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1. Introduction 

In urban transportation planning, travel demand is frequently represented by multinomial or 
hierarchical logit discrete choice models, particularly for the selection of destinations, routes, and 
transportation modes. These models are also used in land use planning for modeling the real estate 
supply and activity location. Traditionally, both classes of choice models are deduced from the 
paradigm of the rational user who uses transportation services or real state units so as to maximize his 
or her utility as given by an assigned probability distribution. Estimation of the model parameters 
relies on classical statistical criteria, most commonly the method of maximum likelihood. 

These models can also been deduced as the solution to certain constrained entropy maximization 
problems. The Lagrange multipliers of the constraints constitute alternative estimators of the 
population parameters to those generated by the known maximum likelihood approach, and in this 
work will be called maximum entropy estimators. 

In [1] it was shown that maximum likelihood estimators are identical to maximum entropy 
estimators in the case of multinomial logit models. Here, this equivalence will be investigated for the 
hierarchical logit model [2].  

The maximum entropy approach has been used primarily to formulate aggregate trip demand 
models, especially users’ single decisions. Particularly prominent are the spatial trip distribution 
formulations such as the doubly constrained gravitational model proposed by [3] and its later 
modifications and extensions (see [4–10]). Other important applications of maximum entropy are the 
combined models which integrate the different transportation decisions including trip generation, 
destination choice, mode choice and route choice. These models first appeared in the early 1980s and 
were followed over the next two decades by further important developments (e.g., [1,11–21]). In every 
maximum entropy application reported in the specialized literature, the demand model is the solution 
of an entropy maximization problem (or an equivalent formulation) with exogenous parameters in its 
objective function and a set of linear constraints. Applying the optimality conditions to these problems 
generates combined multinomial or hierarchical logit demand models, depending on the form of  
the objective function and its constraints. A microeconomic interpretation of the maximum entropy 
estimator of multinomial logit models and its equivalence to the maximum likelihood estimator is 
presented in [22]. 

The endogenous and exogenous parameters of these models are estimated by applying certain 
statistical techniques used for calibrating econometric models, most notably the maximum likelihood 
method. This is a sensible strategy for a multinomial logit model given the equivalence of the two 
estimators noted above, but may not be the best option if the model is hierarchical logit. 

To analyze the equivalence of the maximum likelihood and maximum entropy estimators in the 
context of a hierarchical logit model, we first carry out a theoretical analysis and then calculate both 
estimators based on Monte Carlo simulations. The estimators are then evaluated in terms of their bias 
with respect to known population parameters, their efficiency and consistency properties as well as 
certain general goodness-of-fit criteria such as mean square error. From the results obtained we 
determine the differences between the two approaches for various data scenarios. 
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Our conclusion is that the maximum entropy estimators provide a viable alternative for estimating 
hierarchical logit models; indeed, in the light of the simulations they appear to be superior to 
maximum likelihood estimates, especially with small sample sizes. 

2. Formulation and Estimation of Hierarchical Logit Model 

2.1. Formulation of Hierarchical Logit (HL) Model 

In the HL model (see [2]) the utility of alternative a in group g for individual q of type i is given by: 
0for all , , 1,..., ,agqi agi gi agqi gqi iU V V a g q N iε ε= + + + =  (1)

where 0
iN  is the number of individuals of type i. If 0 1 for all iN i= , the model is disaggregate by 

individuals; if not, the sub index q is omitted for simplicity. The terms Vagi and Vgi are the deterministic 
components of the utility perceived by a type i individual from alternative a and group g, respectively. 
We assume that both terms are linear functions of attributes (x and w) and parameters (� and γ) that are 
either generic or specific to an alternative or group and type of individual. Thus: 

for all , ,agi k agik
k

V x a g iβ= �  (2)

for all ,gi m gim
m

V w g iγ= �  (3)

