This describes an infinite strip spanned by (τ, σ) with

−∞ < τ < ∞, 0 < σ < π.

Even though for the Lorentzian signature the coordinates (r, t) for r ≥ 1 cover only a patch of the

global AdS2 spanned by the coordinates (T, σ) in (9), the Euclidean spaces (10) and (12) have an exact

one-to-one map:

σ + iτ = 2 tan−1 tanh
1

2

(
1

2
ln

r − 1

r + 1
+ iθ

)
= 2 tan−1 tanh

1

2
(ln ρ+ iθ) (13)

This is the standard one-to-one conformal map between the unit disk and the infinite strip as shown

in Figure 2. The segment of the boundary of the disk
(
ρ = 1,−π

2
< θ < π

2

)
gets maps to the σ = 0

boundary of the strip, and the segment
(
ρ = 1, π

2
< θ < 3π

2

)
gets mapped to the σ = −π boundary of

the strip. In fact for ρ = 1 this reduces to the standard map from S1 to S0 × RR described in (1).

Figure 2. Conformal map from unit disk to the strip. The left boundary of the strip is at

σ = −π and the right boundary is at σ = 0.
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4. AdS2/CFT1 Correspondence

Next we shall review some aspects of the AdS2/CFT1 correspondence proposed in [3]. Consider an

AdS2 × K geometry arising as the near horizon limit of an extremal black hole carrying a fixed charge.

Then this is dual to the CFT1 obtained as the infrared limit of the brane system describing the dynamics

of the black hole. If CFT1 has N states, then the black hole entropy, identified as the logarithm of the

number of states of the CFT1, is given by lnN . (If the black hole solution has hair modes then we must

remove their contribution while counting N [61,62].)

An algorithm for computing this entropy using the bulk description was given in [3,4]. For this we

consider the Euclidean AdS2 × K geometry given in (10) and denote by ẐAdS2 the partition function

of string theory in AdS2 × K, computed with the natural boundary condition that requires us to fix the

electric fields at infinity and integrate over the r independent modes of the gauge fields. (As discussed

in [3], this requires introducing a Wilson loop operator along the boundary of AdS2 while computing

ẐAdS2 .) Due to infinite size of the Euclidean AdS2 space this partition function is divergent, so we need

to regularize the divergence by putting a cut-off on r, say r ≤ r0 or equivalently ρ ≤ 1− ε. This makes

AdS2 have a finite volume and the boundary of AdS2, situated at r = r0, have a finite length which we

shall call L. Now by AdS/CFT correspondence ẐAdS2 should be given by the partition function of the

CFT1 living on the boundary circle at r = r0. The latter in turn is given by Tre−LH = N e−LE0 , where

H is the Hamiltonian of CFT1 and E0 is the energy of the N degenerate states of CFT1. Thus we have

ẐAdS2 = N e−E0L (14)

This suggests that in order to calculate N , we first calculate ẐAdS2 and then extract its finite part by

expressing it as dhor e
CL for some finite constants dhor and C in the L → ∞ limit. In that case C can be

identified with −E0 and dhor, called the quantum entropy function, can be identified as the ground state

degeneracy N of the black hole. This gives a complete prescription for computing the black hole entropy

in the bulk theory. In the classical limit dhor defined this way reproduces the exponential of the Wald

entropy [3]. In principle quantum corrections may be computed directly [63–65], or, for supersymmetric

black holes, using localization [66]. Significant advances towards computing dhor using localization

techniques have been made recently [67].

By adjusting the boundary terms in the action describing string theory on AdS2 ×K we can make the

constant C vanish, so that ẐAdS2 can be directly identified as the degeneracy of CFT1. This corresponds

to a constant shift in the definition of the energy of CFT1 to make E0 vanish. For simplifying the notation

we shall proceed with this convention although we can always include the explicit E0 dependence in all

the equations below if so desired.

Can we use the bulk description to calculate other observables in CFT1? Since CFT1 consists

of a finite number of degenerate states, the only observables are N × N matrices M acting on this

N dimensional vector space. Let us focus on the cases of unitary matrices which generate U(N)

transformations in this N dimensional vector space. Since the all N states in CFT1 are degenerate, U(N)

is an exact symmetry of CFT1. Hence it must also exist as an exact symmetry of the dual string theory

on AdS2×K, and corresponding to any U(N) element W there must be a corresponding transformation

(also denoted by W ) acting on the variables in the dual string theory. (In AdS/CFT correspondence

global symmetries in the boundary theory arise as local symmetries of the bulk theory. We shall not
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try to make this distinction here since we shall use the U(N) transformations to twist the boundary

condition, and for this only the global part of the group is relevant anyway. However it is important that

there should not be any dynamical U(N) gauge fields in the bulk since this will force the black hole

to carry fixed charges under the Cartan generators of U(N) [3].) Computing Tr(W ) in CFT1 will then

correspond to evaluating the partition function of string theory on AdS2 ×K with a W twisted boundary

condition on the bulk fields under θ → θ + 2π.

