
Entropy 2011, 13, 1708-1729; doi:10.3390/e13091708
OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

An Artificial Bee Colony Algorithm for the Job Shop Scheduling
Problem with Random Processing Times
Rui Zhang 1,⋆ and Cheng Wu 2

1 School of Economics and Management, Nanchang University, Nanchang 330031, China
2 Department of Automation, Tsinghua University, Beijing 100084, China;

E-Mail: wuc@tsinghua.edu.cn

⋆ Author to whom correspondence should be addressed; E-Mail: r.zhang@ymail.com;
Tel.: +86-13687918983; Fax: +86-791-83969463.

Received: 13 July 2011; in revised form: 9 September 2011 / Accepted: 9 September 2011 /
Published: 19 September 2011

Abstract: Due to the influence of unpredictable random events, the processing time of each
operation should be treated as random variables if we aim at a robust production schedule.
However, compared with the extensive research on the deterministic model, the stochastic
job shop scheduling problem (SJSSP) has not received sufficient attention. In this paper, we
propose an artificial bee colony (ABC) algorithm for SJSSP with the objective of minimizing
the maximum lateness (which is an index of service quality). First, we propose a performance
estimate for preliminary screening of the candidate solutions. Then, the K-armed bandit
model is utilized for reducing the computational burden in the exact evaluation (through
Monte Carlo simulation) process. Finally, the computational results on different-scale test
problems validate the effectiveness and efficiency of the proposed approach.

Keywords: shop scheduling; artificial bee colony algorithm; maximum lateness; simulation

1. Introduction

The job shop scheduling problem (JSSP) has been known as an extremely stubborn combinatorial
optimization problem since the 1950s. In terms of computational complexity, JSSP is NP-hard in the
strong sense [1]. It models an important decision problem in contemporary manufacturing systems,
so extensive research has been conducted on JSSP. Due to its high complexity, the recent research



Entropy 2011, 13 1709

has focused on the meta-heuristic approaches, such as genetic algorithm (GA) [2], estimation of
distribution algorithm (EDA) [3], tabu search (TS) [4], particle swarm optimization (PSO) [5], ant colony
optimization (ACO) [6], artificial bee colony (ABC) algorithm [7].

However, most existing research is based on the standard JSSP model, which means it is impossible
to directly apply these algorithms in real-world scheduling scenarios. Especially, we emphasize the
following two points.

(1) Most research on JSSP has focused on the makespan criterion (i.e., minimizing the maximum
completion time). However, in the make-to-order (MTO) manufacturing environment, due date
related performances are apparently more relevant for decision makers, because the in-time
delivery of goods is vital for maintaining a high service reputation. Therefore, the research that
aims at minimizing lateness/tardiness in JSSP deserves more attention.

(2) Most existing algorithms are designed for the deterministic JSSP, in which all the data (e.g., the
processing times) are assumed to be fixed and precisely known in advance. In real-world
manufacturing, however, the processing of operations is constantly affected by uncertain factors.
Machine breakdowns, worker absenteeism, order changes, etc. can all lead to variations in the
operation times. In this case, solving the deterministic JSSP will not result in a robust production
schedule. Therefore, it is rewarding to focus more research effort on the stochastic JSSP.

In an attempt to overcome the drawbacks, in this paper we study the stochastic job shop scheduling
problem (SJSSP) with the objective of minimizing maximum lateness (Lmax) in the sense of expectation.
Compared with the standard JSSP, the studied SJSSP moves a step closer to the practical scheduling
features. The main contribution of this paper is an efficient optimization approach based on artificial bee
colony for solving SJSSP. The algorithm first uses a quick-and-dirty performance estimate to roughly
evaluate the candidate solutions. Then, the selected promising solutions undergo a more accurate
evaluation through simulation. In this process, a new computing budget allocation policy is adopted
in order to promote the computational efficiency.

The rest of the paper is organized as follows. Section 2 briefly reviews the recent publications on
stochastic job shop scheduling and artificial bee colony algorithms. Section 3 provides the formulation
of SJSSP and an introduction to the standard ABC principles. Section 4 introduces an estimate for the
objective function (maximum lateness). Section 5 describes the design of ABC for SJSSP in detail.
Section 6 gives the computational results. Finally, some conclusions are made in Section 7.

2. Literature Review

2.1. The Stochastic Job Shop Scheduling Problem

Due to the inevitable uncertainties in manufacturing systems, SJSSP is more realistic than its
deterministic counterpart. In SJSSP, the number of jobs is usually known in advance, while the
processing time of each operation is a random variable with known probability distribution. The due
dates can be regarded as either fixed or random variables, depending on the frequency of changes in
customer orders. The aim is to find a feasible schedule (i.e., sequence of operations) that minimizes the
objective function in the sense of expectation.



Entropy 2011, 13 1710

In [8,9], simulation-based GAs are proposed for solving SJSSP with the expected makespan criterion.
The individuals that appear through the generations with very high frequency are selected as good
solutions. In [10], the authors study the SJSSP with just-in-time objective (completion before or after
the due date will both result in a cost). Several decision-making rules are proposed for selecting a
job when several jobs are competing for a machine. In [11], the goal is to minimize the processing
time variations, the operational costs and the idle costs in SJSSP. A hybrid method is proposed, in
which the initial solutions are first generated by a neural network and then improved by SA. Luh et
al. [12] presents an algorithm based on Lagrangian relaxation and stochastic dynamic programming for
SJSSP with uncertain arrival times, due dates, and part priorities. In [13], exact and heuristic algorithms
are proposed to solve SJSSP with mean flow time criterion. The aim is to find a minimum set of
schedules which contains at least one optimal schedule for any realization of the random processing
times. Singer [14] presents a heuristic which amplifies the expected processing times by a factor
and then applies a deterministic scheduling algorithm. Recently, Lei proposes a genetic algorithm for
minimizing makespan in a stochastic job shop with machine breakdowns and non-resumable jobs [15].
The processing time, the downtime and the normal operation time between successive breakdowns are all
assumed to follow exponential distributions. In addition, a multi-objective genetic algorithm is proposed
in [16] for stochastic job shop scheduling problems in which the makespan and the total tardiness ratio
should be minimized. In [17,18], quantum genetic algorithms are proposed to solve SJSSP with expected
makespan criterion. In [19], a simulation-based decision support system is presented for the production
control of a stochastic flexible job shop manufacturing system. In [20], an algorithm based on computer
simulation and artificial neural networks is proposed to select the optimal dispatching rule for each
machine from a set of rules in order to minimize the makespan in SJSSP.

Generally, the most critical factor that affects the efficiency of solving a stochastic combinatorial
optimization problem (SCOP) is the evaluation of solutions [21]. Since the objective function is in the
expectation form, the evaluation may not be so straightforward if no closed-form formula is available
for calculating the expectation. Due to the complexity of the job shop model, we have to rely on Monte
Carlo simulations to obtain an approximation for the expected Lmax. However, the simulation process
is usually very time-consuming. To achieve a balance, we propose an artificial bee colony algorithm for
solving SJSSP in this paper. Time-saving strategies have been designed and utilized in the searching
process in order to ensure a satisfactory solution within reasonable computational time.

