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Abstract: The slope stability is a very important problem in geotechnical engineering. This 
paper presents an approach for slope reliability analysis based on the maximum-entropy 
method. The key idea is to implement the maximum entropy principle in estimating the 
probability density function. The performance function is formulated by the Simplified 
Bishop’s method to estimate the slope failure probability. The maximum-entropy method is 
used to estimate the probability density function (PDF) of the performance function subject 
to the moment constraints. A numerical example is calculated and compared to the Monte 
Carlo simulation (MCS) and the Advanced First Order Second Moment Method (AFOSM). 
The results show the accuracy and efficiency of the proposed method. The proposed 
method should be valuable for performing probabilistic analyses. 
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1. Introduction 

Stability analysis of earth slopes is a geotechnical engineering problem dominated by uncertainties. 
In slope stability computations, various sources of uncertainties are encountered, such as the variability 
of soil parameters involved in the analysis. Conventional slope stability analysis has relied on a factor 
of safety approach for dealing with the uncertainties associated with soil properties. The factor of 
safety is defined as the ratio of resisting to driving forces on a potential sliding surface. However, the 
factor of safety cannot quantify the probability of failure, or level of risk, associated with a particular 
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design situation. Slopes with the same values of the factor of safety may present different risk levels 
depending on the variability in soil properties. 

Probabilistic analysis is a rational means to quantify and incorporate uncertainty into slope stability. 
In probabilistic methods, the possibility that values of shear strength and other parameters may vary is 
considered, providing a means of evaluating the degree of uncertainty associated with the computed 
factor of safety. In recent decades, numerous studies have been undertaken to develop a probabilistic 
slope stability analysis. Several commonly used methods for slope reliability are the first order second 
moment method (FOSM) [1–3], first order reliability method (FORM) [4–6], Monte Carlo simulation 
(MCS) [7–9], moment methods [10,11], and so on. Often times, all the methods mentioned above have 
advantages and disadvantages in terms of accuracy, numerical efficiency, and application scope.  
In FOSM, the mean and variance of the limit state function are approximated by the first-order Taylor 
series expansion about the mean values of the input random parameters that are characterized by their 
first two moments. FOSM methods are not capable of dealing with non-normal random variables or 
nonlinear models, and this probably results in miscalculations. On the other hand, the difficulties in 
FORM, such as numerical difficulty in finding the most probable point (MPP), errors involved in the 
nonlinear failure surface including the possibility of multiple MPP [12], and errors caused by 
nonnormality of variables [13], are well recognized. The conventional MCS sampling methods are not 
computationally efficient for rare event problems. 

In the moment methods, the failure probability is calculated through a moment evaluation process 
and a PDF modeling process [14]. Compared with FORM, moment methods have the advantages that 
they do not involve the difficulties of the MPP search and the information of PDF is readily available. 
In the moment-based approaches, how to efficiently obtain the moments has been the main concern in 
previous studies, but there has been relatively little concern about which modeling method gives the 
most appropriate PDF for reliability analysis [15]. How to generally estimate the PDF model for a 
given set of moments is an important issue in moment-based reliability analysis. The problem we 
address in this paper is the use of moments to construct a probability density function (PDF) of a 
performance function. 

The maximum entropy method provides a flexible and powerful means for density approximation 
and estimation given a finite number of moments. The maximum entropy method (MEM), which is 
based on Shannon’s measure of uncertainty, has been used for estimating distribution functions [16–18]. 
MEM is regarded as the most unbiased estimation for the PDF, which means the most probable PDF 
from all the PDF under the moment’s constraint since “it is maximally noncommittal with regard to 
missing information”.  

In this study, the maximum entropy method (MEM) is adopted to estimate the PDF. The fourth-moment 
technique and maximum entropy principle are employed to system develop a reliability analysis 
method for earth slopes. The idea is to first estimate the moments of random variables and then to find 
the PDF which maximizes the entropy subject to the moment constraints. The rationale of this 
approach is that the PDF maximizing entropy is the least subjective PDF subject to the moment 
information. Approximate formula of the first four moments of the performance function for the slope 
stability by expanding the performance function into the second-order Taylor series. 

The paper is organized as follows: in Section 2, a performance function for the slope stability based 
on Bishop’s method is presented. Then, in Section 3, the process to calculate the first four moments of 



Entropy 2012, 14 1866 
 

 

the performance function is provided using Taylor series method. In Section 4 we outline the 
Maximum entropy method for determining approximate density distribution functions from knowledge 
of moments. The process to calculate of the failure probability is provided. Numerical example is 
analyzed using the proposed method in Section 5. Finally, in Section 6 we discuss our results and 
present some concluding remarks. 