While this gives a way to relate Tr(W ) in the boundary theory to a specific quantity in the bulk

theory, in general the action of W on the bulk fields is not known. But in special cases, e.g., when

W represents a known ZZk symmetry generator of the theory, there is a natural lift of the action of W

to the bulk fields. In this case Tr(W ) in CFT1 can be identified as a ZZk twisted partition function in

the bulk theory. Since the boundary circle of the Euclidean AdS2 space described by the metric (11)

is contractible in the interior, a W twisted boundary condition is not allowed there. Thus the original

AdS2×K geometry does not contribute to this amplitude. But a ZZk orbifold of the AdS2×K geometry

does contribute and gives a non-zero answer for Tr(W ) [22]. This prescription has passed non-trivial

tests in a class of N = 4 supersymmetric string theories where an independent microscopic computation

of Tr(W ) is possible [22,23]. (Although the computation of Tr(W ) in the bulk theory will be the

same as the one described in [22], the spirit in which we want to use this is different. In [22,23] the

asymptotic moduli were adjusted to also have the unbroken ZZk symmetry so that we could compute

Tr(W ) microscopically and compare with the macroscopic result. In contrast, here we want to interpret

Tr(W ) as an observable in the near horizon theory irrespective of whether or not it is a symmetry of

the asymptotic theory. For this we only need to adjust the asymptotic moduli to be in a certain subspace

which under attractor flow [68–70] approaches the point of enhanced discrete symmetry at the horizon.)

Note that for W = 1 we recover the original partition function ẐAdS2 on the bulk side and Tr(1) = N

on the CFT1 side.

5. States in String Theory on AdS2

The result of the previous sections suggests a way of associating the states in two copies of CFT1 with

states in string theory on AdS2 × K. Let us for definiteness work with states in CFT1 on S0 × RR of the

form |W 〉〉 with unitary operators W . To the states |W 〉〉 and |V 〉〉 we want to associate wave-functions

fW and fV in string theory such that the inner product of fW and fV generates the CFT1 two point

function Tr(W−1V ). The latter in turn is described by the path integral of string theory in AdS2 × K,

with the boundary condition that as θ → θ + 2π near the boundary, the fields are twisted by W−1V .

This can be achieved by defining fW to be generated by the result of string theory path integral over

the half disk (or semi-infinite strip) with a cut corresponding to the transformation W that reaches the

boundary of the half disk (see Figure 3). The inner product 〈〈W |V 〉〉 will then be obtained by gluing the

two half disks, with cuts W and V along the boundaries, along their common diameter. This is given by

the path integral over the whole disk with a twisted boundary condition by W−1V along the boundary,

as required.
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Figure 3. Generating a state in string theory on AdS2 from a state Wab|a〉(1)|b〉(2) in the two

copies of the Hilbert space of CFT1. The thick semi-circular line is the boundary of AdS2

whereas the thin diameter is the line on which the string fields, appearing in the argument

of fW , live. The dashed line reaching the boundary of AdS2 denotes a cut which relates the

field configurations on the right of the cut to those on the left of the cut by a transformation

by W .

w

fw

Note that in Figure 3 the cut can either end in the interior of the half disk if it is an allowed

configuration in string theory, or reach the diameter on which the wave-function fW is defined. This is

reminiscent of the sum over geometries in [33]. The necessity for allowing the cut to reach the diameter

can be seen in the computation of 〈〈W |W 〉〉. The dominant contribution to this amplitude comes from

the configuration where the cut extends all the way across the disk, representing the usual AdS2 × K

geometry without any twist.

While this gives an abstract prescription for associating the states living in two copies of the Hilbert

space of CFT1 to states of string theory on AdS2 × K, in general we cannot explicitly construct these

states since the action of W on the bulk fields is not known. However for the special cases when W can

be associated with some known ZZk symmetry generator of string theory on AdS2×K, we can explicitly

construct the corresponding state; the path integral will be over all field configurations whose boundary

values jump by the action of this discrete symmetry transformation W at some point on the boundary.