The agqiε  are i.i.d. random variables with a Gumbel distribution (0, μg) where μg > 0. The εgqi 
variables are such that , ,gqi gqi gqi g q iε ε ε∗′ = + ∀ , where the gqiε ′  are i.i.d. r.v.’s with a Gumbel 

distribution (0, λ), λ > 0 and the gqiε ∗  are i.i.d. r.v.’s with a Gumbel distribution (0, μg). The HL model 
of the probability that a type i individual chooses alternative a in group g ( i/agp ) is:  

/ / / for all , ,ag i a gi g ip p p a g i=  (4)

where /a gip  is the probability that a type i individual chooses alternative a given that he or she chose 
group g, and /g ip  is the probability that a type i individual chooses group g. If we denote 

( )1 ln exp for all ,gi g agi
ag

V V g iμ
μ

∗ 
 �= � � �
� , the latter two probabilities are then given by: 

( )
( )/

'

exp
for all , ,

exp
g agi

a gi
g a gi

a

V
p a g i

V

μ
μ ′

=
�

 (5)

( )
( )/

exp
for all ,

exp
gi gi

g i
g i g i

g

V V
p g i

V V

∗

∗
′ ′

′

+
=

+�
 (6)

For (6) we assume that λ = 1 so that the model parameters can be identified. With this assumption, 
1 for all g gμ ≥ ; if 1 for all g gμ = , the HL formulation reduces to the multinomial logit (MNL) 

model. 
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2.2. Estimation of HL Model by Maximum Likelihood (ML) 

The maximum likelihood estimators for the parameters of the HL model defined by (4)–(6) are 
obtained as the solution of the following optimization problem (see microeconomic interpretation in 
Appendix A): 

{ }
0 0

/ /, , , , ,
max ln ln ( , , ) ln ( , )gi g i agi a gi g

i g i g a
L N p N p

μ β γ
μ β γ μ β= +� �  (7)

where 0
agiN  is the observed number of type i individuals who chose alternative a in group g, 

0 0

,
for all i agi

g a
N N i= �  and 0 0 for all ,gi agi

a
N N g i= � :  

The first-order conditions of (7) are: 
0 0

/ /

, , ,/ /

ln 0 for all gi g i agi a gi

i g i g ak g i k a gi k

N p N pL k
p pβ β β

∂ ∂∂ = + =
∂ ∂ ∂� �  (8)

0 0
/ /

, ,/ /

ln 0 for all gi g i agi a gi

i g i ag g i g a gi g

N p N pL g
p pμ μ μ

∂ ∂∂ = + =
∂ ∂ ∂� �  (9)

0
/

, /

ln 0 for all gi g i

i gm g i m

N pL m
pγ γ

∂∂ = =
∂ ∂�  (10)

It is readily demonstrated that:  

/
/ / / / for all , ,g i

g i a gi agik g i a g i ag ik
a g ak

p
p p x p p x g i k

β ′ ′ ′
′

∂ 
 �
= −� ∂ � �

� � �  (11)

for all a / gi
a / gi g agik a / gi a' gik

ak

p
p x p x a, g , i, kμ

β ′
′

∂ 
 �= −� ∂ � �
�  (12)

Substituting (11) and (12) in (8) we obtain the following equation associated with kβ :  

( )( )( )0 0 0 0
/ / /

, , , ,

1 for all i g i a gi g gi a gi agi agik agi agik
i g a i g a

N p p N p N x N x kμ+ − − =� �  (13)

As we know, if 1 for all g gμ = , we just have the MNL model and (13) reduces to the well-known 

expression which states that the sum of the values of attribute xk for the alternatives chosen by the 
various individuals is equal to the sum predicted by the estimated choice probabilities. Then, the 
maximum likelihood estimators of a MNL model reproduce the average values of its explanatory 
variables (travel time, cost, etc.) and, if specific constants for each alternative are specified, the market 
(i.e., observed) modal shares. 