2. Probabilistic Slope Stability Analysis 

2.1. The Performance Function  

To perform the reliability analysis of a slope, the failure and safety state of a slope should be 
identified via the performance function, ( )g X , where, ( )1 2, , , nX X X X= K  is the vector of the input 
parameters. The performance function ( )g X  defines the safe and non-safe regions of the slope. The 

performance function for the slope stability may be established as follows:  

( )1 2,, , 1n sZ g X X X F= = −K  (1) 

where iX ( )1,2, ,i n= K  are the random variables in the slope reliability analysis; ( )1 2, , , ng X X XK is the 
performance function; ( ) 0Z g X= > indicates that the slope is stable, ( ) 0Z g X= <  indicates that it has 

failed, and 0Z = means that the slope is on the verge of failure and this limit state condition is usually 
categorized under failure probability. Hence, 0Z ≤  defines failure. sF  is a factor of safety and can be 
evaluated using any limit equilibrium method. In this paper a simplified Bishop’s method is used to 
calculate the safety factor. 

Reliability of slope stability can be measured by slope failure probability, fP , which is defined as the 
probability that the minimum factor of safety ( sF ) is less than unity (i.e., ( )1f sP P F= < ). The slope 

failure probability can be expressed in terms of the performance function by the following integral [19]: 

[ ] ( )
0

0fP P Z g f Z dZ
−∞

= = ≤ = ∫  (2) 

where ( )f Z  denotes the probability density function (PDF) of the performance function, Z , and the 

integral is carried out over the failure domain. 
For slope stability problems, direct evaluation of Equation (2) is usually impossible. The difficulty 

lies in that complete probabilistic information on the soil properties is not available and the domain of 
integration is a complicated function. Therefore, approximate techniques should be developed to 
evaluate this integral. 

2.2. Simplified Bishop Method 

Slope stability problems are commonly analyzed using the limit equilibrium methods of slices. The 
limit equilibrium methods are based on determining applied stresses and mobilized strength over a trial 
slide surface in the soil slope, then a factor of safety is determined by considering these two quantities. 
Slice methods are more commonly used in limit equilibrium approach to slope stability analysis. The 
failing soil mass is divided into a number of vertical slices to calculate the factor of safety. The Bishop 
method assumes that the inter-slice forces are horizontal and inter-slice shear forces are neglected [20]. 
A circular slip surface is assumed in the Simplified Bishop Method. Forces considered in the 
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Simplified Bishop method are shown in Figure 1. The resulting equilibrium equation is combined with 
the Mohr-Coulomb equation and the definition of the factor of safety to determine the forces on the 
base of the slice. Finally, moments are summed about the center of the circular slip surface to obtain 
the following expression for the factor of safety: 

1 [ ( ) tan ] / sin
cos sin /s i i i i i i i i

i i i s

F c b W u b W
tg F

ϕ α
α ϕ α

⎧ ⎫⎪ ⎪= + −⎨ ⎬
+ ⋅⎪ ⎪⎩ ⎭

∑ ∑  (3) 

where ib  is the width of the slice, iW  is the weight of the slice. ic  and iϕ  are shear parameters for the 
centre of the base of the slice, iu is pore water pressure.  

Figure 1. Forces acting on a typical slice in the Simplified Bishop method. 

 

In Bishop’s method the factor of safety is determined by trial and errors, using an iterative process, 
since the factor of safety ( sF ) appears in both sides of Equation (3). 

3. Estimation for Moments of the Performance Function 

The first four moments ( ) ( ) ( )2 3 4, , ,Z Z Z Zμ μ μ μ  of the performance function Z  can be calculated based on the 
first four moments of the basic random variable iX . 

