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Abstract: This paper provides a comprehensive introduction of large random matrix
methods for input covariance matrix optimization of mutual information of MIMO systems.
It is first recalled informally how large system approximations of mutual information can
be derived. Then, the optimization of the approximations is discussed, and important
methodological points that are not necessarily covered by the existing literature are
addressed, including the strict concavity of the approximation, the structure of the argument
of its maximum, the accuracy of the large system approach with regard to the number of
antennas, or the justification of iterative water-filling optimization algorithms. While the
existing papers have developed methods adapted to a specific model, this contribution tries
to provide a unified view of the large system approximation approach.
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1. Introduction

It is now recognized that multiple-input multiple-output (MIMO) systems have the potential to
increase the capacity of wireless digital communication systems. If t and r denote the number of transmit
and receive antennas, the channel capacity gain can be in fact of the order of min(t, r) under certain
(often rather unrealistic) assumptions [1]. Although the use of MIMO systems begins to be normalized,
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a number of related theoretical issues are still to be solved. This paper addresses the design of input
covariance matrices chosen in order to maximize the (Gaussian) mutual information of the system.

This problem was extensively addressed in the past under various assumptions on the channel state
information. In this paper, we assume that the channel is known at the receiver side, but that only
its probability distribution, which is assumed complex Gaussian, is available at the transmitter side, a
context recognized to be realistic in wireless communications, as the channels encountered are mostly
fast fading whereas their statistics are slow fading. In this context of fast fading channels, we need to
consider the expectation of the mutual information w.r.t. the channel probability distribution instead of
the mutual information itself. The optimization of this average mutual information is of course more
difficult than the optimization of the mutual information itself, because the analytical expressions of the
cost function and of its first- and second-order derivatives are extremely complicated. The optimal
input covariance matrix thus cannot be expressed in closed form, and one has to resort to descent
algorithms in which the gradient and the Hessian of the cost function have to be evaluated using
computationally intensive Monte-Carlo simulations (see e.g., [2] in the context of Rician channels).
We note that for certain channel distributions (Rayleigh bi-correlated and uncorrelated Rician channels),
the singular vectors of the optimal precoder have closed form expressions, which, of course, simplifies
the optimization algorithms (see e.g., [3–5]).

Recently, it was proposed to use large random matrix tools to approximate the average mutual
information by a large system approximation, and to optimize the approximation versus the input
covariance matrix. This optimization problem is easier because the approximation can be very often
nearly expressed in closed form so that its maximization does not need Monte-Carlo simulations.
Large system approximations of average mutual information were derived in the past using the replica
method (see e.g., [6] for bi-correlated MIMO Rayleigh channels, [7] for frequency selective Rayleigh
channels, [8] for bi-correlated MIMO Ricean channels, [9] for jointly correlated Rician channel) or
rigorous random matrix methods ( [10] for bi-correlated MIMO Rayleigh channels, [11] for bi-correlated
MIMO Ricean channels, [12] for frequency selective Rayleigh channels, [13] for multiple access
Rayleigh MIMO channels). Optimization algorithms of the large system approximation were first
proposed in [14] in the context of bi-correlated MIMO Rayleigh channels. In [11,12] the authors
addressed in more details the Rician bi-correlated channels and the frequency selective Rayleigh
channels respectively, while [15] considered the Rician channel with interference. In [9] the authors
considered the case of jointly correlated Rician channel. Finally, in the context of multiple access
Rayleigh MIMO channels, the authors in [13] studied the multiple users input covariance matrices
optimization of the related large system approximation. In [16] the authors generalized this analysis
in the context of the multiple access jointly correlated Rician MIMO channels. Interestingly, the mutual
information provided by the optimization of the approximation appears numerically to be quite close
from the true optimum mutual information, even for realistic values of r and t. These observations were
confirmed by the theoretical results of [11,12], which showed that the relative error is a O

(
1
t2

)
term.

In this paper, we give a comprehensive introduction to the optimization of large system approxima-
tions of average mutual information of MIMO channels. We note that the main results of this paper
were already presented in [11,12]. However, the focus of [11,12] is on the detailed derivation of the
large system approximations, while the present paper concentrates on their optimization. In particular,
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we emphasize on methodological issues that are often partially—if at all—addressed. Another benefit
of this paper is to provide, as much as possible, a unified view of the optimization of the large system
approximation in the context of various kinds of MIMO channel, whereas the above referenced papers
develop tools that seem specific to each particular model. Generally speaking, the writing style of this
paper is rather informal, and hopefully easier to understand. The interested reader may refer to [11,12]
for a rigorous presentation.

2. General Principles

2.1. Optimization of the Average Mutual Information

We consider a flat fading MIMO system equipped with t transmit antennas and r receive antennas. In
this context, the received observation at time n is a r-variate signal y(n) given by:

y(n) = Hx(n) + v(n) (1)

where x(n) represents the t-dimensional signal sent at time n at the transmitter side, and where H is the
r × t channel matrix. (v(n))n∈Z is a complex white Gaussian noise such that E(v(n)v(n)H) = σ2Ir.