Even though this is a special case, this at least demonstrates that it is possible for global AdS2 to admit

non-trivial quantum states.

It is worth emphasizing that this discrete symmetry need not be a symmetry away from the

horizon—the asymptotic moduli could be in a configuration that breaks this symmetry while the attractor

mechanism pulls the near horizon geometry towards a configuration that is invariant under this symmetry.

From this point of view this discrete symmetry is on the same footing as the rest of the proposed U(N)

symmetry, in that this symmetry is present in the near horizon geometry but not necessarily present away

from the horizon.

6. Conformal Invariance of the Correlation Functions

AdS2 space has SL(2, RR) as a global isometry. Thus we expect the correlation functions in CFT1

to be SL(2, RR) invariant. We shall now see how this is manifest in the formalism described above. If

we take a set of U(N) elements W1, · · ·Wn then their correlation function in CFT1 will be given by
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Tr(W1 · · ·Wn). This can be interpreted as the n-point correlation function on the Euclidean time circle,

but since all the states have zero energy the correlation function depends only on the cyclic time ordering

of the operators and not on the explicit time coordinates where the operators are inserted. In the bulk

description this is given by a partition function in which the boundary values of the fields are twisted by

successive applications of W1, · · ·Wn. Again the correlation function depends on the order in which the

Wi twists are applied, but not where we put the cut corresponding to the transformation Wi. Now under

an SL(2, RR) transformation the boundary circle gets mapped to itself in a one-to-one fashion, and the

cyclic order of any set of points on the boundary is preserved. Thus the correlation function is manifestly

invariant under SL(2, RR) transformation.

The full conformal group in one dimensions is in fact much bigger, given by the full Virasoro group

Diff(S1) that maps the circle to itself in a one-to-one fashion. This also preserves the cyclic ordering of

the points on the circle and hence is a symmetry of the correlation function in CFT1. To see how this

comes about in string theory on AdS2 × K note that we can find a group of diffeomorphisms in AdS2

satisfying the conditions:

1. The elements of the group approach Diff(S1) as we approach the boundary.

2. They preserve the asymptotic boundary conditions on the metric and various other fields in

AdS2 ×K [71,72] (see [73] for explicit forms of these diffeomorphisms near the boundary).

3. They are well defined in the interior of AdS2.

In other words there is an asymptotic symmetry of Euclidean AdS2 corresponding to the group

Diff(S1) even though this is not an isometry of AdS2. Since in computing Tr(W1 · · ·Wn) in the bulk

theory we integrate over all fields subject to the asymptotic boundary conditions, the path integral will

automatically include orbits of the above group of transformations. Furthermore these transformations

will not affect the order in which the cuts are arranged along the boundary. Thus correlations functions

computed in the bulk theory with twisted boundary conditions will also be manifestly invariant under the

full Diff(S1) group.

7. Entanglement vs. Statistical Entropy

When W is the identity operator then there is no cut on the disk, and the corresponding state in string

theory is simply the Hartle-Hawking state obtained by string theory path integral over the half disk

without any cut. In the boundary theory this represents the state |I〉〉 defined in (5). (This is precisely the

structure of the entangled state found in [40] for the special case of extremal BTZ black holes by starting

with a finite temperature system and then taking its zero temperature limit.) Thus the Hartle-Hawking

state is the maximally entangled state in the two copies of the CFT1 living on the two boundaries of

global AdS2. The corresponding entanglement entropy is given by

Sentangle = lnN (15)

where N is the dimension of the Hilbert space of CFT1. This agrees with the statistical entropy defined as

the logarithm of the degeneracy of states in the CFT1. This is a special case of the general result of [33],

and confirms the explicit finding of [40] that the entropy of an extremal black hole can be interpreted

as the entanglement entropy between the two copies of CFT1 living on the two boundaries of the global
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AdS2. In fact not only the state (5) has entanglement entropy lnN , any twisted state |W 〉〉 introduced

earlier has density matrix W †W = I and hence entanglement entropy lnN .