3.1. Calculation of Moments for Sample Variables 

Given n  samples of a random variable iX , the sample mean 1iXμ and sample variance 2
iXσ of a 

random variable iX  can be calculated by Equation (4): 

( )

1
1

2
2

2
1

1

1
1

i

i i

n

X i i j
j

m

X X i j i
j

X X
n

X X
m

μ

μ σ

=

=

= =

= = −
−

∑

∑
 

(4) 

If we know the distribution type of a random variable iX , ith central moment of iX can be calculated 
based on the probability density function ( )if X of iX . The third moment 3iXμ and the fourth 
moment 4iXμ of iX are calculated as follows:  

( ) ( )

( ) ( )

3

3

4

4

i i

i i

X i X i iR

X i X i iR

X f X dX

X f X dX

μ μ

μ μ

= −

= −

∫
∫  

(5) 
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The first central moment 
1Xμ  is zero and the second central moment is the variance 2

Xσ . Usually the 
first four central moments of iX  are: 

2
0 1 2

3 4
3 4

1, 0,

,
X X X X

X sX X X kX XC C

μ μ μ σ

μ σ μ σ

= = =

= =
 (6) 

where Xσ  is the standard deviation, sXC is the skewness coefficient, kXC  is the kurtosis coefficient. 
Skewness and kurtosis measure the shape of a probability distribution. Table 1 gives the third and 
fourth central moment coefficient of several typical probability distributions. According to Table 1 we 
can easily calculate the third and fourth central moments. 

Table 1. The third and fourth central moment coefficient. 

Distribution type Normal distribution Lognormal distribution Exponential distribution
Skewness coefficient sXC  0 0.324 2 
Kurtosis coefficient kXC  3 3.514 9 

3.2. Estimation for Moments of the Performance Function 

In the present paper, Taylor series method is used in order to estimate the moments of the 
performance function. Let the performance function be written as ( ) ( )1 2, , , nZ g X g X X X= = K , the iX  terms 

are uncorrelated random variables. A Taylor series expansion of the performance function about the 
mean value gives [20]: 

( ) ( ) ( )( )
1 1 1

1
2i i j

n n n

i i X ij i X j X
i i j

Z g g X g X Xμ μ μ μ
= = =

≈ + − + − −∑ ∑∑  (7) 

where ( ) ( ) ( )
1 2

2

, , , , ,
nX X X i ij

i i j

g g
g g

X X X
μ μ

μ μ μ μ
∂ ∂

= = =
∂ ∂ ∂

K  

The first four moments ( ) ( ) ( )2 3 4, , ,Z Z Z Zμ μ μ μ  of the performance function ( )Z g X=  can be calculated by 

Equation (8): 

( ) ( )
( ) ( )
( )

2
1

2 2 2 2 2
2 3 4 2 2 2

1 1 1 1 1

3 3 2 2
3 4 2 2 2

1 1 1 1

4 4 2
4

1 1 1

1( )
2

1 13
4 2

3 3 3
2

3

i
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i

n

Z ii X
i
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Z i X i ii X ii X X ii X X
i i i i j

n n n n

Z i X i ii X X i j ij X X
i i i j

n n n

Z i X i
i i j

g g

g g g g g

g g g g g g

g g

μ μ μ
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μ μ

=

= = = = =

= = = =

= = =

= +

= + + − +

= + − +

= +

∑

∑ ∑ ∑ ∑∑

∑ ∑ ∑∑

∑ ∑∑ 2
2 2i jj X Xg μ μ

 (8) 

Once the four statistical moments are obtained, the PDF of ( )g X  can be estimated using maximum 

entropy method (MEM) and the probability of failure can be calculated.  
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4. Maximum Entropy Method for Calculation of PDF 

Here the maximum entropy method is used to approximate the PDF of the performance function. 
The maximum entropy method is based on the concept that the distribution that maximizes the 
information entropy is the statistically most likely to occur. Shannon (1948) defined entropy as a 
measure of uncertainty about a random variable. If the level of uncertainties decreases, then the 
entropy decreases. The maximum of uncertainty corresponds to the maximum of entropy. For a 
continuous random variable, Z , the entropy is defined as: 

( ) ( ) ln[ ( )]
R

H f Z f Z f Z dZ= −⎡ ⎤⎣ ⎦ ∫  (9) 

where ( )f Z  denotes the probability density function of the performance function, Z , and R is the 

integral domain. 

4.1. Optimization Formulation to Calculate PDF  

Jaynes [21] formulated the maximum entropy (maxent) principle as a rational approach for 
choosing a consistent probability distribution, amongst all possible distribution, that contains a 
minimum of spurious information. The principle states that the most unbiased estimate of a probability 
distribution is that which maximizes the entropy subject to constraints supplied by the available 
information, e.g., moments of a random variable. The maximum entropy method of estimating ( )f Z  is 

stated as follows: 

( ) ( )

( )

( )

( ) ( ) ( ) ( )

max ln

1

2,3, ,

R

R

ZR

i i
Z ZR

H f Z f Z dZ

Subject to f Z dZ

Z f Z dZ

Z f Z dZ i m

μ

μ μ

= − ⎡ ⎤⎣ ⎦

=

=

− = =

∫
∫
∫
∫ L

 (10) 

where Zμ is the mean value of the performance function Z , ( )i
Zμ denotes the i-th central moment of Z ; m 

is the number of the given moment constrains. Max means that when the entropy reaches the 
maximum, we obtain the best probability density function. ( )f Z  denotes the PDF of ( )g X to be 

determined by the maximum entropy. The optimal solution of Equation (9) is the maximum entropy 
estimate of ( )f Z . 