2.2. The Artificial Bee Colony Algorithm

The artificial bee colony (ABC) algorithm is a relatively new swarm intelligence based optimizer. It
mimics the cooperative foraging behavior of a swarm of honey bees [22]. ABC was initially proposed
by Karaboga in 2005 for optimizing multi-variable and multi-modal continuous functions [23]. The
latest research has revealed some good properties of ABC [24–26]. Especially, the number of control
parameters in ABC is fewer than that of other population-based algorithms, which makes it easier to
be implemented. Meanwhile, the optimization performance of ABC is comparable and sometimes
superior to the state-of-the-art meta-heuristics. Therefore, ABC has aroused much interest and has been
successfully applied to different kinds of optimization problems [27–29].



Entropy 2011, 13 1711

The ABC algorithm systematically incorporates exploration and exploitation mechanisms, so it is
suitable for complex scheduling problems. For example, Huang and Lin [30] proposed a new ABC
for the open shop scheduling problem, which is more difficult to solve than JSSP due to the undecided
precedence relations between job operations. In this paper, we will use ABC as the basic optimization
framework in the process of solving SJSSP. To our knowledge, this is the first attempt that ABC is applied
to a stochastic scheduling problem. Of course, some problem-specific information should be embedded
into the searching process of ABC in order to promote the overall optimization efficiency for SJSSP.

3. The Preliminaries

3.1. Formulation of the SJSSP

In an SJSSP instance, a set of n jobs {Jj}nj=1 are to be processed on a set of m machines {Mk}mk=1

under the following basic assumptions: (1) there is no machine breakdown; (2) no preemption of
operations is allowed; (3) all jobs are released at time 0; (4) the transportation times and the setup times
are all neglected; (5) each machine can process only one job at a time; (6) each job may be processed by
only one machine at a time.

Each job has a fixed processing route which traverses all the machines in a predetermined order.
The manufacturing process of job j on machine k is noted as operation Ojk. Besides, a preset due
date dj (describing the level of urgency) is given for each job j. The duration of an operation is
influenced by many real-time factors such as the condition of workers and machines. Therefore, in the
scheduling stage, the processing time of each operation is usually not known exactly. We assume that the
processing times (pjk, for each Ojk) are independent random variables with known expectation (E (pjk))
and variance (var (pjk)). The objective function is the expected maximum lateness (Lmax). If we use Cj

to denote the completion time of job j, then Lmax is defined as maxnj=1{Cj − dj}. We consider Lmax

because due date related performances are becoming very significant in the make-to-order manufacturing
environment nowadays.

Like its deterministic counterpart, SJSSP can also be described by a disjunctive graph
G(O,A,E) [31]. O = {Ojk|j = 1, . . . , n, k = 1, . . . ,m} is the set of nodes. A is the set of conjunctive
arcs which connect successive operations of the same job, so A describes the technological constraints
in the SJSSP instance. E =

∪m
k=1 Ek is the set of disjunctive arcs, where Ek denotes the disjunctive

arcs corresponding to the operations on machine k. Each arc in Ek connects a pair of operations to be
processed by machine k and ensures that the two operations should not be processed simultaneously.
Initially, the disjunctive arcs do not have fixed directions, unlike the conjunctive arcs in A.

Under the disjunctive graph representation, finding a feasible schedule for the SJSSP is equivalent to
orienting all the disjunctive arcs so that no directed cycles exist in the resulting graph. In this paper, we
use σ to denote the set of directed disjunctive arcs which is transformed from the original E. Thus, if
A ∪ σ is acyclic, the schedule corresponding to σ is feasible [32].

Example 1. Figure 1(a) shows the disjunctive graph for a 3 × 3 instance. The solid lines represent the
conjunctive arcs while the dashed lines with bidirectional arrows express the disjunctive arcs.



Entropy 2011, 13 1712

Figure 1. A concrete example for the disjunctive graph representation of SJSSP.

O11 O12 O13

O21 O23 O22

O32 O31 O33

arcs in A arcs in E

(a) An example disjunctive graph

O11 O12 O13

O21 O23 O22

O32 O31 O33

arcs in A arcs in ¾

(b) A feasible schedule

Figure 1(b) shows a feasible schedule σ for this problem. The dashed lines with fixed orientations
represent the directed disjunctive arcs (the redundant arcs have been omitted). Clearly, there is no cycle
in the graph. The schedule can be written in the matrix form as

σ =

 O21 O11 O31

O12 O22 O32

O23 O13 O33


where the k-th row specifies the resolved disjunctive arcs related with machine k (k = 1, 2, 3).

Based on the disjunctive graph model, the discussed SJSSP can be mathematically formulated as
follows: 

min E (Lσ
max) = E

[
n

max
j=1

{
tjkj + pjkj − dj

}]
s.t.

tjk + pjk ≤ tjk′ a.e. ∀ (Ojk, Ojk′) ∈ A, (a)
tjk + pjk ≤ tj′k a.e. ∀ (Ojk, Oj′k) ∈ σ, (b)
tjk ≥ 0 a.e. j = 1, . . . , n, k = 1, . . . ,m. (c)

In this formulation, (x)+ = max{x, 0}. tjk represents the starting time of operation Ojk. kj denotes
the index of the machine that processes the last operation of job j, so the completion time of job j is
tjkj + pjkj . Constraint (a) ensures that the processing order of the operations from each job is consistent
with the technological routes. Constraint (b) ensures that the processing order of the operations on each
machine complies with the sequence specified by the schedule, σ.

When a feasible schedule σ is given, a minimum Lσ
max can be achieved for each realization of {pjk}.

Since {pjk} are random variables, {tjk} and Lσ
max are also random variables. Therefore, the objective

function is expressed in the form of expectation, and constraints (a–c) should hold almost everywhere
(a.e.). The aim of solving SJSSP is to find a schedule σ with the minimum E (Lσ

max).



Entropy 2011, 13 1713

3.2. Principles of the Artificial Bee Colony (ABC) Algorithm

In the ABC algorithm, the artificial bees are classified into three groups: the employed bees, the
onlookers and the scouts. A bee that is exploiting a food source is classified as employed. The employed
bees share information with the onlooker bees, which are waiting in the hive and watching the dances
of the employed bees. The onlooker bees will then choose a food source with probability proportional
to the quality of that food source. Therefore, good food sources attract more bees than the bad ones.
Scout bees search for new food sources randomly in the vicinity of the hive. When a scout or onlooker
bee finds a food source, it becomes employed. When a food source has been fully exploited, all the
employed bees associated with it will abandon the position, and may become scouts again. Therefore,
scout bees perform the job of “exploration”, whereas employed and onlooker bees perform the job of
“exploitation”. In the algorithm, a food source corresponds to a possible solution to the optimization
problem, and the nectar amount of a food source corresponds to the fitness of the associated solution.

In ABC, the first half of the colony consist of employed bees and the other half are onlookers. The
number of employed bees is equal to the number of food sources (SN ) because it is assumed there is
only one employed bee for each food source. Thus, the number of onlooker bees is also equal to the
number of solutions under consideration. The ABC algorithm starts with a group of randomly generated
food sources. The main procedure of ABC can be described as follows.

Step 1: Initialize the food sources.
Step 2: Each employed bee starts to work on a food source.
Step 3: Each onlooker bee selects a food source according to the nectar information shared by

the employed.
Step 4: Determine the scout bees, which will search for food sources in a random manner.
Step 5: Test whether the termination condition is met. If not, go back to Step 2.

The detailed description for each step is given below.

