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Abstract: We investigate the dynamical behavior of the atom-photon entanglement in a  
V-type three-level quantum system using the atomic reduced entropy. It is shown that an 
atom and photons are entangled at the steady-state; however disentanglement can also be 
achieved in an special condition. It is demonstrated that in the presence of quantum 
interference induced by spontaneous emission, the reduced entropy and the atom-photon 
entanglement are phase-dependent. A non-stationary solution is also obtained when the 
quantum interference due to the spontaneous emission is completely included. 
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1. Introduction 

Quantum correlation between different parts of a system leads to an important quantum 
phenomenon known as entanglement. Entanglement allows having a much closer relationship than is 
possible in classical physics. A system consisting of two components is said to be entangled if  
its quantum state cannot be described by a simple product of the quantum states of the two  
components [1]. Under this circumstance measurement on the one of them gives information about 
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other component. For a bicomponent system in a pure state, it has been shown that the reduced 
quantum entropy is the best tool for measure the degree of entanglement between two components [2]. 
The higher reduced quantum entropy means the higher degree of entanglement.  

In bicomponent systems the entanglement can be established between two particles or between the 
particle and the field. The Einstein-Podolsky-Rosen (EPR) state [3] is an interesting example of  
two-particle components entanglement which can be used in secure quantum communication  
prescript [4]. Note that quantum entanglement can also be generated in a system with three or more 
components [5]. Quantum entanglement is the basic concept of the quantum information processes, 
such as quantum computing [6], quantum teleportation [7], quantum cryptography [8] and quantum 
communication [9]. The atom-photon entanglement has been studied in atomic cascade systems [10,11] 
as well as in trapped ions [12,13]. The observation of the quantum entanglement between a single 
trapped 87Rb atom and a single photon at a wavelength suitable for low-loss communication has been 
reported [14]. 

Theoretical description of entanglement evolution between atom and quantized field in the  
Jaynes-Cummings model has been proposed [15–19]. However, it was shown that the induced 
entanglement between two interacting two-level quantum systems can be controlled by the relative 
phase of applied fields [20]. In another study it was shown that the atom-photon entanglement near a 
3D anisotropic photonic band edge depends on the relative phase of applied fields [21].

Generally, the entanglement can be controlled by the initial condition of the atomic states. Atomic 
coherence and quantum interference are the basic mechanisms for controlling the optical properties of 
the medium. In fact, the discovery of electromagnetically induced transparency has opened up a new 
rote to control the optical properties of atom-photon coherent interaction [22,23]. Quantum 
interference induced by spontaneous emission, however, can modify the response of atom-photon 
entanglement. Vacuum induced coherence, i.e., spontaneously generated coherence (SGC) [24], can 
also make the system phase dependent [25]. Various schemes have been proposed for phase control of 
optical properties such as like light propagation [26], transient behavior of the medium [27,28], probe 
gain [29,30], and phase dependent of resonance fluorescence spectrum [31]. 

Recently, two of the present authors, with collaborators, have investigated the dynamical behavior 
of the dispersion and the absorption in a V-type three-level atomic system in the presence of quantum 
interference induced by the spontaneous emission. It was shown that in the presence of decay-induced 
interference the probe dispersion and absorption are completely phase-dependent [32]. 

The effect of quantum interference on the entanglement of a driven V-type three-level atom and its 
spontaneous emission field were investigated by using the concept of quantum entropy [33]. He has 
shown that for appropriate atomic parameters they can be entangled or disentangled at the steady-state. 
In this paper, we investigate the phase-dependent atom-photon entanglement in a V-type three-level 
atomic system in the presence of the quantum interference due to the spontaneous emission.  
It is demonstrated that such entanglement can be controlled just by changing the relative phase of 
applied fields. In addition, we found that under the special condition the atom and photons  
become disentangled. 
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2. Model and Equations

Consider a three-level V-type atomic system (Figure 1a) with a ground state 1 , and two  
excited-states 2 , 3 . The quantum system is coupled by two classical fields. The left field 

cceeEE LRR rKti
LLL .).( += +−− ϕω ����

 with frequency Lω  and Rabi frequency LΩ  drives the transition 

31 → , and other right field, cceeEE RRR rKti
RRR .ˆ ).( += +−− ϕω ���

 with frequency Rω  and Rabi frequency 

RΩ  is applied to the transition 21 → . Here, )( RL EE  and )ˆ(ˆ RL ee  are the amplitude, and the 
polarization of the left (right) classical laser field, while )( RL ωω , )( RL kk