In many studies, it was shown that the first four moments are sufficient to describe a wide range of 
distribution types. We use Lagrange’s method to solve for the PDF. 

By introducing the Lagrange multipliers λi, we define the Lagrangian function:  

( ) ( ) ( ) ( ) ( ) ( )
4

0 1
2

1 1 [ ( ) ]i i
Z i Z ZR R R

i
L f H f Z dZ Z f Z dZ Z f Z dZλ λ μ λ μ μ

=

⎡ ⎤ ⎡ ⎤= + + − + − + − −⎣ ⎦ ⎣ ⎦ ∑∫ ∫ ∫  (11) 

The multiplier ( 0 1λ + ) rather than 0λ is used to give a more convenient result. This function is 
maximized when: 

( ) 0L f Z∂ ∂ =  (12) 

Let Equation (11) substitute into Equation (12) to lead to the analytical expression of ( )f z : 
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( )
4

0
1

( ) exp i
i Z

i

f Z Zλ λ μ
=

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
∑

 (13) 

where iλ  is Lagrange multiplier for the ith moment constrain. One remains to determine the values of 
the 0λ  and ( )1,2,3,4i iλ = . Substitute Equation (13) into Equation (10):  

( )
4

0
1

exp 1i
i ZR

i
Z dZλ λ μ

=

⎡ ⎤
+ − =⎢ ⎥

⎣ ⎦
∑∫  (14) 

Then multiplying Equation (14) by 0e λ− , one has: 

( )0

4

1
exp i ZR

i
e Z dzλ λ μ−

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑∫  (15)

which leads to the first expression required: 

( )
4

0
1

ln exp i
i ZR

i
Z dZλ λ μ

=

⎧ ⎫⎡ ⎤
= − −⎨ ⎬⎢ ⎥

⎣ ⎦⎩ ⎭
∑∫  (16) 

The second is obtained by differentiating (15) with respect to iλ . 

( ) ( )0

4
0

1
exp exp

i i
Z i ZR

ii

Z Z dZλ λ μ λ μ
λ

−

=

∂ ⎛ ⎞
− = − −⎜ ⎟∂ ⎝ ⎠

∑∫  (17) 

or: 

( ) ( )
4

0
0

1
exp

i i
Z i ZR

ii

Z Z dZλ μ λ λ μ
λ =

∂ ⎛ ⎞
= − − + −⎜ ⎟∂ ⎝ ⎠

∑∫  (18) 

By (10) and (13), Equation (18) reduces to the second expression: 
( )0 i
Z

i

λ μ
λ
∂

= −
∂

 (19) 

In order to solve ( )1,2,3,4i iλ = , a set of simultaneous equations is set up. This is done by 
differentiating (16) with respect to iλ . 

( ) ( )

( )

4

10
4

1

exp

exp

i i
Z i ZR

i

ii
i ZR

i

Z Z dZ

Z dZ

μ λ μ
λ
λ λ μ

=

=

⎡ ⎤− −⎢ ⎥∂ ⎣ ⎦=
∂ ⎡ ⎤−⎢ ⎥

⎣ ⎦

∑∫

∑∫
 (20) 

The left-hand side of Equation (20) can be replaced by ( )i
Zμ−  using Equation (19), and Zμ  and ( )i

Zμ  are 
obtained as: 

( )

( )

4

1
4

1

exp

exp

i
i ZR

i
Z

i
i ZR

i

Z Z dZ

Z dZ

λ μ
μ

λ μ

=

=

⎡ ⎤−⎢ ⎥
⎣ ⎦=
⎡ ⎤−⎢ ⎥
⎣ ⎦

∑∫

∑∫
 (21) 

( )
( ) ( )

( )
( )

4

1
4

1

exp
2,3,4

exp

r i
Z i ZRr i

Z
i

i ZR
i

Z Z dZ
r

Z dZ

μ λ μ
μ

λ μ

=

=

⎡ ⎤− −⎢ ⎥
⎣ ⎦= =

⎡ ⎤−⎢ ⎥
⎣ ⎦

∑∫

∑∫
 (22) 