However, it is evident from (13) that this condition does not hold for the HL model since this would 
require that the following additional condition be satisfied: 

( )( )0 0
/

, ,
1 0 for all g gi a gi agi agik

i g a
N p N x kμ − − =�  (14)

Also, if we define a specific constant ag0β  for each alternative a in each group g, the Equation (13) 

associated with this parameter is: 
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( ) ( )0 0 0 0
/ / /1 for all ,i g i a gi g gi a gi agi agi

i i i
N p p N p N N a gμ+ − − =� � �

 
(15)

Thus, the HL model does not reproduce the observed modal shares for each alternative in each 
group as this would require that 1g gμ = ∀  (the MNL model) or that 0 0

/ for all ,gi a gi agi
i i

N p N a g=� � , 

that is, that the observed modal shares be reproduced conditional upon the choice from each group. 
Furthermore, if we sum over a´ on both sides of (15) we obtain: 

0 0
/ for all i g i gi

i i
N p N g=� �  (16)

Thus, the observed modal shares of each group are reproduced when specific constants for each 
alternative are specified. By similar reasoning we obtain the same conclusion if we define specific 
constants for each group. 

2.3. Estimation of HL Model by Maximum Entropy (ME) 

Consider the following optimization problem, denoted Entropy Maximization with Hierarchical 
Probabilities (EMHP): 

{ }/ /

0 0
/ / / / / /

, , , , ,
max ln ln( )
a gi g i

i ag i ag i i g i a gi g i a gi
p p a g i a g i

N p p N p p p p− = −� �  (17)

subject to: 
0

0 0
/ / / 0

, ,
ln ln for all agi

i g i a gi a gi agi
i a i a gi

N
N p p p N g

N

 �

− = − � � � �
� � 1

gμ

 �
� � � �

 (18)

0 0
/ /

, , , ,
for all i g i a gi agik agi agik

i g a i g a
N p p x N x k=� �           ( )kβ  (19)

0 0
/

, ,
for all i g i gim gi gim

i g i g
N p w N w m=� �                       ( )mγ  (20)

/ 1 for all ,a gi
a

p g i=�                                               ( )giα  (21)

/ 1 for all g i
g

p i=�                                               ( )iρ  (22)

In this formulation, 1

gμ

 �
� � � �

, ( )kβ , ( )mγ , ( )giα  and ( )iρ  are the Lagrange multipliers of constraints 

(18) to (22), respectively. The structure of the EMHP problem is similar to the entropy maximization 
problem generated by a multinomial logit model (see [1]) with the exception of (18), which restricts 
entropy in each group. Total entropy can be decomposed as follows: 

��� −−=−
i,g,a

gi/agi/ai/gi
g,i

i/gi/gi
i,g,a

i/agi/agi plnppNplnpNplnpN 000  (23)
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The constraint (18) imposes that the second term on the right side of (23) be constant, so the 
objective function (17) can be reduced to �−

g,i
i/gi/gi plnpN 0 . The Lagrangian of the reduced EMHP 

problem is: 

� �� �

� ��

� ��

� ���
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00
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000

ρα

γ

β

μ

 
(24)

The optimality conditions, applied to this function, lead to the solutions gi/ap  and i/gp  which 

satisfy (5), (6), (2) and (3) and thus constitute an HL model. 

The ME estimators of the model are the Lagrange multipliers 1

gμ
, kβ  and mγ , which are obtained 

by substituting (5) and (6) into constraints (18), (19) and (20) and solving the equations numerically 
using, for instance, the Newton’s method. Since, unlike the ML estimators, the ME estimators satisfy 
constraint (19), the average values of the explanatory variables can be reproduced, as can the market 
modal shares if constraints are specified for each alternative. We may thus conclude that the ML 
estimators are different than the ME ones. This result will be analyzed empirically in the next section. 

3. Simulation Analysis of ML and ME Estimators 

To compare the two parameter estimation approaches (ML and ME) we conducted a series of 
Monte Carlo simulations of a hierarchical model of combined destination choice and modal share 
using various sample sizes and values for the parameter μ. Although this HL model is particular,  
it illustrates clearly the differences between both approaches. The simulated tree structure is depicted 
in Figure 1. 