��
 and )( RL ϕϕ  are the 

frequency, wave vector, and initial phase of left (right) classical laser field. The parameters 212γ  and 
312γ  denote the spontaneous decay rates from excited-states 2  and 3  to ground state 1 ,

respectively. Also 31ωω −=Δ LL , 21ωω −=Δ RR  are one-photon detuning of the two fields. Such a 
system, with a single ground state and a closely spaced excited doublet (e.g., two near-degenerate 
states), is damped by the usual vacuum interactions, so the two decay pathways from the excited 
doublet to the ground state are not independent. The system decays from the upper states doublet to a 
lower state via spontaneous emission leading to the quantum interference, i.e., spontaneously 
generated coherence (SGC) [24]. 

In the following, we consider the sodium 2D transition as a realistic example. The decay rate of 
transition is MHz79.92 ×= πγ . The right field RΩ  is applied to the 2/1

2
2/1

2 33 PS −  transition, while 
the left field LΩ  is applied to the 2/3

2
2/1

2 33 PS −  transition. For such a transition we 
have MHz8.152.032 ≅= γω . Note that the two upper levels are near-degenerate, so the quantum 

interference due to the spontaneous emission can be induced [32]. 

Figure 1. (a) A V-type three-level atom driven by two laser fields with corresponding Rabi 
frequencies RΩ , LΩ ; (b) The arrangement of field polarization required for a single field 
driving one transition if dipoles are nonorthogonal. 

The interaction Hamiltonian describing the dynamics of the system in the dipole and rotating-wave 
approximations and rotating frame is given by: 

..}312133)(22)(11{ **
111 cHH ee LR i

L
i

RLLRR +Ω−Ω−Δ−++Δ−++= ϕϕωωωωω� (1)
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The density matrix equations of motion for the atomic variables can be written as: 
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where LR ϕϕϕ −=  and LL ωωδ −=  are the relative phase and the relative frequency of the driving 
fields, respectively. 

The strength of the quantum interference resulting from the cross coupling between the transitions 
12 →  and 13 →  is measured by the parameter θcos/. 31213121 == ddddKc

����
, where 21d

�
 and 31d

�

are the dipole moments of the corresponding transitions and θ  is the angle between the two induced 
dipole moments as shown by Figure 1b. The effects of quantum interference are sensitive to the 
orientations of the atomic dipole moments. For parallel dipole moments, the interference effect is 
maximal and 1=cK , while for perpendicular dipole moments, 0=cK , and the quantum interference 
disappears. Note that the relative phase appears through equations via the parameter cK . So, in 
Equation (2), the effect of relative phase of applied fields appear in all terms contain cK . Then the 
solutions of these equations for 0≠cK  are phase-dependent.  

Now, we seek the corresponding steady state analytical solution for elements of density matrix for 
the weak Rabi-frequencies and 0Ω=Ω=Ω LR . The population and coherence terms of density matrix 
for 0.13121 === γγγ , 0=Δ=Δ LR  are given by: 
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All expressions in Equation (3) are defiantly phase-dependent. 

3. Entanglement and Entropy 

A bicomponent system is described by a density matrix of a (C m ⊗C n ) Hilbert space. The partial 
density matrix of one part is obtained by tracing over other [34]: 

).()()( ABABBA Tr ρρ =       (4) 
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A bipartite quantum system is considered separable, if it can be written as: 

,BAAB ρρρ ⊗=  (5) 

where )(BAρ  are the individual partial density matrixes. If the system can not satisfy Equation (5), it is 

said to be entangled. The atom-field quantum entanglement can be discussed by using Von Neumann 
entropy which is defined as [35]: 

),ln( ρρTrS −=       (6) 

where ρ  is the density matrix operator. For a pure state the entropy is vanished while for a mixture 
state is nonzero. We assume that the quantum entropy of total system is zero corresponding to a pure 
state, while the partial entropy of subsystem varies with time. According to the triangle inequality [36]: 

,)()()()()( tStStStStS FAAFFA +≤≤−     (7) 