For more convenient for numerical solution, Equations (21) and (22) are changed as follows: 
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( )

( )

4

1
1 4

1

exp
1

exp

i
i ZR

i

i
Z i ZR

i

Z Z dZ
R

Z dZ

λ μ

μ λ μ

=

=

⎡ ⎤−⎢ ⎥
⎣ ⎦= −
⎡ ⎤−⎢ ⎥
⎣ ⎦

∑∫

∑∫
 (23) 

( ) ( )

( ) ( )
( )

4

1
4

1

exp
1 2,3,4

exp

r i
Z i ZR

i
r

ir
Z i ZR

i

Z Z dZ
R r

Z dZ

μ λ μ

μ λ μ

=

=

⎡ ⎤− −⎢ ⎥
⎣ ⎦= − =

⎡ ⎤−⎢ ⎥
⎣ ⎦

∑∫

∑∫
 (24) 

where the rR are the residuals that are reduced to near zero by a numerical technique. A solution can be 
obtained by using nonlinear programming to obtain the minimum of the sum of the squares of the residuals: 

4
2 2

1
min r

r
R R

=

= ∑  (25) 

Convergence is achieved when 2 ,R ε<  or rR ε< , where ε is the specified acceptable error. Equation 
(16) is used to obtain 0λ . 

Based on the probability density function ( )f z , the failure probability of the slope can be calculated as:  

( )
40 0

0
1

( ) exp i
f i Z

i

P f Z dZ Z dZλ λ μ
−∞ −∞

=

⎡ ⎤
= = + −⎢ ⎥

⎣ ⎦
∑∫ ∫  (26) 

4.2. Calculation of Failure Probability of Slope 

In this section, a procedure to evaluate the probability of failure based on maximum entropy method 
is described. The steps are as follows (Figure 2):  

Figure 2. Flowchart of the proposed method. 

 

Step 1: Specify random variables and their probabilistic characteristics, and formulate the 
performance function for the slope stability. 

Step 2: Generate random samples according to prescribed distributions and calculate the first four 
moments of random variables. 
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Step 3: Calculate the first four moments of the performance function by Taylor series method where 
random variables are involved.  

Step 4: Estimate PDF of the performance function with Maximum entropy method. 
Given the first four moments of the performance function, the Maximum entropy method is adopted 

to estimate the PDF subject to the moment constraints. 
Step 5: Calculate the probability of failure fp  of the slope with the PDF. 

5. Numerical Example 

Wohushan dam is an earth-rock dam with a central clay core located in Jinan city (Shandong 
Province, China). This dam was selected as a case study of the developed MEM method. The dam 
crest elevation is 139.5 m high, the maximum dam height is 37.0 m and the dam crest length is 985 m.  
The normal water level is 130.5 m and the design flood level is 135.49 m. The reservoir capacity is 
1.164 × 108 m3. A typical cross-section of the dam is shown in Figure 3. The water level frequency 
curve of Wohushan dam is shown Figure 4.  

Figure 3. Typical cross-section of the Wohushan dam. 

 

Figure 4. Water level frequency curve of the Wohushan dam. 

 

The basic soil parameters that are related to the stability of slope, including cohesion and friction 
angle, are considered as random variables. Soil parameters c  and Tanφ  are regarded as independent.  

Term c is assumed to obey extreme type Ι distribution and Tanφ  obey lognormal distribution. In 
addition, unit weight of dam material γ  is equal to 20 kN/m3. Table 2 summarizes the statistical 
properties of soil parameters. 
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Table 2. Statistical properties of soil parameters. 

Soil parameter Distribution type Mean value Standard deviation 
Cohesion, c  (KN/m2) Extreme type Ι 12 2.1 

Internal friction coefficient , Tanφ  Lognormal 0.325 0.059 

Using computer simulation software, SLOPE/W by Geoslope, the critical slip surface is first 
determined based on the mean value of the input parameter using Bishop methods. Probabilistic 
analysis is then performed on the critical slip surface, taking into consideration the variability of the 
input parameters. For the convenience of the analysis and calculation, Z can be transformed to the 
standardized form X as follows:  

z

z

ZX μ
σ
−

=  (27) 

Where Zμ  and Zσ  are mean value and standard deviation of Z , respectively. 
Table 3 presents the results of moments of random variables and the performance function for water 

level 135.5 m. 