The equality between the statistical and entanglement entropy is obvious in the CFT1. This can also

be seen in the bulk theory as follows. The standard procedure for computing the entanglement entropy

in a CFT uses the definition:

Sent = − lim
n→1

d

dn

Tr(ρn)

(Trρ)n
(16)

Thus for computing Sent using the bulk description we need to find a way of computing Tr(ρn)

holographically. This can be done as follows. Since the CFT1 lives on a pair of points and since the

state we are interested in is the Hartle-Hawking state, we can construct this as a path integral in the CFT1

on a line of length L/2 with boundary conditions φ1 and φ2 at the two ends labelling the states of the

two CFT1’s. Eventually we want to take L → ∞ (although since all states have the same energy the L

dependence is trivial). Now to compute the unnormalized density matrix ρ(φ1, φ
′
1) by taking the trace

over states of the second system we take another copy of this line segment with boundary conditions

φ′
1 and φ′

2 and glue the second ends of the two segments after identifying φ2 with φ′
2. This leaves us

with a line segment of length L with boundary conditions φ1 and φ′
1 at the two ends. For computing

ρn we simply take n copies of this line segment and glue the primed end of the i-th segment with the

unprimed end of the (i + 1)-th segment for 1 ≤ i ≤ (n − 1). This gives a line segment of length nL

with boundary conditions φ1 and φ′
n at the two ends. Finally to calculate Tr(ρn) we join the two ends of

this line segment by identifying φ1 with φ′
n and carry out the path integral over the fields of the CFT1 on

this circle. Thus the holographic computation of Tr(ρn) will involve calculating the partition function

of string theory over all spaces, each of which having a boundary circle of length nL and approaching

the AdS2 geometry asymptotically. If we denote this contribution by ẐAdS2(n) then we have

Tr(ρn) = ẐAdS2(n) (17)

Hence from (16) we get

Sent = − lim
n→1

d

dn

ẐAdS2(n)

ẐAdS2(1)
n

(18)

ẐAdS2(1) can be identified with the ẐAdS2 given in (14). To compute ẐAdS2(n) we note that the leading

contribution to this partition function comes from the Euclidean AdS2 geometry (10) itself with the

cut-off on r adjusted to produce the appropriate boundary length nL. Even the full quantum contribution

to the partition function will be given by the quantum contribution to ẐAdS2 with a different infrared

cut-off so that the boundary has length nL. Thus we have from (10)

ẐAdS2(n) = Ne−nE0 L (19)

Substituting this into (18) gives

Sent = − lim
n→1

d

dn
N1−n = ln N (20)

which is manifestly equal to the statistical entropy.

Note that this approach differs from the holographic prescription of [40,74] for the computation of

Tr(ρn). In the latter approach while computing ẐAdS2(n) we compute the partition function of of string
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theory on n-fold cover of AdS2. This has a conical defect at the center. On the other hand in our approach

we first take an n-fold cover of the boundary circle and then integrate over all possible bulk space-time

with this boundary condition. The leading saddle point is the AdS2 space itself with a different infrared

cut-off. Although classically the two approaches give the same result, it is not clear a priori if the

agreement will continue to hold in quantum string theory. Indeed at present we do not know how to

define string theory on a space with conical defect for an arbitrary defect angle. Clearly understanding

the relationship between these two computations will be desirable since it might also given us a clue as to

when, why and how the holographic prescription [40,74–76] for computing entanglement entropy works.

8. Information Loss Problem

Since an extremal black hole has zero temperature, we cannot directly formulate the usual information

loss puzzle involving absorption and subsequent Hawking radiation from such a black hole unless we

allow the black hole to go through an intermediate non-extremal state. The best we can do is the

following. Suppose we probe the extremal black hole by an external agent carrying energy lower than

the gap that separates the ground state of the black hole from the first excited state. In this case the

only possible transitions are to the other ground states of the black hole. Will the black hole retain a

memory of this probe that can be tested using a second experiment with another probe? To address this

question we note that the effect of such probes can be described by (linear combinations of) the twist

operators described earlier. (In general the relation between the external probe and the twist operator

will be complicated and depend on the interpolating geometry that connects the near horizon region to

the asymptotic region. For example in the case of the ZZk symmetry which represents a known discrete

symmetry of string theory at special points in the moduli space, the relation between the twist operators

and external probes depends on how a low energy probe at infinity where the ZZk symmetry may be

broken, transforms itself into a linear combination of ZZk eigenstates by the time it reaches the horizon

where the ZZk symmetry is unbroken. Such a relation can in principle be derived from the knowledge

of the full black hole solution that interpolates between the near horizon geometry with unbroken ZZk

symmetry and the asymptotic region.) If we now perform two successive experiments on the black hole,

one with the probe W followed by another with probe V , then the effect of the first probe on the second

experiment will be tested by the two point function of W and V . Since in general this two point function

is non-zero, we see that the black hole does retain the memory of the first probe. The simplest example

of this is the case where WV represents a ZZk twist of the type discussed in [22,23]. In this case the

leading saddle point that contributes to this correlation function is a ZZk orbifold of AdS2 × K, and has

a contribution of order N1/k [22] compared to the contribution of order N to Tr(1). Thus as in the case

of [33], the non-vanishing contribution comes only after we sum over non-trivial saddle points, and is

suppressed by a power of N .