Channel matrix H is assumed to be a complex Gaussian random matrix (Matrix H is said complex
Gaussian if the rt-dimensional vector h = vec(H) is complex Gaussian, i.e., the probability distribution
of (Re(h)T , Im(h)T )T is Gaussian and if E

[
(h− E(h))(h− E(h))T

]
= 0) whose current value is

known at the receiver side and whose probability distribution is known at the transmitter side. If Q

denotes the covariance matrix of x(n) normalized in such a way that 1
t
Tr(Q) = 1, the (Gaussian)

average mutual information of model (1) is given by [1]:

I(Q) = EH log det

[
Ir +

HQHH

σ2

]
(2)

where EH represents the mathematical expectation operator w.r.t. the distribution of matrix H.
In the following, we denote by C the cone of all non-negative (positive semi-definite) matrices Q, and

by C1 the set of all matrices Q ∈ C for which 1
t
Tr(Q) = 1. The ergodic capacity of the channel model (1)

is defined as the maximum of I(Q) over the set C1, and is known to represent the maximum rate that can
be transmitted reliably when H is known at the receiver and when its probability distribution is known
at the transmitter side. In particular, using as input covariance matrix the argument of the maximum of
I(Q) allows to transmit reliably at the largest possible rate. This explains why the maximization of I(Q)

over the set C1 is important.
Function Q → I(Q) is concave, and under some additional assumptions, strictly concave on the

convex set C1. Therefore ([17]), the maximization of I(Q) over C1 has a unique argument, which is
denoted Q∗ in the following. In general, Q∗ has no closed form expression. Therefore, its evaluation
needs the use of descent algorithms which, due to the concavity of I and the convexity of C1, are
convergent. In order to implement such algorithms, it is necessary to be able to evaluate I and its
first and second derivatives at each point. As the analytical expressions of these functions are in general
extremely complicated, the simplest solution consists in using Monte-Carlo evaluations. This, of course,
leads to computationally intensive algorithms.
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2.2. Large System Approximation of I(Q)

2.2.1. The Case Q = I

In this paragraph, we first introduce informally how it is possible to derive a large system
approximation of the mutual information I(I) corresponding to the case where the covariance matrix
of the transmitted signal is Q = I. In order to simplify the notations, we denote I(I) by I .

Background on the behaviour of the eigenvalue distribution of HHH Let Hr,t be a r × t complex
Gaussian random matrix representing the channel matrix of a MIMO system (we indicate that H is a
r× tmatrix by denoting H by Hr,t), and consider its associated Gram matrix defined by Hr,tH

H
r,t. Under

certain assumptions on the probability distribution of Hr,t (see the examples below), it appears that the
empirical eigenvalue distribution µ̂r,t of Hr,tH

H
r,t defined as 1

r

∑r
i=1 δ

(
λ− λi(Hr,tH

H
r,t)
)

tends to have a
deterministic behaviour when the dimensions r and t converge to +∞ in such a way that t

r
→ c, where

0 < c < +∞. In order to shorten the notations, t → +∞ stands in the following for r and t converge
to +∞ in such a way that t

r
→ c. This is equivalent to saying that it exists deterministic probability

measures µr,t (which depend on the dimensions r and t) for which

1

r

r∑
i=1

φ
(
λi(Hr,tH

H
r,t)
)
−
∫
φ(λ) dµr,t(λ)→ 0 (3)

almost surely when t → +∞ for each well chosen test function φ. Sometimes, the measures µr,t also
converge towards a probability distribution µ∗, which does not depend on the values of (r, t) but only
on c = lim t

r
. In this case, the eigenvalue distribution converges towards µ∗, which is called the limit

eigenvalue distribution Hr,tH
H
r,t. In order to illustrate the above phenomenon, we consider the simplest

situation in which the entries of Hr,t are independent identically distributed (i.i.d.) zero mean random
variables of variance 1

t
, and where c ≤ 1. In this case, the measure µr,t is absolutely continuous, and its

density pr,t(λ) is given by:

pr,t(λ) =
r

2πλ

√
[(1 +

√
1/r)2 − λ][λ− (1−

√
1/r)2]

if λ ∈ [(1−
√
1/r)2, (1 +

√
1/r)2]

= 0 otherwise

The corresponding distribution is called the Marčenko–Pastur distribution, and was introduced for the
first time in [18].

In order to simplify the notations, we no longer mention the dimensions r and t in the following, and
denote Hr,t, µ̂r,t, µr,t by H, µ̂, µ respectively. In order to establish that µ̂ has a deterministic behaviour
when t → +∞, it is well known that it is sufficient to establish that (3) holds for φ(λ) = 1

λ+σ2 for
each σ2 > 0 (see e.g., [19,20]). In order to reformulate (3) for φ(λ) = 1

λ+σ2 , we introduce the
Stieltjes transform sν of a positive measure ν carried by R+, which is the function defined for each
z ∈ C− R− as:

sν(z) =

∫
R+

1

λ+ z
dν(λ) (4)