(1) The initialization phase. The SN initial solutions are randomly-generated D-dimensional real
vectors. Let xi = {xi,1, xi,2, . . . , xi,D} represent the i-th food source, which is obtained by

xi,d = xmin
d + r × (xmax

d − xmin
d ), d = 1, . . . , D (1)

where r is a uniform random number in the range [0, 1], and xmin
d and xmax

d are the lower and upper
bounds for dimension d, respectively.

(2) The employed bee phase. In this stage, each employed bee is associated with a solution. She exerts
a random modification on the solution (original food source) for finding a new solution (new food
source). This implements the function of neighborhood search. The new solution vi is generated
from xi using a differential expression:

vi,d = xi,d + r′ × (xi,d − xk,d) (2)

where d is randomly selected from {1, . . . , D}, k is randomly selected from {1, . . . , SN} such
that k ̸= i, and r′ is a uniform random number in the range [−1, 1].



Entropy 2011, 13 1714

Once vi is obtained, it will be evaluated and compared to xi. If the fitness of vi is better than that
of xi (i.e., the nectar amount of the new food source is higher than the old one), the bee will forget
the old solution and memorize the new one. Otherwise, she will keep working on xi.

(3) The onlooker bee phase. When all employed bees have finished their local search, they share
the nectar information of their food source with the onlookers, each of whom will then select a
food source in a probabilistic manner. The probability pi by which an onlooker bee chooses food
source xi is calculated as follows:

pi =
fi∑SN
i=1 fi

where fi is the fitness value of xi. Obviously, the onlooker bees tend to choose the food sources
with higher nectar amount.
Once the onlooker has selected a food source xi, she will also conduct a local search on xi

according to Equation (2). As in the previous case, if the modified solution has a better fitness,
the new solution will replace xi.

(4) The scout bee phase. In ABC, if the quality of a solution cannot be improved after a predetermined
number (limit) of trials, the food source is assumed to be abandoned, and the corresponding
employed bee becomes a scout. The scout will then produce a food source randomly by using
Equation (1).

To facilitate the understanding of the algorithm, a flow chart [33] is provided as Figure 2.

4. An Estimate for the Expected Maximum Lateness

In the studied SJSSP, the objective function is expressed as an expectation because the processing
times are random variables. Meanwhile, due to the NP-hardness of JSSP, there does not exist a
closed-form expression to calculate the expected objective value. Therefore, the evaluation of a given
schedule is not a simple task. Usually, we can utilize the idea of Monte Carlo simulation, i.e., taking the
average objective value in a large number of realizations as an estimate for the expectation. However,
this definitely increases the computational burden, especially when used in an optimization framework
(frequent solution evaluations are needed).

If there is no strict requirement on the evaluation accuracy, it is natural to think of a time-saving
strategy: cut down the number of realizations. Furthermore, if we allow only one realization of the
random processing times, then a rational choice is to use the mean (expected) value of each processing
time. Then, we can show the following property, that is, such an estimate is a lower bound of the true
objective value.

Theorem 1. Let σ denote a feasible schedule of the considered SJSSP instance. The following inequality
must hold:

E (Lσ
max) ≥ L

σ

max

where Lσ
max (random variable) is the maximum lateness corresponding to the schedule, and L

σ

max

(constant value) is the maximum lateness in the case where each random processing time takes the
value of its expectation.



Entropy 2011, 13 1715

Figure 2. Flow chart of the ABC algorithm.

Initial food positions

Calculate the nectar 

amount

Determine neighbors of the 

chosen food sources by the 

employed bees

Calculate the nectar 

amount

Selection

All onlookers distributed?

Memorize the position 

of best food source

Find the abandoned 

food sources

Produce new positions 

for the abandoned food 

sources

Termination criterion met?

Final food positions

Y

Y

N

Determine a neighbor of the 

chosen food source by the 

onlooker bee

N

Proof. For the sake of simplicity, we will omit the superscript “σ” in the following proof because we are
already focusing on the given schedule.

We will denote the completion time of operation Ojk by cjk (a random variable). Furthermore, let tjk
(resp. cjk) denote the starting time (resp. completion time) of operation Ojk when each processing time
is replaced by its expected value. Since A ∪ σ is acyclic, all the operations can be sorted topologically,
yielding an ordered sequence {O[i]

jk}
n×m
i=1 . In this sequence, the machine predecessors and the job

predecessors of any operation Ojk must be positioned before Ojk. First we will prove that, for any
operation Ojk, E (tjk) ≥ tjk.

We start from the first operation (i = 1) in the sequence. Because O[1]
jk has no predecessor operations,

we have E (tjk) = tjk (actually tjk = 0). Then, the proof procedure will continue for i = 2, . . . , n×m.
Suppose we have already proved E (tjk) ≥ tjk for each operation before O[i]

jk in the sequence, and without



Entropy 2011, 13 1716

loss of generality, we assume that O[i]
jk has an immediate machine predecessor Oj′k and an immediate job

predecessor Ojk′ , then we have

E (tjk) = E (max {cj′k, cjk′})
≥ max {E (cj′k) ,E (cjk′)}
= max {E (tj′k + pj′k) ,E (tjk′ + pjk′)}
≥ max

{
tj′k + E (pj′k) , tjk′ + E (pjk′)

}
= max {cj′k, cjk′}
= tjk

where E (tj′k) ≥ tj′k and E (tjk′) ≥ tjk′ hold because Oj′k and Ojk′ must come before Ojk in the
sequence. If Ojk has no job predecessor, then we set cjk′ = 0 in the above proof. Likewise, if Ojk has
no machine predecessor, then we set cj′k = 0. Therefore, the reasoning applies to each operation in
the sequence.

Having proved E (tjk) ≥ tjk, we can now move to the objective function (Lmax). Let Cj (resp. Lj)
denote the completion time (resp. lateness) of job j when each random processing time takes its expected
value. Meanwhile, kj represents the machine which processes the last operation of job j. Then,

E
(

n
max
j=1
{Lj}

)
≥ n

max
j=1
{E (Lj)}

=
n

max
j=1

{
E
(
tjkj + pjkj

)
− dj

}
≥ n

max
j=1

{
tjkj + E

(
pjkj

)
− dj

}
=

n
max
j=1

{
Cj − dj

}
=

n
max
j=1
{Lj}

This completes the proof of E (Lσ
max) ≥ L

σ

max.

5. The Proposed ABC Algorithm for Solving SJSSP

In this section, the proposed ABC is introduced in detail. First, we describe how ABC can be
adapted to a discrete optimization problem like SJSSP. Second, we describe the method for comparing
the quality (subject to estimation errors) of different solutions in the proposed ABC. Since the problem is
stochastic, in the solution comparison process, we must decide how to allocate the available simulation
replications. This problem is resolved by the model proposed in the third subsection. Finally, to facilitate
the utilization of the simulation allocation model, we slightly revise the implementation of the local
search procedure in standard ABC.

5.1. Adaptation to the Discrete Problem

Since the standard ABC is intended for continuous function optimization, we need to introduce some
modifications in order to adapt it to SJSSP.



Entropy 2011, 13 1717

5.1.1. Encoding and Decoding

First, the encoding scheme for SJSSP is based on operation sequences instead of real number vectors.
In particular, each solution (food source) is represented by a sequence of n × m operations, which
can be transformed into a feasible schedule by the “schedule builder” presented below. This procedure
functions by iteratively scanning the sequence and then picking out the first schedulable operation [34]
in the sequence. In order to build an active schedule, each operation is inserted into the earliest possible
idle period (i.e., time interval not occupied by the previously scheduled operations).