9. Speculations on the Enhanced Symmetry

If our proposal for the state-operator correspondence is correct, this will imply that string theory in

the near horizon geometry of an extremal black hole has a U(N) symmetry by which we can twist the

boundary conditions on the fields. Since N can be very large this implies a large group of symmetries
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of the theory. This is expected to be symmetry of string theory in the AdS2 × K geometry but not of

the string theory in asymptotically flat space time in which the black hole is embedded, since the U(N)

symmetry acting on the N degenerate states of the black hole becomes an exact symmetry only in the

infrared limit in which there is a decoupled quantum mechanics of the N degenerate BPS states.

At present we do not have any concrete understanding of how such enhanced symmetries could arise.

We shall end by making some random observations:

1. In the classical limit the black hole entropy lnN goes to infinity. Thus if the U(N) symmetry

is present in the classical limit, then it must appear as a U(∞) symmetry which is broken down

to U(N) by quantum effects. Since U(∞) is a symmetry of the infinite dimensional complex

Grassmannians, one could wonder if Grassmannians might play a role in string theory on AdS2×K.

Alternatively the U(N) symmetry could arise only as a symmetry of the quantum theory with no

classical analog.

2. Typically for a BPS black hole in a supersymmetric theory carrying a fixed charge, some of the

moduli scalar fields are fixed at the horizon due to the attractor mechanism, but the other moduli

may remain free and label the moduli space of the near horizon geometry. As we move around

in this moduli space, the discrete symmetries of the theory may change, being either non-existent

or a small group of symmetries at a generic point but getting enhanced to bigger groups at special

points. On the other hand the spectra of the black hole ground states at different points in this

moduli space are expected to be isomorphic since they represent the BPS states carrying a given

set of charges. It should in principle be possible to use these isomorphisms to represent the action

of the discrete symmetries at different points in the moduli space on the same Hilbert space. Thus

all these discrete symmetries must be embedded in the single U(N) group that acts on the N

degenerate ground states of the black hole.

To take a concrete example, consider type IIA string theory compactified on K3 × T 2 and

take a black hole that carries only fundamental string winding, momentum, Kaluza–Klein (KK)

monopole and H-monopole charges associated with the two circles of T 2. Although the full

moduli space of the theory is parametrized locally by the SO(6, 22)/SO(6) × SO(22) coset

space, some of the moduli are fixed in the near horizon geometry leaving behind only a locally

SO(4, 22)/SO(4) × SO(22) space. The moduli labelling this space include in particular the

metric and the 2-form fields on K3. Now it has been recently speculated in [77–84] that the

symmetry group of supersymmetric states in a sigma model with target space K3 includes the

Matthew group M24 even though there is no known point in the K3 moduli space at which the

corresponding string theory has manifest M24 symmetry. In this case this group must also have a

natural action on the space of BPS states of the black hole described above and sit inside the U(N)

group acting on the N degenerate ground states of the black hole. A better understanding of why

M24 appears as a symmetry of supersymmetric states in the sigma model could help us realize this

as an explicit symmetry of string theory in this particular near horizon geometry. This will still fall

short of realizing the whole U(N) group as a manifest symmetry, but will help us realize a large

subgroup of U(N).

For special values of the charges the symmetry group may also include a subgroup of the duality

group associated with compactification on T 2. Note however that none of these symmetries may
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be a symmetry of the asymptotic theory since they can be broken by the expectation values of the

moduli fields at infinity.

3. Supergravity theories reduced to two dimensions typically have a large group of continuous duality

symmetries. Normally in the presence of charged particles this symmetry breaks down to a discrete

subgroup. However since in the AdS2 geometry there are no charged excitations one could wonder

if these continuous duality symmetries could play any role in building up the U(N) group. In this

context it is encouraging to note that the enhanced discrete symmetries at special points in the

moduli space are naturally embedded in this continuous duality group.
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