Entropy 2012, 14 2126

Equation (3) for φ(λ) = 1
λ+σ2 for each σ2 > 0 is thus equivalent to:

lim
t→+∞

[
sµ̂(σ

2)− sµ(σ2)
]
= 0 (5)

for each σ2 > 0 because

sµ̂(σ
2) =

1

r

r∑
i=1

1

λi (HHH) + σ2

and
sµ(σ

2) =

∫
R+

1

λ+ σ2
dµ(λ)

In order to prove (5), a possible approach is to establish that sµ̂(σ2) has the same asymptotic behaviour
as a deterministic quantity which appears to coincide with the value at point σ2 of the Stieltjes transform
of a certain probability measure µ carried by R+. For this, it is useful to introduce the resolvent of matrix
HHH defined as the r × r matrix valued function S defined for each σ2 > 0 by:

S(σ2) =
(
HHH + σ2Ir

)−1
(6)

It is important to notice that

sµ̂(σ
2) =

1

r
TrS(σ2) (7)

Under suitable hypotheses on H, the random entries of S(σ2) turn out to have the same behaviour as the
entries of a deterministic r × r matrix T(σ2), which, in particular, implies that

1

r
TrS(σ2)− 1

r
TrT(σ2)→ 0

The entries of matrix T(σ2) can be expressed in closed form in terms of the (unique) positive solutions
(δj(σ

2))j=1,...,n, (δ̃i(σ
2))i=1,...,m of a nonlinear system of n+m equations depending on r, t, σ2, and the

statistical properties of H. This nonlinear system of equations is called in [21] the canonical equations
associated to the random matrix model H. The number of unknowns m + n depends on r, t and the
statistics of H. Then, it is shown that function σ2 → 1

r
TrT(σ2) coincides with the Stieltjes transform of

a certain probability measure µ, which, in turn, establishes that (5) holds for each σ2. It is also useful to
notice that the entries of matrix S̃(σ2) defined as

S̃(σ2) =
(
HHH + σ2It

)−1
(8)

have the same behaviour as the entries of a t × t deterministic matrix T̃(σ2). These entries can be
evaluated in terms of the solutions of the above-mentioned canonical equations.

We also mention that it is often possible to evaluate the accuracy of the approximations. In the context
of a number of complex Gaussian random matrix models, it holds that

E
∣∣∣∣1rTrS(σ2)− E

1

r
TrS(σ2)

∣∣∣∣2 = O

(
1

t2

)
(9)

E
[
1

r
TrS(σ2)

]
− 1

r
TrT(σ2) = O

(
1

t2

)
(10)
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Large system approximation of I We finally consider the problem of approximating
I = E

(
log det(Ir +

1
σ2 HHH)

)
. We first note that

1

r
log det(Ir +

1

σ2
HHH) =

1

r

r∑
i=1

log
(
1 + λi(HHH)/σ2

)
and thus coincides with a functional of the eigenvalues of HHH . It can therefore be approximated by a
deterministic term that can very often be expressed in an explicit way. In order to explain this, we use
the following well-known identity:

1

r
log det

(
I +

1

σ2
HHH

)
=

∫ +∞

σ2

(
1

ω2
− 1

r
TrS(ω2)

)
dω2 (11)

As 1
r
TrS(ω2) can be approximated by 1

r
TrT(ω2), it can be shown that

1

r
log det

(
I +

1

σ2
HHH

)
−
∫ +∞

σ2

(
1

ω2
− 1

r
TrT(ω2)

)
dω2 → 0 (12)

But, in the context of the various usual MIMO models, it turns out that∫ +∞

σ2

(
1

ω2
−1
r
TrT(ω2)

)
dω2=

1

r

[
log det

(
σ2T(σ2)

)−1
+log det

(
σ2T̃(σ2)

)−1
−g(σ2, δ(σ2), δ̃(σ2))

]
(13)

where δ(σ2) = (δ1(σ
2), . . . , δn(σ

2))T and δ̃(σ2) = (δ̃1(σ
2), . . . , δ̃m(σ

2))T represent the solutions of
the nonlinear system of m + n equations governing the entries of T(σ2) and where g is a well chosen
function that is expressed in closed form. Taking the mathematical expectation of (12), and using that
the error between E

(
1
r
TrS(ω2)

)
and 1

r
TrT(ω2) is a O

(
1
t2

)
term for each ω2 (see Equation (10)), it can

be shown that

I/r = E
[
1

r
log det

(
I +

1

σ2
HHH

)]
=

1

r

[
log det

(
σ2T(σ2)

)−1
+ log det

(
σ2T̃(σ2)

)−1
− g(σ2, δ(σ2), δ̃(σ2))

]
+ O

(
1

t2

)
or equivalently

I = I + O

(
1

t

)
(14)

where the large system approximation I of I is defined by:

I = log det
(
σ2T(σ2)

)−1
+ log det

(
σ2T̃(σ2)

)−1
− g(σ2, δ(σ2), δ̃(σ2))

As I and I scale linearly with twhen t increases, Ref (14) implies that the relative error between I and its
large system approximation is a O

(
1
t2

)
term, and thus decreases rather fast towards 0 when t increases.