For a closed system that starts in a pure state, partial entropies of the field and atom are equal at all 
times after beginning of interaction between two subsystems. Then our information about the entropy 
of each subsystems leads to the entanglement between the subsystems. Phoenix and Knight [37,38] 
have shown that, under these circumstances a decrease in partial entropy means that each subsystem 
evolves toward a pure quantum state, whereas a rise in partial entropy means that the two components 
tend to lose their individuality and become correlated or entangled. The degree of entanglement 
(DEM) for atom-field entanglement is defined as: 

3

1
( ) lnA F j j

j
DEM t S S λ λ

=

= = = −�      (8)

4. Results and Discussion

We now summarize our results for the steady state behavior of the system in Equations (1)–(5). For 
simplicity, all parameters are reduced to dimensionless units through scaling by γγγ == 3121 and all 
figures are plotted in the unit of γ . We assume the applied fields have a same frequency. 

We first investigate the effect of quantum interference due to the spontaneous emission on phase 
control of the quantum entropy. In Figure 2, we display the time dependent behavior of the quantum 
entropy for different relative phase of applied fields. The using parameters are γ1.0=Ω=Ω LR ,

0.0=δ , γ0.0=Δ=Δ LR  (left column), γ0.2=Δ=Δ LR  (right column), 0=ϕ  (solid), 6/πϕ =  (dashed), 
3/4πϕ =  (dotted) and (a, d) 0=cK , (b, e) 5.0=cK , (c, f) 99.0=cK . An investigation on Figure 2 

shows that in the absence of quantum interference due to the spontaneous emission, the quantum 
entropy is phase-independent, while by including the effect of quantum interference, the entropy 
changes by the changing of relative phase of applied fields. Moreover, in Figures 2c,f for 0=ϕ  the 
quantum entropy vanishes which corresponds to the disentanglement. By comparing Figures 2a–c for 
different values of cK , we observe that the quantum interference between two spontaneous emissions 
has a major role in establishing the atom-photon entanglement.  

On the other hand, comparing the left and right columns in Figure 2 shows that by increasing the 
detuning of external applied field, the entropy decreases. To investigate the effect of one-photon 
transition on atom-photon entanglement, we plot the steady state entropy versus detuning of applied 
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fields for different values of cK in Figure 3. The selected parameters are same as in Figure 2. The 
maximum entanglement is occurred in one-photon resonance condition. 

In Figure 4, we show the steady state quantum entropy versus the relative phase of applied fields for 
two cases of one-photon resonance (a) and beyond it (b). It is clear that in the presence of quantum 
interference, the steady state entropy changes with respect to the relative phase of applied fields (solid 
and dashed lines), while in the absence of quantum interference the entanglement is phase-independent 
(dotted). Moreover, in one-photon resonance condition and for 99.0=cK , 0=ϕ , the steady state 
quantum entropy becomes zero. An investigation on Figure 4a and Figure 4b shows that, beyond exact 
one-photon resonance condition, the DEM of the system is negligible. 

It is worth to note that in the absence of quantum interference due to the spontaneous emission, 
(dotted line in Figure 4) the steady state quantum entropy becomes zero for all values of relative 
phases. Then the quantum interference has a major role in establishing the atom-photon entanglement 
in a V-type three-level atomic system.

Figure 2. Time dependent behavior of the quantum entropy for different relative phase of 
applied fields. The selected parameters are ,,1 3121 γγγγ === ,1.0 γ=Ω=Ω LR ,0.0 γδ =

γ0.0=Δ=Δ LR (left column), γ0.2=Δ=Δ LR (right column), 0=ϕ (solid), 6πϕ = (dashed),
34πϕ = (dotted), (a, d) 0=cK ; (b, e) 5.0=cK ; and (c, f) 99.0=cK .
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Figure 3. The quantum entropy versus detuning. The using parameters are ,131 == γγ
γδγγγ 0.0,1.0,0.121 ==Ω=Ω= LR , (a) 0=cK ; (b) 5.0=cK ; (c) 99.0=cK , for 0=ϕ (Solid), 