Input: A sequence of operations, π, with a length of n×m.

Step 1: Let σ be an empty matrix of size m× n.
Step 2: If π = ∅, output σ (and the corresponding Lmax if necessary) and terminate the procedure.

Otherwise, continue the following steps.
Step 3: Find the first schedulable operation in the sequence π, denoted by O∗.
Step 4: Identify the machine required to process O∗ and denote it by k∗. Record the expected

processing time of O∗ as p∗.
Step 5: Schedule the operation O∗:

(5.1) Scan the Gantt chart of machine k∗ (which records the processing information of the
already scheduled operations) from time zero and test whether O∗ can be inserted into
each idle period [a, b], i.e., whether the following condition is met: max{a, CJP ∗} +
p∗ ≤ b (where CJP ∗ denotes the completion time of the immediate job predecessor of
operation O∗).

(5.2) If the above inequality is satisfied for the idle interval between operation o1 and o2 on
machine k∗, then insert O∗ between o1 and o2 in the k∗-th row of σ. Otherwise (no idle
intervals can hold O∗), insert it at the back of the k∗-th row of σ. Update the Gantt chart
records for the starting time and completion time of operation O∗.

Step 6: Delete operation O∗ from π. Go back to Step 2.

5.1.2. Initialization

Second, the solution initialization policy (Equation (1) in standard ABC) should be modified to
comply with the solution encoding scheme. Here we use the famous ATC (apparent tardiness cost)
rule [35] to produce the initial population. To generate the u-th solution, we first make a sample of
the random processing times according to their distributions, denoted as {p(u)jk }. Then, the ATC rule is
applied in a simulation-based scheduling procedure, where the operation with the largest Zjk value will
be selected for processing when a machine is freed at time t.

Zjk(t) =
wj

p
(u)
jk

· exp

−
[
dj − t− p

(u)
jk −

∑
Ojk′∈JS(Ojk)

(
Ŵjk′ + p

(u)
jk′

)]+
K · p(u)


where JS(Ojk) is the set of job successors of operation Ojk. p(u) denotes the average processing
time of the currently waiting operations in the machine’s buffer. K is a scaling parameter (or called



Entropy 2011, 13 1718

“look-ahead” parameter). Ŵjk′ is the estimated lead time of operation Ojk′ . Here it is assumed K = 2

and Ŵjk′ = 0.4p
(u)
jk′ .

5.1.3. Neighborhood Structure

Third, the neighborhood search mechanism (Equation (2) in standard ABC) also needs to be modified
accordingly. Let’s recall that, in the case of deterministic JSSP, we must focus on the operations
that belong to the blocks [36] of tardy jobs in order to improve the current solution. Therefore, the
neighborhood search for SJSSP can be performed by using the expected values of processing times to
determine the critical paths and blocks. Particularly, we first select two adjacent operations randomly
from a block related with a tardy job, and then the SWAP operator is applied to exchange the positions
of these two operations in the encoded solution.

5.2. The Comparison of Solutions

In order to approximate E (Lσ
max), we need to implement the schedule σ under different realizations

of the random processing times. When σ has been evaluated for a sufficient number of times, say τ ,
then its objective value can be approximated by 1

τ

∑τ
i=1 L

σ
max(i) (where Lσ

max(i) corresponds to the i-th
realization). This is consistent with the idea of Monte Carlo simulation.

In the employed bee phase and the onlooker bee phase, the newly-generated solution must be
compared with the original solution in order to determine which one should be kept. For deterministic
optimization problems, this can be done by simply comparing the exact objective values of the two
solutions. But in the stochastic case, the comparisons may not be so straightforward because we can
only obtain approximated (noisy) objective values as mentioned above. In this study, we will utilize the
following two mechanisms for comparison purposes.

(I) Pre-screening. Because L
σ

max is a lower bound for E (Lσ
max) (Theorem 1), we can arrive at the

following conclusion which is useful for the pre-screening of candidate solutions.

Corollary 1. For two candidate solutions x1 (the equivalent schedule is denoted by σ1) and x2 (the
equivalent schedule is denoted by σ2), if L

σ2

max ≥ E (Lσ1
max), then x2 must be inferior to x1 and thus need

not be considered.

(II) Hypothesis test. If the candidate solution has passed the pre-screening, then hypothesis test is
used for comparing the quality of the two solutions.

Suppose we have implemented ni simulation replications for solution xi whose true objective value
is f (xi) = E (Lσi

max) (i = 1, 2). Then, the sample mean and sample variance can be calculated by

f i =
1

ni

ni∑
j=1

f
(j)
i

s2i =
1

ni − 1

ni∑
j=1

(
f
(j)
i − f i

)2
where f

(j)
i is the objective value obtained in the j-th simulation replication for solution xi.



Entropy 2011, 13 1719

Let the null hypothesis H0 be “f (x1) = f (x2)”, and thus the alternative hypothesis H1 is
“f (x1) ̸= f (x2)”. According to the statistical theory, the critical region of H0 is

∣∣f1 − f2

∣∣ ≥ Z = zα/2

√
s21
n1

+
s22
n2

where zα/2 is the value such that the area to its right under the standard normal curve is exactly α/2.
Therefore, if

∣∣f 1 − f 2

∣∣ < Z (i.e., the null hypothesis holds), it is said that there exists no statistical
difference between x1 and x2. Otherwise, if f1 − f 2 ≥ Z, x2 is statistically better than x1; if
f1 − f2 ≤ −Z, x1 is statistically better than x2.

5.3. The Allocation of Simulation Replications

In the previous subsection, we assume that ni simulation replications have been performed for solution
xi before the hypothesis test. But how should the value of ni be determined? We know that full-length
simulation is very time-consuming, so a smaller value is desirable for ni. On the other hand, however, if
ni is too small, the approximation for the objective values will be over-imprecise, which can mislead the
hypothesis test. To achieve a balance, here we borrow an idea from the solution to the famous K-armed
bandit problem.

The K-armed bandit problem can be described as K random variables, Xi (1 ≤ i ≤ K), where
Xi represents the stochastic reward given by the i-th gambling machine. The distributions of Xi are
independent but generally not identical. The laws of the distributions and the expectations µi for the
rewards Xi are unknown. The goal is to find a strategy that determines the next machine to play (based
on the past plays and the received rewards) that maximizes the expected total reward for the player.

Since a player does not know which of the machines is the best, he can only guess the reward
distributions from successive plays. Clearly, he has to make a trade-off between the following two
choices:

• The player tends to concentrate his efforts on the machines that gave the highest rewards in the past
plays. Intuitively, this choice will maximize the potential gains.
• The player also wants to try the machines which he has played very few times in the past. The

reward distributions of these machines are quite unclear, but it is likely that they provide even
higher rewards.

Therefore, it is necessary to strike a wise balance between exploiting the currently best machine and
exploring the other machines to make sure that none of those is even better.

When allocating the simulation replications, we are actually facing a similar situation. There are a
number of solutions waiting to be evaluated. For each solution, the objective value obtained from one
simulation is a random variable following an unknown distribution. We want to find out the quality of
these solutions with the minimum total number of simulation replications. The question is to decide
which solution should get the next chance of simulation. Obviously, the solutions are analogous to the
gambling machines, and the simulations are analogous to the gambler’s tries.