This explains partially why large system approximation of mutual information are very accurate even for
moderate number of transmit and receive antennas.
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Examples In order to illustrate these results, we provide the expressions of T, T̃ and I in the context
of useful random matrix models. We first consider the case where H can be written as:

H =
1√
t
C1/2XC̃1/2 (15)

where the entries of X are complex Gaussian i.i.d. random variables with zero mean and variance 1 and
where C and C̃ are r × r and t× t deterministic positive matrices such that

sup
r
‖C‖ < +∞, sup

t
‖C̃‖ < +∞ (16)

Then, it can be shown that the nonlinear system of equations:

κ =
1

t
TrC

[
σ2(Ir + κ̃C)

]−1 (17)

κ̃ =
1

t
TrC̃

[
σ2(It + κC̃)

]−1
(18)

has a unique pair of positive solutions denoted (δ(σ2), δ̃(σ2)). Matrices T(σ2) and T̃(σ2) introduced
above are given by:

T(σ2) =
[
σ2(Ir + δ̃(σ2)C)

]−1
(19)

T̃(σ2) =
[
σ2(It + δ(σ2)C̃)

]−1
(20)

The two canonical equations defining (δ(σ2), δ̃(σ2)) can therefore be written as:

δ(σ2) =
1

t
TrCT(σ2) (21)

δ̃(σ2) =
1

t
TrC̃T̃(σ2) (22)

The corresponding large system approximation I of I is given by:

I = log det
(
I + δ̃(σ2)C

)
+ log det

(
I + δ(σ2)C̃

)
− t σ2 δ(σ2)δ̃(σ2) (23)

so that function g defined by Equation (13) is given by g(σ2, δ, δ̃) = t σ2 δ δ̃. It is useful to justify
the above expression of I because the proof below extends in the context of other models. For this,
it is necessary to establish that Equation (13) holds for the above function g. It can be shown that the
right-hand side of (23) converges towards 0 when σ2 → +∞. Therefore, it remains to check that the
derivative w.r.t. σ2 of the right-hand side of (23) coincides with− r

(
1
σ2 − 1

r
TrT(σ2)

)
. We introduce the

following function V (σ2, κ, κ̃) of three variables:

V (σ2, κ, κ̃) = log det (I + κ̃C) + log det
(
I + κC̃

)
− t σ2 κ κ̃ (24)

which is obtained by replacing (δ(σ2), δ̃(σ2)) with the fixed parameters (κ, κ̃) into the expression of the
right-hand side of (23). A very important property of function V is:(

∂V

∂κ

)
κ=δ(σ2),κ̃=δ̃(σ2)

= 0 (25)(
∂V

∂κ̃

)
κ=δ(σ2),κ̃=δ̃(σ2)

= 0 (26)
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In fact, it is straightforward that(
∂V

∂κ

)
κ=δ(σ2),κ̃=δ̃(σ2)

= Tr

(
C̃
[
I + δ(σ2)C̃

]−1)
− t σ2δ̃(σ2)

and vanishes because δ̃(σ2) satisfies the canonical Equation (22). We obtain similarly that (26) holds
because δ(σ2) is the solution of the canonical Equation (21). In sum, it appears that (25, 26) are
equivalent to the canonical Equations 19 and 20.

The derivative w.r.t. σ2 of the right-hand side of (23) is given by:(
∂V

∂κ

)
κ=δ(σ2),κ̃=δ̃(σ2)

dδ

dσ2
+

(
∂V

∂κ̃

)
κ=δ(σ2),κ̃=δ̃(σ2)

dδ̃

dσ2
− t δ(σ2)δ̃(σ2)

and thus coincides with −t δ(σ2)δ̃(σ2) by (25, 26). Using (21, 22) as well as the expressions (19, 20) of
T(σ2) and T̃(σ2), this is easily seen to be equal to − r

(
1
σ2 − 1

r
TrT(σ2)

)
; indeed,

r

σ2
− TrT(σ2) = Tr

[((
σ2T(σ2)

)−1 − Ir

)
T
]
= Tr

[(
(Ir + δ̃(σ2)C)− Ir

)
T
]
= t δ(σ2)δ̃(σ2)

Hence, both sides of (13) have the same derivative w.r.t. σ2. Moreover, both sides converge towards
0 when σ2 → +∞, thus Equation (13) is verified for g(σ2, δ, δ̃) = t σ2 δ δ̃. This, together with (12),
establishes that (23) holds.

We now consider the case where channel H is given as:

H =
L∑
l=1

1√
t
C

1/2
l XlC̃

1/2
l (27)

where matrices (Xl)l=1,...,L are mutually independent complex Gaussian random matrices with i.i.d.
entries of mean 0 and variance 1 and where Cl and C̃l are r× r and t× t deterministic positive matrices
such that

sup
r
‖Cl‖ < +∞, sup

t
‖C̃l‖ < +∞ (28)

for l = 1, . . . , L. It is important to notice that the parameter L is independent of r and t, and thus does not
scale with the number of antennas. As shown in [7,12], model (27) is useful in the context of multipath
channels with independent paths. Matrices T and T̃ are given by:

T(σ2) =

[
σ2(Ir +

L∑
l=1

δ̃l(σ
2)Cl)

]−1
(29)

T̃(σ2) =

[
σ2(It +

L∑
l=1

δl(σ
2)C̃l)