6πϕ = (Dashed), 34πϕ = (Dotted), Δ=Δ=Δ LR .
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Figure 4. Cont.
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The Rabi frequency of applied fields is another important parameter for controlling the steady state 
quantum entropy. In Figure 5, we include the effect of quantum interference due to the spontaneous 
emission and display the steady state quantum entropy versus the relative Rabi frequency LR ΩΩ=Ω / ,
for 0=ϕ , 99.0=cK , γ0.0=Δ=Δ LR (solid), 2.0 γ  (dashed), 4.0 γ  (dotted), and 6.0 γ  (dash-dotted). 
The interesting disentanglement phenomena appears for 99.0=cK , when the relative phase of applied 
fields is 0=ϕ , and the ratio of two Rabi frequencies of applied fields is 1=Ω  [35–37]. 

To explain the physical mechanism of such disentanglement, we represent the population behavior 
of atomic levels versus the relative phase (left column) and the relative Rabi frequencies of applied 
fields (right column) in Figure 6. The parameters are same as in Figure 5. An investigation on the left 
column of Figure 6 shows that the disentanglement occurs when all of population is populated in 
ground state 1 . A similar effect appears in the right column. When the one-photon resonance 
condition is fulfilled (solid lines), just for 0=ϕ , all the population remains in the ground state, 
otherwise the population is distributed in all of three levels of atomic system. 

Figure 5. We display the steady state quantum entropy versus the relative Rabi frequency, 
LR ΩΩ=Ω , for ,0=ϕ 99.0=cK , γ0.0=Δ=Δ LR (solid), 2.0 γ (dashed), 4.0 γ (dotted),

6.0 γ  (dash-dotted). 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Ω

St
ea

dy
 S

ta
te

 E
nt

ro
py

Δ = 0.0γ
Δ = 2.0γ
Δ = 4.0γ
Δ = 6.0γ



Entropy 2011, 13 1549

Figure 6. The population of atomic levels is shown versus the relative phase (left column) 
and the relative Rabi frequencies (right column) of applied fields. The parameters are 

γ0.0=Δ=Δ LR (Solid), 2.0γ (Dashed), 4.0γ (dotted), 6.0γ  (Dash-dotted), and 99.0=cK .

As we have mentioned in the Figure 6, for disentanglement conditions, the population of excited 
states is negligible and then the steady state entropy becomes zero. We show this point in Figure 7 
which is plotted by using the analytical results of Equation (3). The analytical solutions are in a good 
agreement with our numerical results. 

Finally, let us focus on a special and interesting case in which entanglement is non-stationary. In 
this case, it is shown that one of the eigenvalues of density matrix is zero [39]. Then for calculation of 
the quantum entropy, according to Equation (8), it is necessary to note that 0

lim ln 0
x

x x
→

= . To  

explain the physics of phenomena, let us introduce the new bases 1 , 2/)32( +=ψ and 
2/)32( −=φ . The density matrix Equation (2) in these bases can be written as:  
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Figure 7. The quantum entropy versus relative phase of applied fields for 1=γ , and 
relative Rabi frequency Ω with 99.0=cK , for γ1.0=Ω L , and γ0.0=Δ=Δ LR .
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For our interesting case ,0.1=cK ,πϕ = 0Ω=Ω=Ω LR  and ,1)0(11 =ρ  Equation (9) converts to the 
simple following expressions: 
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The analytical solutions of Equation (10) are given by ,0)( =tφφρ�
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These equations imply that the proposed three-level scheme reduce to a two-level quantum system 
with simple oscillatory behavior. The population of levels 1  and ψ  show the oscillatory behavior, 
however the level ϕ  is decoupled and then the corresponding population is zero and the density 
matrix is converted to a 22×  matrix. The corresponding eigenvalues are given by: 

.
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Then such oscillatory eigenvalues apply an oscillatory dynamical behavior to the quantum entropy. 
In this special case no stationary solution can be found for the entanglement of the system. 

5. Conclusion and Perspectives

We have investigated the effect of quantum interference due to the spontaneous emission on the 
dynamical behavior of atom-photon entanglement in a V-type three-level quantum system by using the 
atomic reduced entropy. It is shown that in the presence of quantum interference of spontaneous 
emission the entanglement of the atom-photon can be controlled either in intensity or by the relative 
phase of applied fields. Moreover, it is demonstrated that for the special parameters, disentanglement 
occurs in this system. 
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