Here we use an algorithm called UCB1 [38] for making the allocation decisions. If the number of
candidate solutions is K, while the available computing resource is only enough to support a total of T



Entropy 2011, 13 1720

replications of simulation (T > δK, where δ is the number of replications assigned at a time), then the
algorithm can be adapted to our problem as follows.

Input: A set of K candidate solutions.

Step 1: Perform δ simulation replications for each solution xk. Denote the mean objective value by
fk, and denote the standard deviation by sk. Calculate the estimated “reward” as r̃k = sk/fk.
Set νk = δ (k = 1, . . . , K) and ν = δK.

Step 2: Calculate a priority index for each solution xk: ρk = r̃k +
√

2 ln ν
νk

.
Step 3: Perform δ additional simulation replications for the solution xk∗ with the maximum ρ value.

Update fk∗ , sk∗ and r̃k∗ for this solution. Let νk∗ ← νk∗ + δ and ν ← ν + δ.
Step 4: If ν < T , go back to Step 2. Otherwise, terminate the procedure.

In the adapted UCB1 (noted as A-UCB1) algorithm, νk records the number of times that solution
xk has been evaluated through simulation, while ν is the total number of simulation replications that
have been assigned so far. The “reward” from trying xk is defined as the relative standard deviation of
the simulated objective values. Under the effect of ρ, the definition of rk ensures that the simulation
replications tend to be allocated to the solutions whose quality is still unclear (represented by the
relatively large sk). Meanwhile, the algorithm will also allocate simulation replications to the solutions
which have been evaluated very few times (represented by the small νk). In sum, the A-UCB1 algorithm
aims at promoting the computational efficiency in the evaluation of solutions. Based on extensive
computational tests, the value of δ is set as ⌊T/100⌋.

5.4. Revised Implementation of the Local Search in ABC

In the employed bee phase and the onlooker bee phase, the artificial bees are actually performing the
local search task. Considering the special features of the stochastic optimization problem, we slightly
modify the implementation of this local search mechanism. In particular, we evaluate and compare the
solutions group by group rather than one by one. The aim is to utilize the benefits of the A-UCB1
algorithm (for controlling the computational burden) and the hypothesis test (for increasing the diversity
of the whole population). Our implementation is detailed as follows. Suppose the bees are already
associated with each solution.

Step 1: Use A-UCB1 to allocate a total of T simulation replications to the solutions in the current
population P . Save the estimated mean objective value and variance for each solution.

Step 2: Generate a new solution based on each original solution using the SWAP operator. Apply the
pre-screening method (Corollary 1) to ensure the quality of each new solution [39]. Denote
the set of new solutions by Pnew.

Step 3: Use A-UCB1 to allocate a total of T simulation replications to the solutions in Pnew. Save the
estimated mean objective value and variance for each solution.

Step 4: Perform hypothesis tests to determine the new population:

(4.1) Sort all the solutions in P ∪ Pnew in non-decreasing order of the estimated objective
values, yielding a sequence {x[1], . . . ,x[2SN ]}. Put x[1] into the ultimate population P ∗.
Let i = 1, j = 2.



Entropy 2011, 13 1721

(4.2) Perform hypothesis test for x[j] and the i-th solution (the latest) in P ∗. If the null
hypothesis holds, x[j] is rejected. Otherwise, x[j] is appended to P ∗ and let i← i+ 1.

(4.3) If i < SN and j < 2SN , then let j ← j + 1 and go to Step 4.2. Otherwise, go to Step
4.4.

(4.4) If i = SN , the ultimate population has been determined. Otherwise, generate (SN − i)

new solutions randomly, evaluate them (each one is evaluated with ⌊T/SN⌋ simulation
replications) and append them to P ∗.

Step 5: Compare P ∗ with P and check whether each new solution has been accepted (i.e., in P ∗). If
accepted, let the corresponding bee fly to the new solution.

In the proposed ABC algorithm, the above procedure is used in place of the one-to-one greedy
selection policy in standard ABC. This is in consideration of the specific features of stochastic
optimization. Evaluating a group of solutions together is beneficial, because A-UCB1 will allocate more
simulation replications to good solutions (with smaller fk) to make sure about their true performance
and avoid wasting time on inferior solutions (with larger fk). The hypothesis test is used for maintaining
an adequate level of diversity of the solution population. In Step 4.2, if x[j] does not significantly differ
from the most recent solution in P ∗, it will not have a chance to enter P ∗. Finally, if the number of
qualified solutions is less than SN , the rest of solutions will be generated randomly.

6. The Computational Experiments

6.1. Generation of Test Instances

To test the effectiveness of the proposed algorithm, computational experiments are conducted on
a number of randomly-generated test instances. In each instance, the route of each job is a random
permutation of m machines. Three types of distribution patterns are considered for the random
processing times: normal distribution, uniform distribution and exponential distribution. In all cases,
the mean values (µjk) are generated from the uniform distribution U (1, 99). In the case of normal
distributions (i.e., pjk ∼ N (µjk, σ

2
jk)), the standard deviation is controlled by σjk = θ×µjk (θ describes

the level of variability). In the case of uniform distributions (i.e., pjk ∼ U(µjk − ωjk, µjk + ωjk)),
the width parameter is given by ωjk = θ × µjk. In the case of exponential distributions (i.e., pjk ∼
Exp(λjk)), the only parameter is given by λjk = 1/µjk. The due dates are obtained by a series
of simulation runs which apply different priority rules (such as SPT, EDD, etc.) on each machine,
and the due date of each job is finally set as its average completion time. This method can generate
reasonably tight due dates. Meanwhile, the weight of each job is generated from the uniform distribution
U (1, 10). The following computational experiments are conducted in Visual C++ 2010 on an Intel Core
i5-750/3GB RAM/Windows 7 PC.

6.2. The Computational Results and Comparisons

Based on extensive computational tests (not listed due to space limitations), the settings of key
parameters in the final ABC algorithm are: SN = 30, limit = 40 and T = 1000 (for each evaluation).
The confidence level for the hypothesis test is α = 0.05.



Entropy 2011, 13 1722

In the following, we will use the proposed ABC to solve different-sized SJSSP instances. The
results are compared with the hybrid optimization method PSO-SA [40], which utilizes SA (simulated
annealing) as a local optimizer for PSO. In order to make the comparisons meaningful, we set a
computational time limit for both algorithms. Normally, the time limit should be set according to the
size of the instance. In our experiment, the time limit for solving a n × m instance is determined as
t = 0.2× (n×m). For example, the allowed computational time for a 20× 10 instance is 40 sec. Each
algorithm is run for 20 independent times on each SJSSP instance.

We report the best, average and worst objective values (exact evaluation [41] for the output solutions)
in the 20 runs. Tables 1–3 report the results under normal distributions, Tables 4–6 report the results
under uniform distributions, and Table 7 reports the results under exponential distributions.

Table 1. The computational results under normal distributions with θ = 0.1.

Size
n×m

Instance
No.