]−1
(30)

where the (δl(σ
2), δ̃l(σ

2))l=1,...,L are the unique positive solutions of the system of 2L equations:

δl(σ
2) =

1

t
TrClT(σ2) (31)

δ̃l(σ
2) =

1

t
TrC̃lT̃(σ2) (32)
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for l = 1, . . . , L. The large system approximation of I is this time given by [7,12]:

I = log det

(
I +

L∑
l=1

δ̃l(σ
2)Cl

)
+ log det

(
I +

L∑
l=1

δl(σ
2)C̃l

)
− t σ2

L∑
l=1

δl(σ
2)δ̃l(σ

2) (33)

and thus corresponds to Equation (14) when g(σ2, δ, δ̃) = t σ2 δT δ̃ = t σ2
∑L

l=1 δlδ̃l. (33) is proved in
the same way as (23) by introducing the function of 2L+ 1 variables V (σ2,κ, κ̃) obtained by replacing
into the right-hand side of (33) functions δ(σ2), δ̃(σ2) by fixed vectors κ and κ̃, and by observing that
the canonical Equations (31, 32) are equivalent to:(

∂V

∂κl

)
κ=δ(σ2),κ̃=δ̃(σ2)

= 0 (34)(
∂V

∂κ̃ l

)
κ=δ(σ2),κ̃=δ̃(σ2)

= 0 (35)

We now consider a third random matrix model modeling bi-correlated Rician channels. We assume
that H can be written as:

H = A +
1√
t
C1/2XC̃1/2 (36)

where the entries of X are complex Gaussian i.i.d. random variables with zero mean and variance 1 and
where C and C̃ are r × r and t× t deterministic positive matrices such that

sup
r
‖C‖ < +∞, sup

t
‖C̃‖ < +∞ (37)

Matrix A is a deterministic r × t matrix satisfying:

sup
r,t
‖A‖ < +∞ (38)

This time, matrices T(σ2) and T̃(σ2) are given by:

T(σ2) =
[
σ2(Ir + δ̃(σ2)C) + A(I + δ(σ2)C̃)−1AH

]−1
(39)

T̃(σ2) =
[
σ2(It + δ(σ2)C̃) + AH(I + δ̃(σ2)C)−1A

]−1
(40)

where (δ(σ2), δ̃(σ2)) satisfy the same canonical Equations (21, 22) as in the case of the Rayleigh
bi-correlated MIMO channels, i.e.,

δ(σ2) =
1

t
TrCT(σ2) (41)

δ̃(σ2) =
1

t
TrC̃T̃(σ2) (42)

It can be shown as previously that the corresponding large system approximation I of I is now
given by [11,22]:

I = log det
(
I + δ̃(σ2)C

)
+log det

(
I + δ(σ2)C̃ +

1

σ2
AH(I + δ̃(σ2)C)−1A

)
−t σ2 δ(σ2)δ̃(σ2) (43)
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and corresponds to Equation (14) when g(σ2, δ, δ̃) is equal to:

g(σ2, δ, δ̃) = log det

(
I +

1

σ2
(I + δ̃C)−1A(I + δ̃C)−1AH

)
+ t σ2 δδ̃ (44)

A slightly more general non-zero mean MIMO model is:

H = A +
1√
t
U (D ◦X)VH (45)

where ◦ represents the Schur–Hadamard product, where D represents a r × t matrix such that Di,j ≥ 0

and supr,t ‖D‖ < +∞, and where U and V are deterministic unitary r × r and t × t matrices. A and
X have the same properties as in the context of model (36). This MIMO channel model was introduced
in [23], studied in the large system regime in the zero mean case in [10] and in the non-zero mean case
in [24] and, using the replica method, more recently in [9,16] in the context of the MIMO multi-access
channel. As we are essentially interested by the functionals of the eigenvalues of HHH , it is possible to
assume without restrictions that U and V are reduced to Ir and It respectively. In this case, matrices T

and T̃ are given by:

T(σ2) =
[
σ2(Ir + ∆̃(σ2)) + A(I + ∆(σ2))−1AH

]−1
(46)

T̃(σ2) =
[
σ2(It + ∆(σ2)) + AH(I + ∆̃(σ2)−1)A

]−1
(47)

where ∆(σ2) = Diag(δ1(σ
2), . . . , δt(σ

2)) and ∆̃(σ2) = Diag(δ̃1(σ
2), . . . , δ̃r(σ

2)) are two diagonal t× t
and r × r matrices whose elements are the positive solutions of the equations:

δj(σ
2) =

1

t
TrEjT(σ2) (48)

δ̃i(σ
2) =

1

t
TrẼiT̃(σ2) (49)

for i = 1, . . . , r, and j = 1, . . . , t, where Ej = Diag(D2
1,j, . . . ,D

2
r,j) and Ẽi = Diag(D2

i,1, . . . ,D
2
i,t).