Figure 1. Simulated hierarchical tree structure. 
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We defined 30 origin and destination zones and four transportation modes (private car, bus, taxi and 
metro) available for trips between any origin and destination pair in either direction. For simplicity, we 
assumed that the parameter μ was the same for all destinations. The parameter λ  was set at unity 
( 1λ = ). No specific attributes were assumed for the different groups. 

The utility functions for the four modes are given below. In each case, the explanatory variables are 
travel time and travel cost and we include mode constants: 

0 Time Cost
Car Car Car CarV T Cβ β β= + +  (25)

0 Time Cost
Bus Bus Bus BusV T Cβ β β= + +  (26)

0 Time Cost
Taxi Taxi Taxi TaxiV T Cβ β β= + +  (27)

0 Time Cost
Metro Metro Metro MetroV T Cβ β β= + +  (28)

The explanatory variable parameters are generic, that is, the same for each mode. The values of 
these population parameters are set out in Table 1.  

Table 1. Population parameter values in simulations. 

PARAMETER VALUE (*) 
0
Carβ  0.9 
0
Busβ 0 
0
Taxiβ 0.5 
0
Metroβ 0.4 
Timeβ  �0.25 
Costβ  �0.006 

SVT (**) 41.47 
λ 1 

 φ = λ/μ = 1/μ 0.5 (***) 
(*) Values are defined by the authors, and are similar to the estimates reported in [21];  
(**) Subjective value of time, estimated at (�0.25/�0.006) = 41.47; (***) Values of 0.2 and 0.9 
were considered in complementary analysis, which is reported in the appendices. 

The values for the explanatory variables (time and cost) were extracted from a 2001 transportation 
survey for Greater Santiago of Chile [23]. Their means and standard deviations for each transportation 
mode are given in Table 2. 

A total of 1,000 Monte Carlo simulations were conducted with each of five different sample  
sizes containing 500, 1,000, 5,000, 10,000 and 20,000 observations, respectively. We thus obtained 
1,000 ML and ME estimators of the parameters for each sample size, from which the estimates of bias, 
variance and mean squared error were derived. 

The likelihood and entropy maximization problems were solved numerically using Newton’s 
method. The convergence criterion in all simulations was 0.1%, meaning that the percentage difference 
between the estimates of each parameter obtained from two consecutive iterations of the method did 
not exceed 0.001. 
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Table 2. Mean and standard deviation of explanatory variables by mode. 

MODE VARIABLE MEAN (*) STD DEV (*) 

Car Travel time 16 11 
Cost 2,031 138 

Taxi Travel time 17 11 
Cost 2,279 148 

Bus Travel time 54 12 
Cost 409 25 

Metro 
Travel time 45 7 

Cost 833 73 
Source: [23]. (*) Travel time in minutes and cost in Chilean pesos as of 2009. 

3.1. Bias, Variance and Mean Squared Error (MSE) 

The 1,000 ML and ME estimators were used to construct histograms for simultaneously analyzing 
bias, variance and mean squared error. In Figure 2 we compare histograms of the observed modal split 
and modeled modal split for the maximum likelihood estimator, for three sample size (1,000, 5,000 
and 10,000); in maximum entropy estimator, both observed and modeled modal split are identical by 
construction [see Equation (19)]. Each variable a was defined, for each simulations and mode a (car, 

taxi, bus and metro) by the following expression: ( )0 0/a agi agi agi
gi

p N Nε = −� . We observe that, just 

asymptotically, modeled modal split converges to observed modal split [see Equation (15)]. 

Figure 2. Observed vs. modeled modal split using maximum likelihood estimation, for 
parameter value φ = 1/μ = 0.5. 

εmetro 

εtaxi 

εbus 

εcar 
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The estimates of the parameter φ = 1/μ are shown in Figure 3 while the estimates of the subjective 
value of time (SVT) are displayed in Figure 4. In both figures the dotted line marks the population 
parameter (used in the simulation) while the black curve traces out the ML estimates and the blue 
curve the ME estimates. The results in all cases are for 1,000; 5,000 and 10,000 observations, the three 
instances in which the differences between the two estimators most clearly stand out. 