ABC PSO-SA

best average worst best average worst

10× 10 1 46.1 52.1 58.0 50.5 53.2 59.8
2 47.4 49.1 53.2 46.7 53.1 54.8
3 50.0 51.7 54.0 50.4 52.3 54.9
4 56.2 61.8 62.7 60.8 62.5 66.2
5 50.9 56.0 61.3 53.5 56.3 61.1

20× 10 6 66.0 69.0 75.3 70.3 75.8 86.1
7 63.0 67.6 71.6 67.0 72.1 83.8
8 61.8 65.5 67.5 65.0 70.9 75.8
9 64.9 70.0 74.9 69.4 76.7 78.2
10 60.5 68.7 70.0 64.0 70.5 76.1

20× 15 11 80.6 83.1 84.1 85.1 86.2 88.2
12 80.9 84.8 89.2 86.1 87.8 90.9
13 67.1 72.5 83.2 75.7 77.0 84.5
14 77.4 81.8 85.6 79.1 83.7 89.3
15 72.3 78.6 83.6 74.9 81.8 86.6

20× 20 16 99.9 106.9 121.2 103.5 111.0 124.7
17 97.4 103.2 118.2 114.9 128.0 134.9
18 104.6 114.9 123.8 120.8 129.8 137.1
19 111.4 117.5 120.3 120.7 123.9 131.6
20 98.5 115.2 121.4 121.5 128.6 132.7

In addition, we have also performed Mann–Whitney U tests to statistically compare the computational
results. Because each algorithm is run for 20 times, we have n1 = n2 = 20 in the Mann–Whitney U test.
The null hypothesis is that there is no difference between the results of the two compared algorithms.
Therefore, if the obtained U (the lesser of U1 and U2) is below 127, the null hypothesis can be rejected
at the 5% level. Furthermore, if U < 105, the null can be rejected at the 1% level. The values of U are
listed in Table 8.



Entropy 2011, 13 1723

Table 2. The computational results under normal distributions with θ = 0.2.

Size
n×m

Instance
No.

ABC PSO-SA

best average worst best average worst

10× 10 1 51.1 62.7 67.8 60.0 63.3 68.5
2 53.1 55.6 60.6 54.9 60.2 64.9
3 54.3 57.5 60.8 58.0 60.1 66.1
4 63.8 70.7 75.4 70.0 74.2 80.6
5 59.0 62.7 69.0 63.5 66.5 69.5

20× 10 6 67.1 72.6 76.1 73.3 81.1 93.0
7 64.2 69.4 71.3 72.1 75.8 86.6
8 64.6 66.9 69.8 64.2 73.1 78.9
9 64.6 72.1 74.7 73.9 80.6 82.3
10 61.1 68.4 71.2 67.2 73.9 82.2

20× 15 11 84.0 87.6 90.1 84.6 90.6 94.1
12 86.5 91.5 93.2 96.7 98.6 103.8
13 74.2 80.3 90.8 81.0 87.3 96.7
14 84.8 88.8 90.7 85.1 91.2 98.8
15 79.4 83.9 90.9 85.3 89.2 94.4

20× 20 16 111.3 117.5 133.5 115.4 122.7 137.3
17 100.2 108.8 127.6 127.1 131.1 148.9
18 110.9 118.1 126.9 127.3 138.4 146.8
19 118.5 123.7 129.2 131.5 139.2 143.6
20 101.7 122.2 130.0 128.7 136.7 140.8

Table 3. The computational results under normal distributions with θ = 0.3.

Size
n×m

Instance
No.

ABC PSO-SA

best average worst best average worst

10× 10 1 53.4 67.4 69.1 60.6 67.5 73.3
2 56.0 60.0 63.1 56.5 66.1 68.6
3 60.2 61.9 65.1 62.5 63.5 69.6
4 69.1 72.8 74.5 74.7 77.8 82.5
5 60.9 67.7 71.7 66.0 70.1 71.1

20× 10 6 74.3 77.3 81.4 81.8 86.8 100.5
7 70.8 75.8 81.6 77.1 80.6 95.6
8 69.3 70.4 74.5 70.9 79.2 88.1
9 72.0 76.5 81.9 77.6 87.5 90.4
10 66.5 77.9 78.9 71.8 80.0 85.5

20× 15 11 91.2 92.6 96.0 87.4 95.2 99.8
12 90.5 94.6 98.9 101.0 104.6 105.7
13 76.1 83.2 95.0 87.1 89.8 98.6
14 88.6 91.7 97.8 86.3 93.1 99.1
15 79.7 88.6 92.0 85.9 92.8 99.4

20× 20 16 116.5 120.3 131.1 115.3 124.4 140.1
17 104.4 111.2 130.9 128.6 146.3 151.2
18 114.8 121.7 134.5 140.7 151.3 157.3
19 121.3 125.7 131.3 133.7 137.6 147.0
20 105.8 126.5 133.8 139.1 145.7 152.6



Entropy 2011, 13 1724

Table 4. The computational results under uniform distributions with θ = 0.1.

Size
n×m

Instance
No.

ABC PSO-SA

best average worst best average worst

10× 10 1 38.0 41.9 47.5 40.8 44.7 50.4
2 38.9 41.0 44.4 39.1 44.4 46.7
3 41.6 42.7 45.6 40.6 42.7 45.1
4 46.2 51.7 53.2 48.7 52.1 54.5
5 41.6 46.5 51.4 43.5 45.8 51.4

20× 10 6 55.8 58.6 64.7 59.6 63.2 71.3
7 51.4 58.1 59.6 54.4 59.8 68.9
8 52.9 53.7 55.1 53.0 57.6 62.0
9 54.7 58.8 60.1 59.1 61.8 64.2
10 50.7 57.2 59.0 53.5 59.0 64.3

20× 15 11 65.8 68.4 71.6 67.2 70.2 73.9
12 67.0 70.3 75.3 69.1 73.0 76.8
13 56.7 58.4 66.7 61.0 62.4 71.7
14 62.3 67.7 70.6 64.1 68.9 75.8
15 60.2 67.3 69.0 62.6 66.6 70.5

20× 20 16 80.1 86.9 103.4 88.4 93.3 106.9
17 82.8 88.1 100.8 97.1 104.0 115.6
18 86.5 95.9 105.6 99.1 108.2 115.4
19 89.3 96.9 98.7 101.8 106.2 108.3
20 83.2 92.5 103.7 103.3 107.0 110.9

Table 5. The computational results under uniform distributions with θ = 0.2.

Size
n×m

Instance
No.

ABC PSO-SA

best average worst best average worst

10× 10 1 42.5 54.6 59.4 51.0 54.0 60.1
2 44.6 46.6 52.1 46.4 53.3 54.6
3 47.8 49.7 52.3 51.0 52.2 58.0
4 54.2 62.5 67.1 58.9 64.7 67.7
5 51.8 53.0 58.5 56.3 58.5 60.7

20× 10 6 58.4 64.3 67.3 64.7 71.4 82.2
7 54.9 60.1 63.3 61.6 66.8 72.4
8 54.8 57.6 59.7 53.9 64.2 65.9
9 56.5 61.9 67.2 62.4 70.5 72.1
10 53.0 61.2 62.9 56.6 63.6 69.9

20× 15 11 71.5 75.8 77.9 74.5 79.9 81.5
12 77.0 80.0 84.2 84.4 87.2 90.9
13 65.6 70.5 79.9 69.1 73.8 82.8
14 72.6 78.8 85.0 71.6 77.3 87.5
15 67.8 70.6 79.2 73.5 77.8 81.2

20× 20 16 95.6 98.5 113.0 101.0 105.7 114.8
17 83.4 90.7 111.5 99.4 109.5 130.4
18 93.9 98.9 108.0 112.2 121.1 125.9
19 99.9 102.8 109.3 115.0 119.2 120.4
20 86.9 102.0 111.4 108.4 117.3 120.6



Entropy 2011, 13 1725

Table 6. The computational results under uniform distributions with θ = 0.3.