The large system approximation I is now given by:

I = log det
(
I + ∆̃(σ2)

)
+ log det

(
I + ∆(σ2) +

1

σ2
AH(I + ∆̃(σ2))−1A

)
− σ2Tr

(
∆̃(σ2)T(σ2)

)
(50)

and corresponds to Equation (14) for a suitable function g(σ2, δ, δ̃). We finally consider the model
representing the MIMO multiple access channel addressed in [13]. H is now a r × Lt matrix given by:

H =

[
1√
t
C

1/2
1 X1C̃

1/2
1 , . . . ,

1√
t
C

1/2
L XLC̃

1/2
L

]
(51)

where the various matrices (Cl, C̃l,Xl)l=1,...,L satisfy the same conditions as in the context of model (27).
T and T̃ are the r × Lt and Lt× r matrices given respectively by:

T(σ2) =

[
σ2(Ir +

L∑
l=1

δ̃l(σ
2)Cl)

]−1
(52)

T̃(σ2) = diag
(
T̃1(σ

2), . . . , T̃L(σ
2)
)

(53)
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where matrices (T̃l(σ
2))l=1,...,L are defined by:

T̃l(σ
2) =

[
σ2(It + δl(σ

2)C̃l)
]−1

(54)

and where the (δl(σ
2), δ̃l(σ

2))l=1,...,L are the unique positive solutions of the system of 2L equations:

δl(σ
2) =

1

t
TrClT(σ2) (55)

δ̃l(σ
2) =

1

t
TrC̃lT̃l(σ

2) (56)

for each l = 1, . . . , L. The large system approximation I is equal to:

I = log det

(
I +

L∑
l=1

δ̃l(σ
2)Cl

)
+

L∑
l=1

log det
(
I + δl(σ

2)C̃l

)
− t σ2

L∑
l=1

δl(σ
2)δ̃l(σ

2) (57)

and thus correspond to Equation (14) when g(σ2, δ, δ̃) = t σ2 δT δ̃ = t σ2
∑L

l=1 δlδ̃l.
Note that this model can be obtained from model (27), which provides a unified view. If we consider

T
1/2
l = diag

(
0, . . . ,0, C̃

1/2
l ,0, . . . ,0

)
and Xl ∈ Cr×tL then H =

∑
l

1√
t
C

1/2
l XlT

1/2
l gets the same

expression as Equation (51); the large system approximation (57) is then easily obtained from (33).

2.2.2. The General Case Q 6= I

In order to address the general case Q 6= I, it is sufficient to exchange random matrix model H by
random matrix model HQ1/2, and to evaluate the large system approximation I(Q) of the corresponding
average mutual information I(Q). This is straightforward if the right multiplication of H by Q1/2 leads
to a random matrix model for which the large system approximations are easy to evaluate. This turns
out to be the case in the context of models (15, 27 and 36) and also in the context of model (51) if
Lt × Lt matrix Q is block diagonal, i.e., Q = Diag(Q1, . . . ,QL), a condition that fortunately holds in
the multiuser precoding schemes presented in [13]. For these models, H and HQ1/2 belong to the same
class of random matrix model and it is then sufficient to replace:

• for model (15), matrix C̃ by Q1/2C̃Q1/2,
• for model (27), matrices (C̃l)l=1,...,L by (Q1/2C̃lQ

1/2)l=1,...,L,
• for model (36), matrices A and C̃ by AQ1/2 and Q1/2C̃Q1/2 respectively,
• for model (51), matrices (C̃l)l=1,...,L by (Q

1/2
l C̃lQ

1/2
l )l=1,...,L (where Q = Diag(Q1, . . . ,QL))

in the various equations defining the large system approximations of I (note that the various matrices
C̃ are multiplied from both sides by Q1/2 as they are covariance matrices; e.g., the matrix C̃ is the
transmit covariance matrix of channel H, therefore the transmit covariance matrix of the channel HQ1/2

is Q1/2C̃Q1/2). In the context of model (45) the right multiplication by Q1/2 unfortunately modifies the
structure of the model. Using the replica trick [9] nevertheless derived a large system approximation
I(Q) of I(Q) (see also [16] in the case of the corresponding multi-user MIMO channel). It is however
not clear that the optimization of I(Q) completely fits with the unified presentation of the present paper.
Therefore, we will not elaborate on the model (45) in the following.
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In the context of models (15, 27 and 36), matrices T and T̃ as well as solutions of the canonical
equations δ, δ̃ still depend on σ2, but also on the covariance matrix Q. As the dependence versus σ2

does not play any role in the following, we now denote T, T̃, δ and δ̃ by T(Q), T̃(Q), δ(Q) and δ̃(Q)

respectively. It is easily seen that for the above 3 models the large system approximation of I(Q) can be
written as:

I(Q) = log det
(
I + Q G(δ(Q), δ̃(Q))

)
+ i(δ(Q), δ̃(Q)) (58)

where G(δ, δ̃) is a certain t × t positive matrix valued function given in closed form, and i(δ, δ̃) is
a function also given in closed form. As previously, it is useful to introduce the function V(Q,κ, κ̃)

defined by:
V(Q,κ, κ̃) = log det (I + QG(κ, κ̃)) + i(κ, κ̃) (59)

and which corresponds to the expression (58) of I(Q) but in which (δ(Q), δ̃(Q)) is replaced by the fixed
parameter (κ, κ̃). In others words, I(Q) can be written as:

I(Q) = V(Q, δ(Q), δ̃(Q)) (60)

In the context of models (15, 27 and 36), it holds that(
∂V

∂κi

)
κ=δ(Q),κ̃=δ̃(Q)

= 0 (61)(
∂V

∂κ̃j

)
κ=δ(Q),κ̃=δ̃(Q)

= 0 (62)

for each pair (i, j). As previously, these relations follow directly from the canonical equations verified by
the components of δ(Q) and δ̃(Q). It is important to notice that the boundedness assumptions (28, 38)
imply that I(Q) represents a valid large system approximation of I(Q) provided that the mean and the
covariance matrices associated to model HQ1/2 satisfy such assumptions. For this, it is sufficient to
assume that matrix Q satisfies:

sup
t
‖Q‖ < +∞ (63)

In particular, property I(Q) − I(Q) = O
(
1
t

)
holds if matrix Q satisfies (63). As explained below, this

induces some technical difficulties to justify the relevance of the approach consisting in replacing the
optimization of I(Q) by the optimization of I(Q).

We finally mention that in the context of model (51), if Q is block-diagonal, it holds that

I(Q) =
L∑
l=1

log det
(
I + Ql Gl(δ(Q), δ̃(Q))

)
+ i(δ(Q), δ̃(Q)) (64)

for certain matrix valued functions (Gl)l=1,...,L. In [13], it is proposed to optimize (64) w.r.t. matrices
(Ql)l=1,...,L under the constraints 1

t
Tr(Ql) = 1 for each l = 1, . . . , L. As the formulation of this problem

slightly differs from the optimization of I in models (15, 27 and 36), we will not discuss this issue in the
next sections. However, the results presented below can easily be adapted to the context of model (51).
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3. Concavity of the Large System Approximation

As the general approach of this paper is to optimize I(Q) w.r.t. Q, it is crucial to be able to prove
that Q → I(Q) is a strictly concave function defined on C1. We point out that this important point
was not addressed in [7,14,15]. While the strict concavity needs rather intricate arguments, specific
to each model, the concavity of I in the context of (15, 27 and 36) can be derived in a unified way.
For this, we use the scheme proposed in [11,12], and introduce for each integer m an augmented
mr × mt-dimensional model H(m) of the same kind in which the various covariance matrices and
mean matrices are exchanged by their Kronecker product by matrix Im (the new matrices are denoted
C

(m)
l , C̃

(m)
l ,A(m)), and in which the mutually independent i.i.d. r×t complex Gaussian random matrices

(Xl)l=1,...,L are replaced by mutually independent i.i.d. mr × mt complex Gaussian random matrices
(X

(m)
l )l=1,...,L. If Q is a t × t covariance matrix defined on the usual cone C, we consider the function

Im defined on C by:

Im(Q) = E
[
log det

(
Imr +

1

σ2
H(m)(Q⊗ Im)H

(m)H

)]
(65)

When m → +∞ while r and t remain fixed, the dimensions mr and mt of matrix H(m) both converge
to +∞ in such a way that mt

mr
= t

r
remains constant. For each model, the mutual information Im(Q)

has a large system approximation Im(Q ⊗ Im), which can be expressed explicitly in terms of Q and of
the solutions of the associated canonical equations denoted δ(m)(Q⊗ Im) and δ̃

(m)
(Q⊗ Im). However,

looking at the canonical equations characterizing models (15, 27 and 36), it is easy to check that δ(m)(Q⊗
Im) and δ̃

(m)
(Q⊗ Im) coincide with the solutions δ(Q) and δ̃(Q) of the canonical equation associated

to the non-augmented model, and that

Im(Q) = mI(Q) (66)

for each m. Moreover, it is clear that

lim
m→+∞

1

m

(
Im(Q)− Im(Q)

)
= 0

which implies that for each Q ∈ C, it holds that

lim
m→+∞

Im(Q)

m
= I(Q) (67)

Function Q → 1
m
Im(Q) is clearly concave on C. As the pointwise limit of concave functions is still

concave, (67) implies that I is concave on C.
As mentioned above, the strict concavity of the large system approximation is much more difficult,

and was proved in [11,12] in the context of the models (15, 27 and 36). Therefore, function I is
maximized on C1 by a unique matrix denoted Q∗ in the following.



Entropy 2012, 14 2135

4. Properties of I(Q∗)

4.1. Comparison between I(Q∗) and I(Q∗)

The optimization of I in place of I is justified if it is possible to establish that the optimum mutual
information I(Q∗) has the same asymptotic behaviour as I(Q∗) when t increases. As function I is an
approximation of function I , it seems reasonable to expect that the argument of the maximum of both
functions behave similarly, and thus that I(Q∗) − I(Q∗) → 0 when t → +∞. We however recall that
I(Q) is a valid approximation of I(Q) provided that supt ‖Q‖ < +∞. It is therefore intuitive that if Q∗

and/or Q∗ do not satisfy this condition, then the approach consisting in approximating Q∗ by Q∗ may
not be successful. Fortunately, the following result was established in [11,12] in the context of models
(15, 27 and 36).