Figure 3. Results of ML and ME estimators for parameter value φ = 1/μ = 0.5. 

Figure 4. Results of ML and ME estimators for SVT = βTime/βCost. 
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As can be seen in Figure 3, the ML estimate of μ is relatively biased but consistent while the ME 
estimate is significantly less biased but also less efficient (i.e., greater variance).  

Figure 4 shows that both estimators of SVT are unbiased, although the ME estimator is clearly more 
efficient. This is confirmed in Table 3, which summarizes the results on bias, variance and MSE for 
both ML and ME. Also clear from the table is that the ME estimators are less biased than the ML ones, 
though the variances of the latter are smaller. The MSE, however, is always lower for the ME estimators.  

Table 3. Summary of results for ML and ME estimators. 

METHOD PARAMETER SAMPLE SIZE BIAS VARIANCE MSE (*) 

ML 

1/μ 500 0.16844 0.00096 0.02933 
1/μ 1,000 0.10912 0.00074 0.01265 
1/μ 5,000 0.03067 0.00016 0.00110 
1/μ 10,000 0.01655 0.00009 0.00036 
1/μ 20,000 0.00821 0.00004 0.00011 

VST 500 2.57679 47.61970 54.25957 
VST 1,000 0.68741 13.87630 14.34884 
VST 5,000 0.16172 3.01595 3.04210 
VST 10,000 0.12386 1.23927 1.25461 
VST 20,000 0.11537 0.71021 0.72352 

ME 

1/μ 500 0.12867 0.00384 0.02039 
1/μ 1,000 0.03050 0.00250 0.00343 
1/μ 5,000 0.00494 0.00047 0.00050 
1/μ 10,000 0.00182 0.00017 0.00017 
1/μ 20,000 0.00023 0.00006 0.00006 

VST 500 1.70225 12.01048 14.90812 
VST 1,000 0.35554 1.95599 2.08240 
VST 5,000 0.19228 0.22072 0.25769 
VST 10,000 0.08879 0.07469 0.08257 
VST 20,000 0.03281 0.01565 0.01672 

(*) Defined as the sum of the variance and the square of the bias. 

For parameter values φ = 1/μ = 0.2 and φ = 1/μ = 0.9, the bias, variance and MSE estimates with the 
same sample sizes are found in Appendix B. In every case both bias and MSE are smaller for the  
ME estimator. 

The differences in MSE for the two estimators are depicted in Figures 5 and 6. The various results 
just presented lead to the conclusion that the ME estimator is systematically superior to the ML 
estimator in this hierarchical tree structure, particularly for small sample sizes. 

The differences between both estimation approaches may respond to their abilities for reproducing 
the market modal shares of the calibration samples. It is well established that when the utility functions 
of a multinomial model contain a constant term by mode the modeled and observed modal shares are 
always the same [24]. This is not the case for the hierarchical logit model when its parameters are 
estimated by ML. Under the ME approach, however, the problem constraints force the market modal 
shares to be reproduced. 
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Figure 5. MSE of ML and ME estimators for parameter value φ = 1/μ = 0.5. 

 

Figure 6. MSE of ML and ME estimators for SVT. 

 
 

To determine the ability of the ML estimators to reproduce the market modal shares in HL models, 
we constructed histograms of DMS, defined as the difference between the modeled and observed 
modal shares (see Figure 7). These differences were estimated for each of the four transportation 
modes. As is apparent from the figure, the ML estimators of the hierarchical logit model do not, on 
average, reproduce the sample modal shares, particularly in small samples. 

It is also evident from Figure 7 that with HL models the ML estimator reproduces the market modal 
shares only asymptotically whereas by construction the ME estimators always reproduce them. In 
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Appendix C we report the DMS distributions for the four transportation modes when φ = 1/μ = 0.2 and 
φ = 1/μ = 0.9. The conclusions are similar for the two cases, but with  φ = 1/μ = 0.9 it is especially 
clear that the ML estimate for the HL model reproduces the modal shares must more accurately. This 
result is to be expected given that a value for the parameter φ closer to 1 implies that the HL model is 
more similar to an MNL one, which always reproduces the observed modal shares when estimated 
with ML. 