Table 3. Moments of random variables and the performance function. 

Moments 
Soil parameter 

Performance function / Z Standardized form / X 
c  Tanφ  

0 1 1 1 1 
1st 0 0 0 0 
2nd 2.1 0.0594 4.819E+4 1 
3rd 0 0.0217 1.520E+07 1.437 
4th 0 0.0053 3.669E+09 1.580 

Let first four moments of standard random variable X substitute into Equation (28). Five Lagrange 
multipliers ( )0, ,4i iλ = L can be obtained by solving five nonlinear equations Equation (28). 

( )
4

0

exp( ) 0,1, , 4i j
j Xi

j

X X dX iλ μ
+∞

−∞
=

− = =∑∫ L  (28) 

Here the method of nonlinear least square is employed to calculate the Lagrange multipliers:  

0 1 2

3 4

10.142, 24.329, 10.074,
25.267, 12.221

λ λ λ
λ λ

= = = −
= − =

  

For water level 135.5 m, the probability density function (PDF) of the performance function: 
4 3 2( ) exp( 12.221 25.267 10.074 24.329 10.142)Z x x x x x= − + + − −  (29) 

when 0Z = , 0.846z

z

x μ
σ

= − = −

 
The probability of slope failure for water level 135.5m is calculated with: 

4

0

( 0) ( ) exp( ) 4.29 10
z

z

m
iz

f i
iz

p P Z P x x dx
μ
σμ λ

σ
− −

−∞
=

= ≤ = ≤ − = − = ×∑∫  (30) 
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Similarly, the probability of failure for different water levels can be calculated. Table 4 shows the 
results of failure probability for different water levels. 

Table 4. Failure probability results. 

Water level/m Minimum safety Factor Reliability index Failure probability/% Risk level/10−8

117.5 1.672 3.892 0.0076  
118.2 1.563 3.753 0.0112 0.516 
119.0 1.537 3.694 0.0126 1.096 
119.4 1.531 3.688 0.0139 1.221 
120.1 1.522 3.681 0.0144 2.608 
121.1 1.511 3.668 0.0157 13.845 
121.8 1.504 3.653 0.0162 14.690 
123.2 1.488 3.642 0.0168 15.210 
123.9 1.479 3.631 0.0175 15.795 
124.6 1.466 3.623 0.0188 16.705 
125.3 1.459 3.614 0.0199 17.810 
126.1 1.452 3.598 0.0238 20.150 
127.2 1.448 3.573 0.0251 11.278 
128.1 1.443 3.545 0.0278 17.063 
129.2 1.437 3.521 0.0327 13.943 
130.5 1.434 3.503 0.0392 6.279 
135.5 1.400 3.412 0.0429 17.875 
∑    186.082 

Table 5 shows the results obtained from Monte Carlo method, AFOSM method (Advanced First 
Order Second Moment Method) and the proposed method. The result by the proposed method is close 
to the results very well obtained by other two methods.  

Table 5. Comparison of failure probability results.  

Method Failure probability 
MCS 3.85E−04 

AFOSM 4.42E−04 
Proposed method 4.29E−04 

From the perspective of computational efficiency, three methods are compared. Figure 5 shows the 
convergence of the simulations. The computation results indicate that 42.6 × 104 reiterations is 
necessary for MCS method to converge but for LHS-MCS only 28.2 × 104 reiterations. LHS-MC 
decreases the amount of calculation by 38.0%. 2.6 × 104 simulations are performed to calculate the 
failure probabilities using the proposed method. Therefore, the Maximum-entropy method is the most 
efficient. As expected, considerably more trial runs are required for convergence in the case of a small 
probability of failure. 
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Figure 5. (a) Failure probability vs. simulation number with MCS method; (b) Failure 
probability vs. simulation number with LHS-MCS method. 

(a) MCS (b) LHS-MCS 

Number of simulation ×105

6. Conclusions 

This paper presents a method to evaluate the probability of the failure of slopes using the 
Maximum-entropy method. The PDF of the performance function for the slope stability is calculated 
using the Maximum-entropy method, which is a very effective approach to construct a probability 
density distribution given a finite number of moments. The usefulness of this method is demonstrated 
by using a numerical example. Numerical results show that Maximum-entropy method can accurately 
predict the system probability of failure of slopes. A comparison of results from the proposed method 
with AFOSM and MCS confirms the accuracy of the proposed method. The proposed method is more 
computationally efficient than the conventional MCS and LHS-MCS methods. 
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