Size
n×m

Instance
No.

ABC PSO-SA

best average worst best average worst

10× 10 1 48.1 58.4 60.4 52.5 61.0 63.3
2 51.2 52.2 54.5 48.7 58.2 61.3
3 53.2 55.6 58.7 56.6 58.3 61.8
4 60.9 63.0 65.6 66.7 67.9 74.2
5 55.0 60.0 62.7 59.5 61.5 63.9

20× 10 6 67.9 69.4 70.8 75.2 78.9 87.4
7 61.1 68.9 73.5 68.8 71.7 84.8
8 60.2 63.2 66.2 64.8 71.4 78.7
9 63.5 66.1 73.1 68.0 78.1 79.3
10 57.9 69.2 72.0 64.5 71.5 76.0

20× 15 11 79.5 81.8 85.7 81.4 85.4 90.4
12 83.2 85.5 90.2 90.7 92.3 95.6
13 67.9 76.1 86.4 75.7 80.5 88.2
14 78.6 80.3 87.0 79.5 85.3 89.9
15 71.6 79.1 81.0 74.0 81.5 90.9

20× 20 16 101.3 107.2 113.2 102.5 110.2 127.3
17 93.0 100.0 116.8 111.6 126.5 139.0
18 101.0 105.4 122.2 129.3 132.1 143.9
19 108.9 110.3 114.8 122.4 125.6 133.0
20 91.9 115.5 121.5 122.1 127.7 139.3

Table 7. The computational results under exponential distributions

Size
n×m

Instance
No.

ABC PSO-SA

best average worst best average worst

10× 10 1 85.6 109.6 114.3 100.8 109.4 118.2
2 91.3 100.2 102.0 93.3 109.4 114.1
3 96.1 98.3 108.3 103.1 104.3 111.5
4 114.4 121.0 129.7 123.3 128.5 132.1
5 101.1 111.4 119.9 106.2 115.7 117.7

20× 10 6 123.7 126.8 131.9 135.2 145.8 161.8
7 113.8 124.8 134.2 124.6 134.9 154.3
8 113.3 116.2 123.0 116.2 130.2 143.2
9 116.6 125.7 132.7 130.3 146.4 147.6
10 107.9 126.1 131.4 117.6 131.3 141.9

20× 15 11 141.5 149.4 156.9 146.0 157.0 160.2
12 148.8 153.4 162.4 167.5 175.2 177.0
13 122.8 139.3 159.5 142.9 146.8 158.3
14 143.7 150.5 160.7 144.5 149.8 163.6
15 129.3 146.8 150.0 138.2 149.7 164.9

20× 20 16 193.8 199.8 215.2 192.4 202.4 229.1
17 168.0 184.4 217.6 213.0 242.9 251.8
18 185.7 196.2 215.7 226.8 242.4 251.9
19 199.6 209.5 213.6 214.6 225.0 241.9
20 170.2 209.2 221.0 228.5 240.0 249.9



Entropy 2011, 13 1726

Table 8. Mann–Whitney U tests on the computational results.

Instance No.
Normal Uniform

Exponential
θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.1 θ = 0.2 θ = 0.3

1 97 94 82 99 97 86 76
2 93 85 79 94 89 78 70
3 95 84 79 94 87 80 76
4 87 78 70 90 79 72 68
5 90 80 79 89 81 78 72
6 80 74 68 83 76 69 62
7 82 78 69 84 78 69 64
8 84 79 70 86 79 73 66
9 79 71 64 78 72 63 61
10 81 74 67 83 73 65 64
11 86 81 74 85 81 76 70
12 91 86 79 90 86 78 70
13 93 79 77 90 79 81 73
14 88 87 84 91 88 86 82
15 96 84 78 94 89 81 73
16 88 77 70 89 76 70 64
17 77 68 60 74 70 63 59
18 70 66 59 72 64 61 55
19 80 67 66 84 66 66 61
20 69 64 60 70 64 62 53

Based on the statistical tests, we can conclude that ABC is significantly more effective than the
comparative method. In addition, the following comments can be made.

(1) According to the tables, the advantage of ABC over PSO-SA is greater when the variability level
of processing times is higher (represented by larger θ or the case of exponential distribution).
This can be attributed to the function of A-UCB1, which is responsible for the allocation of the
limited computational resources. If θ is small, the objective value of a solution can be obtained
with only a few replications. In this case, the A-UCB1 strategy is not significantly better than an
equal allocation of the available replications (the case of PSO-SA). However, when the variability
increases, the computational time becomes a relatively scarce resource. In order to correctly
identify high-quality solutions, the limited replications should be allocated in an efficient manner
rather than evenly. So in this case, the advantage of using A-UCB1 becomes evident.

(2) According to the tables, ABC outperforms PSO-SA to a greater extent when solving the
larger-scale instances. If the solution space is huge, PSO must rely on the additional local
search module (SA) to promote the searching efficiency. However, SA is not so efficient as
the inherent local search mechanism (employed and onlooker bees) in ABC, especially under
tight time budgets. From another perspective, ABC systematically combines the exploration and
exploitation abilities, and thus it works in a coordinated fashion. By contrast, the hybrid algorithm
uses PSO for exploration and SA for exploitation, but the two algorithms have different search



Entropy 2011, 13 1727

patterns. This may weaken the cooperation between PSO and SA in solving large-scale SJSSP.
Therefore, ABC alone is more efficient than the hybrid algorithm.

7. Conclusions

In this paper, an artificial bee colony algorithm is proposed for solving the job shop scheduling
problem with random processing times. The objective function is to minimize the expected maximum
lateness. In view of the stochastic nature of the problem, two mechanisms are devised for the evaluation
of solutions. First, a quick-and-dirty performance estimate is used to pre-screen the candidate solutions,
so that the obviously inferior solutions can be eliminated at an early stage. Then, Monte Carlo simulation
is applied to obtain a more accurate evaluation for the surviving solutions. In this process, a simulation
budget allocation method is designed based on the K-armed bandit metaphor. This helps to utilize the
limited computational time in an efficient manner. The computational results on a wide range of test
instances reveal the superiority of the proposed approach.

The future research can be conducted from the following aspects:

(1) It is worthwhile to consider other types of randomness in job shops, for example, the uncertainty
in the processing routes of certain jobs.

(2) It is worthwhile to investigate the method for discovering and utilizing problem-specific
characteristics of SJSSP. This will make the ABC algorithm more pertinent to this problem.

Acknowledgment

This work is supported by the National Natural Science Foundation of China under Grant
Nos. 61104176, 60874071. We would express our thanks to the two anonymous referees for their
pertinent comments that help to improve the paper.

References and Notes

1. Lenstra, J.K.; Kan, A.H.G.R.; Brucker, P. Complexity of machine scheduling problems.
Ann. Discret. Math. 1977, 1, 343–362.

2. Pezzella, F.; Morganti, G.; Ciaschetti, G. A genetic algorithm for the flexible job-shop scheduling
problem. Comput. Oper. Res. 2008, 35, 3202–3212.

3. Chen, S.H.; Chen, M.C.; Chang, P.C.; Chen, Y.M. EA/G-GA for single machine scheduling
problems with earliness/tardiness costs. Entropy 2011, 13, 1152–1169.