Figure 7. Distribution of DMS with ML estimation (φ = 1/μ = 0.5). 

 

3.2. Estimate of Consumer Surplus 

Also of interest is the comparison of the ML and ME estimates of consumer surplus generated by 
our combined destination and mode choice model. This measure of the welfare perceived by the 
transportation system user is expressed by the expected maximum utility (EMU), which is written 
as follows: 

��� −−=−
i,g,a

gi/agi/ai/gi
g,i

i/gi/gi
i,g,a

i/agi/agi plnppNplnpNplnpN 000  (29)

This expression gives the consumer surplus of individual i in group g. The group refers to the 
origin-destination pair representing the trip taken, and since our model is an aggregate one, all 
individuals in a given group have the same utility function agiV  for each mode alternative a. This being 

the case, we have EMUgi = EMUg, and can therefore estimate the average EMU as: 

,

,

ag g
a g

average
ag

a g

t EMU
EMU

t
=

�
�

 (30)



Entropy 2011, 13                            
 

 

1437

where tag is the number of individuals in group g that takes alternative a. We will use average EMU to 
make comparisons with the results generated by the simulations for various sample sizes (the sum of 
the tag will therefore equal the size of the sample from which the parameters that give the EMU 
are estimated).  

The average EMU values estimated for each case using the ML and ME estimators are compared with 
the population parameters used for the simulations in Table 4. The percentage differences between the 
estimated and population parameter values are graphed in Figure 8. It is clear from both the table and the 
figure that the EMU estimates produced by the ML parameters are more biased than those of the  
ME parameters, especially when sample sizes are small, though they both converge asymptotically to 
the true values when the sample size increases. The corresponding results for φ = 1/μ = 0.2 and  
φ = 1/μ = 0.9 are reported in Appendix D, confirming that for all three cases (φ = 0.2, φ = 0.5 and  
φ = 0.9) the ME estimator of average EMU is less biased than the ML one. 

Table 4. Average EMU. 

SAMPLE SIZE SIMULATION ML Δ% ML (*) ME Δ% ME (*) 
500 7.0574 4.7481 32.7% 5.4107 23.3% 

1,000 7.0601 5.5514 21.4% 5.8450 17.2% 
5,000 7.0918 6.6807 5.8% 6.8073 4.0% 
10,000 7.0755 6.8564 3.1% 6.9500 1.8% 
20,000 7.0679 6.9539 1.6% 7.0223 0.6% 

(*) Calculated as the difference between population (simulation) and estimated EMU divided by 
population EMU. 

Figure 8. Percentage differences between population and estimated average EMU (φ = 1/μ = 0.5). 
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3.3. Out-of-Sample Prediction 

To study the behavior of the ML and ME estimators of consumer surplus we varied the travel times 
of the four transportation modes and estimated the resulting changes in average EMU as given by (13). 
The travel time variations consisted in reducing this factor by 10% for all four modes. The results 
obtained are shown for various sample sizes in Figure 9. 

Figure 9. Percentage differences in ΔEMU for a 10% reduction in travel time (φ = 1/μ = 0.5). 
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In every case it can be observed that the ML overestimates EMU to a greater extent than does ME. 
The overestimation effect is particularly significant for the small samples (500 and 1,000 data items), 
which is consistent with Figure 9. The corresponding results for φ = 1/μ = 0.2 and φ = 1/μ = 0.9 are 
reported in Appendix E, confirming that for all three cases (φ = 0.2, φ = 0.5 and φ = 0.9) the ME 
overestimate of ΔEMU is smaller than the ML one. 

4. Conclusions 

In the context of aggregate transportation demand forecasting and land use planning, entropy 
maximization problems are often formulated, mainly because their solutions are the well-known 
multinomial logit and hierarchical logit models. The parameters of these models are normally 
estimated using the maximum likelihood method, but they can also be estimated by solving the entropy 
maximization problems directly. These latter estimators are referred to here as maximum entropy 
estimators. It has long been known (see [1,22]) that both estimation methods lead to the same results if 
the model is multinomial logit. 

This work extended the analysis to the case of aggregate hierarchical logit models. We began by 
formulating a general problem of maximizing the hierarchical entropy and deducing that its solution is 
a hierarchical logit model. We then observed that the maximum entropy estimators were different from 
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the maximum likelihood ones, especially in that the latter do not reproduce either the average values of 
the explanatory variables or the observed market modal shares (of the calibration sample) whereas the 
maximum entropy estimators do reproduce them by construction. 

The two estimators were then subjected to various empirical analyses. The population parameters of 
a relatively general travel demand hierarchical model were estimated using Monte Carlo simulations 
with samples of various sizes. The results obtained showed that the maximum entropy estimator is 
superior to the maximum likelihood estimator, especially for smaller sample sizes. More specifically, 
the maximum entropy estimator exhibited less bias and a smaller mean square error. The reduced bias 
in turn results in underestimations of consumer surplus with maximum likelihood. 

Though similar analyses of other hierarchical structures are required, we may conclude on the basis 
of the results presented here that the maximum entropy approach is a better alternative for estimating 
hierarchical logit aggregate models than the maximum likelihood approach, particularly with small or 
medium-size samples such as those typically used in actual transportation planning processes. 
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Appendices

Appendix A: Microeconomic Interpretation of the Entropy Maximization Dual Problem 

The expected maximum utility (EMUi) of an individual i under a hierarchical logit choice structure 
is given by 
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For the hierarchical logit model, it is known that 
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Multiplying (33) by /g ip  and then summing over g, we obtain 
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Finally, substituting (38) into (36) we obtain 
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Based on (40) we can now formulate the following optimization problem that each individual 
must solve: 
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The optimality conditions for (41) are then 
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Assuming a linear and additive utility function agi k agik
k

V xβ= � for each individual, and given that 

multiple individuals make their optimal decision (based on mixes strategies) simultaneously,  
we demonstrate that the optimization problem (41) is the equivalent problem of the optimization 
problem formulated in Section 2.3. Therefore, the value of the objective function of the latter  
problem at the optimum is the sum over all individuals of their maximum expected utilities from the 
available alternatives. 

Appendix B: Estimates of Bias, Variance and Mean Square Error for Parameter Values
φ = 1/μ = 0.2 and φ = 1/μ = 0.9 

Table 5. Summary of results for ML and ME estimators (φ = 1/μ = 0.2). 

METHOD PARAMETER SAMPLE SIZE BIAS VARIANCE MSE (*) 

ML 

1/μ 500 0.09615 0.00198 0.01122 
1/μ 1,000 0.06589 0.00030 0.00464 
1/μ 5,000 0.00966 0.00011 0.00020 
1/μ 10,000 0.00716 0.00005 0.00010 
1/μ 20,000 0.00274 0.00001 0.00002 

VST 500 1.10301 46.22001 47.43665 
VST 1,000 0.45788 28.97585 29.18551 
VST 5,000 0.23895 3.70613 3.76323 
VST 10,000 0.07104 2.73371 2.73876 
VST 20,000 0.04468 0.91350 0.91550 

ΜΕ 

1/μ 500 0.12461 0.00017 0.01570 
1/μ 1,000 0.05836 0.00048 0.00389 
1/μ 5,000 0.00517 0.00007 0.00010 
1/μ 10,000 0.00410 0.00004 0.00006 
1/μ 20,000 0.00300 0.00003 0.00004 

VST 500 0.81525 5.40041 6.06504 
VST 1,000 0.64647 3.43284 3.85076 
VST 5,000 0.20451 0.28043 0.32226 
VST 10,000 0.09542 0.12176 0.13087 
VST 20,000 0.04107 0.07484 0.07653 

(*) Defined as the sum of the variance and the square of the bias. 
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Table 6. Summary of results for ML and ME estimators (φ = 1/μ = 0.9). 