4. Nowicki, E.; Smutnicki, C. An advanced tabu search algorithm for the job shop problem.
J. Sched. 2005, 8, 145–159.

5. Lei, D. Pareto archive particle swarm optimization for multi-objective fuzzy job shop scheduling
problems. Int. J. Adv. Manuf. Technol. 2008, 37, 157–165.

6. Rossi, A.; Dini, G. Flexible job-shop scheduling with routing flexibility and separable setup
times using ant colony optimisation method. Robot. Comput. Integr. Manuf. 2007, 23, 503–516.

7. Li, J.; Pan, Q.; Xie, S.; Wang, S. A hybrid artificial bee colony algorithm for flexible job shop
scheduling problems. Int. J. Comput. Commun. Control 2011, 6, 286–296.



Entropy 2011, 13 1728

8. Yoshitomi, Y. A genetic algorithm approach to solving stochastic job-shop scheduling problems.
Int. Trans. Oper. Res. 2002, 9, 479–495.

9. Yoshitomi, Y.; Yamaguchi, R. A genetic algorithm and the Monte Carlo method for stochastic
job-shop scheduling. Int. Trans. Oper. Res. 2003, 10, 577–596.

10. Golenko-Ginzburg, D.; Gonik, A. Optimal job-shop scheduling with random operations and cost
objectives. Int. J. Prod. Econ. 2002, 76, 147–157.

11. Tavakkoli-Moghaddam, R.; Jolai, F.; Vaziri, F.; Ahmed, P.K.; Azaron, A. A hybrid method for
solving stochastic job shop scheduling problems. Appl. Math. Comput. 2005, 170, 185–206.

12. Luh, P.; Chen, D.; Thakur, L. An effective approach for job-shop scheduling with uncertain
processing requirements. IEEE Trans. Robot. Autom. 1999, 15, 328–339.

13. Lai, T.; Sotskov, Y.; Sotskova, N.; Werner, F. Mean flow time minimization with given bounds
of processing times. Eur. J. Oper. Res. 2004, 159, 558–573.

14. Singer, M. Forecasting policies for scheduling a stochastic due date job shop. Int. J. Prod. Res.
2000, 38, 3623–3637.

15. Lei, D. Scheduling stochastic job shop subject to random breakdown to minimize makespan.
Int. J. Adv. Manuf. Technol. 2011, 55, 1183–1192.

16. Lei, D. Simplified multi-objective genetic algorithms for stochastic job shop scheduling.
Appl. Soft Comput. 2011, doi:10.1016/j.asoc.2011.06.001.

17. Gu, J.; Gu, X.; Gu, M. A novel parallel quantum genetic algorithm for stochastic job shop
scheduling. J. Math. Anal. Appl. 2009, 355, 63–81.

18. Gu, J.; Gu, M.; Cao, C.; Gu, X. A novel competitive co-evolutionary quantum genetic algorithm
for stochastic job shop scheduling problem. Comput. Oper. Res. 2010, 37, 927–937.

19. Mahdavi, I.; Shirazi, B.; Solimanpur, M. Development of a simulation-based decision support
system for controlling stochastic flexible job shop manufacturing systems. Simul. Model. Pract.
Theory 2010, 18, 768–786.

20. Azadeh, A.; Negahban, A.; Moghaddam, M. A hybrid computer simulation-artificial neural
network algorithm for optimisation of dispatching rule selection in stochastic job shop scheduling
problems. Int. J. Prod. Res. 2011, doi:10.1080/00207543.2010.539281.

21. Bianchi, L.; Dorigo, M.; Gambardella, L.; Gutjahr, W. A survey on metaheuristics for stochastic
combinatorial optimization. Nat. Comput. 2009, 8, 239–287.

22. Karaboga, D.; Akay, B. A survey: algorithms simulating bee swarm intelligence. Artif. Intell.
Rev. 2009, 31, 61–85.

23. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report
for Computer Engineering Department, Erciyes University, Kayseri, Turkey, October 2005.

24. Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl.
Soft Comput. 2008, 8, 687–697.

25. Karaboga, D.; Akay, B. A comparative study of artificial bee colony algorithm. Appl. Math.
Comput. 2009, 214, 108–132.

26. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function
optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471.



Entropy 2011, 13 1729

27. Kang, F.; Li, J.; Xu, Q. Structural inverse analysis by hybrid simplex artificial bee colony
algorithms. Comput. Struct. 2009, 87, 861–870.

28. Sonmez, M. Discrete optimum design of truss structures using artificial bee colony algorithm.
Struct. Multidiscip. Optim. 2011, 43, 85–97.

29. Samanta, S.; Chakraborty, S. Parametric optimization of some non-traditional machining
processes using artificial bee colony algorithm. Eng. Appl. Artif. Intell. 2011, 24, 946–957.

30. Huang, Y.; Lin, J. A new bee colony optimization algorithm with idle-time-based filtering scheme
for open shop-scheduling problems. Expert Syst. Appl. 2011, 38, 5438–5447.

31. Jain, A.S.; Meeran, S. Deterministic job-shop scheduling: past, present and future. Eur. J. Oper.
Res. 1999, 113, 390–434.

32. In the rest of the paper, we do not distinguish between σ and the schedule. For the convenience
of expression, we will write σ as a matrix. The k-th row of σ represents the processing order of
the operations on machine k.

33. Akay, B.; Karaboga, D. Artificial bee colony algorithm for large-scale problems and engineering
design optimization. J. Intell. Manuf. 2011, doi:10.1007/s10845-010-0393-4.

34. An operation is schedulable if its immediate job predecessor has already been scheduled or if it
is the first operation of a certain job.

35. Vepsalainen, A.P.; Morton, T.E. Priority rules for job shops with weighted tardy costs.
Manag. Sci. 1987, 33, 1035–1047.

36. A sequence of operations in the critical path is called a block if (1) it contains at least two
operations and (2) the sequence includes a maximum number of operations that are consecutively
processed by the same machine [37].

37. Pinedo, M. Scheduling: Theory, Algorithms and Systems, 3rd ed.; Springer: New York, NY,
USA, 2008.

38. Auer, P.; Cesa-Bianchi, N.; Fischer, P. Finite-time analysis of the multiarmed bandit problem.
Mach. Learn. 2002, 47, 235–256.

39. If a newly-generated solution does not pass the pre-screening test, then simply generate another
solution from the neighborhood, and so on.

40. Liu, B.; Wang, L.; Jin, Y.H. Hybrid Particle Swarm Optimization for Flow Shop Scheduling with
Stochastic Processing Time. In Lecture Notes in Computer Science; Springer: Berlin, Heidelberg,
Germany, 2005; Volume 3801, pp. 630–637.

41. The mean value resulted from 1000 simulation replications (which is large enough for the
considered test instances) is regarded as the exact evaluation of a solution.

c⃝ 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/.)


	Introduction
	Literature Review
	The Stochastic Job Shop Scheduling Problem
	The Artificial Bee Colony Algorithm

	The Preliminaries
	Formulation of the SJSSP
	Principles of the Artificial Bee Colony (ABC) Algorithm

	An Estimate for the Expected Maximum Lateness
	The Proposed ABC Algorithm for Solving SJSSP
	Adaptation to the Discrete Problem
	5.1.1. Encoding and Decoding
	5.1.2. Initialization
	5.1.3. Neighborhood Structure

	The Comparison of Solutions
	The Allocation of Simulation Replications
	Revised Implementation of the Local Search in ABC

	The Computational Experiments
	Generation of Test Instances
	The Computational Results and Comparisons

	Conclusions