METHOD PARAMETER SAMPLE SIZE BIAS VARIANCE MSE (*) 

ML 

1/μ 500 0.22624 0.00432 0.05550 
1/μ 1,000 0.12514 0.00285 0.01851 
1/μ 5,000 0.03456 0.00049 0.00168 
1/μ 10,000 0.01835 0.00033 0.00067 
1/μ 20,000 0.01331 0.00016 0.00034 

VST 500 1.27926 28.32571 29.96221 
VST 1,000 1.16837 11.69802 13.06312 
VST 5,000 0.12918 1.92596 1.94265 
VST 10,000 0.08153 0.96521 0.97186 
VST 20,000 0.05641 0.38886 0.39204 

ΜΕ 

1/μ 500 0.23444 0.00784 0.06280 
1/μ 1,000 0.09184 0.00452 0.01296 
1/μ 5,000 0.01017 0.00074 0.00084 
1/μ 10,000 0.00754 0.00027 0.00032 
1/μ 20,000 0.00450 0.00016 0.00018 

VST 500 0.70652 5.28093 5.78010 
VST 1,000 0.65276 2.30125 2.72735 
VST 5,000 0.16269 0.18473 0.21119 
VST 10,000 0.09341 0.09402 0.10275 
VST 20,000 0.00434 0.00270 0.00272 

(*) Defined as the sum of the variance and the square of the bias. 

Appendix C: Distribution of DMS with ML Estimation for Parameter Values φ = 1/μ = 0.2 and
φ = 1/μ = 0.9 

Figure 10. Distribution of DMS with ML estimation (φ = 1/μ = 0.2). 
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Figure 11. Distribution of DMS with ML estimation (φ = 1/μ = 0.9). 

 

Appendix D: Estimates of EMU for Parameter Values φ = 1/μ = 0.2 and φ = 1/μ = 0.9 

Table 7. Average EMU (φ = 1/μ = 0.2). 

SAMPLE SIZE SIMULATION ML Δ% ML (*) ME Δ% ME (*) Δ% ML/ME (**)
500 3.4436 1.7934 47.9% 2.1346 38.0% 26.1% 

1,000 3.4765 2.3030 33.8% 2.5821 25.7% 31.2% 
5,000 3.4075 3.2077 5.9% 3.2767 3.8% 52.8% 
10,000 3.4228 3.2882 3.9% 3.3239 2.9% 36.1% 
20,000 3.4205 3.3780 1.2% 3.3936 0.8% 58.1% 
(*) Calculated as the difference between population (simulation) and estimated EMU divided by 
population EMU; (**) Calculated as the ratio of Δ% MV to Δ% ME minus 1. 

Table 8. Average EMU (φ = 1/μ = 0.9). 

SAMPLE SIZE SIMULATION ML Δ% ML (*) ME Δ% ME (*) Δ% ML/ME (**)
500 11.7592 8.8470 24.8% 9.6120 18.3% 35.6% 

1,000 11.7305 10.0668 14.2% 10.6354 9.3% 51.9% 
5,000 11.7876 11.3636 3.6% 11.5302 2.2% 64.8% 
10,000 11.7835 11.5360 2.1% 11.6765 0.9% 131.2% 
20,000 11.7728 11.6164 1.3% 11.6959 0.7% 103.3% 
(*) Calculated as the difference between population (simulation) and estimated EMU divided by 
population EMU; (**) Calculated as the ratio of Δ% MV to Δ% ME minus 1. 
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Appendix E: Estimates of ΔEMU for a 10% Reduction in Travel Time for the Parameters  
φ = 1/μ = 0.2 and φ = 1/μ = 0.9 

Figure 12. Percentage differences in ΔEMU for a 10% reduction in travel time (φ = 1/μ = 0.2). 

 

Figure 13. Percentage differences in ΔEMU for a 10% reduction in travel time (φ = 1/μ = 0.9). 
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