Theorem 1 In the context of models (15, 27 and 36), under certain extra assumptions on the second
order statistics of H, it holds that

(1) supt ‖Q∗‖ < +∞
(2) supt ‖Q∗‖ < +∞
(3) I(Q∗)− I(Q∗) = O

(
1
t

)
This result is proved in [11,12], where the above-mentioned technical extra assumptions are specified
(they are related to the infima over the considered matrix dimension of the second order statistics smallest
eigenvalue—these infima need to be greater than 0). The proofs of items (1) and (2) are not obvious, and
the interested reader may refer to [11,12] for more details. We here only justify that item (3) holds if (1)
and (2) are verified. We write that[

I(Q∗)− I(Q∗)
]
+
[
I(Q∗)− I(Q∗)

]
=
[
I(Q∗)− I(Q∗)

]
+
[
I(Q∗)− I(Q∗)

]
(68)

As (1) and (2) hold, I(Q∗)−I(Q∗) and I(Q∗)−I(Q∗) are both O
(
1
t

)
terms. Moreover, I(Q∗)−I(Q∗)

and I(Q∗) − I(Q∗) are both positive terms by the very definition of Q∗ and Q∗. Therefore, both terms
are O

(
1
t

)
, which, in particular, implies that item (3) holds.

4.2. Structure of I(Q∗)

In the context of model (15), it is well known that the eigenvectors of the optimal matrix Q∗ coincide
with the eigenvectors of matrix C̃. Models (27, 36) are more complicated, and the structure of Q∗ is
unknown. The asymptotic approach presented in this paper allows to obtain insights on matrix Q∗, and
thus on an approximate capacity achieving covariance matrix. In order to present the corresponding
result, we recall that in the context of models (27, 36), I(Q) is given by (58). We denote by δ∗ and δ̃∗

the vectors δ(Q∗) and δ̃(Q∗), and by G∗ the matrix G(δ∗, δ̃∗). Then, the following result holds.

Theorem 2 Matrix Q∗ coincides with the maximizer of the following classical optimization problem:

sup
Q∈C1

log det (I + G∗Q) (69)
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Before giving the proof, we provide some comments on Theorem 2. It is first important to notice that this
result cannot in practice be used in order to evaluate matrix Q∗ because the parameters δ∗ and δ̃∗, which
depend on Q∗, are of course unknown. However, Theorem 2 is useful in that it gives some insights on
the structure of the nearly capacity achieving covariance matrix Q∗. More precisely, it is well known that
the eigenvectors of the maximizer of (69) coincide with the eigenvectors of G∗ and that its eigenvalues
are solutions of a water-filling algorithm based on the eigenvalues of G∗. It is useful to express matrix
G∗ in the context of models (27, 36). In the first case (27), G∗ is equal to:

G∗ =
L∑
l=1

δl,∗C̃l

If model (27) reduces to the Rayleigh bi-correlated MIMO channel, i.e., L = 1, one obtains that the
eigenvectors of Q∗ coincide with the eigenvectors of the transmit correlation matrix, a result consistent
with what is known on Q∗ in this context. Interestingly, if L > 1, we obtain that the eigenvectors of the
approximate capacity achieving covariance matrix Q∗ coincide with the eigenvectors of a weighted sum
of the covariance matrices (C̃l)l=1,...,L. Moreover, the eigenvalues of Q∗ are the solutions of a classical
water-filling algorithm based on the eigenvalues of

∑L
l=1 δl,∗C̃l.

In the context of model (36), matrix G∗ is given by:

G∗ = I + δ∗C̃ +
1

σ2
AH(I + δ̃∗C)−1A

In the case of an uncorrelated Rician channel (C and C̃ are both reduced to I), matrix G∗ is a linear
combination of I and of matrix AHA. The eigenvectors of Q∗ thus coincide with the right singular
vectors of A, a result in accordance with the structure of Q∗ in this context (see [5]). If C = I, the
eigenvectors of Q∗ coincide with the eigenvectors of a linear combination of C̃ and AHA, which is an
intuitively pleasant result. However, in the general case where C 6= I, this is no longer true, and a linear
combination of C̃ and the surprising matrix AH(I + δ̃∗C)−1A comes into play.

Proof of Theorem 2. We first introduce some classical concepts and results needed for the optimization
of Q 7→ I(Q).

Definition 1 Let φ be a function defined on the convex set C1. Let P,Q ∈ C1. Then φ is said to be
differentiable in the Gâteaux sense (or Gâteaux differentiable) at point Q in the direction P −Q if the
following limit exists:

lim
λ→0+

φ(Q + λ(P−Q))− φ(Q)

λ

In this case, this limit is noted 〈φ′(Q),P−Q〉.

Note that φ(Q + λ(P−Q)) makes sense for λ ∈ [0, 1], as Q + λ(P−Q) = (1− λ)Q + λP naturally
belongs to C1.

Proposition 1 Let φ : C1 → R be a strictly concave function. Then,

• φ is Gâteaux differentiable at Q in the direction P−Q for each P,Q ∈ C1,
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• Qopt is the unique maximizer of φ on C1 if and only if it verifies:

∀Q ∈ C1, 〈φ′(Qopt),Q−Qopt〉 ≤ 0 (70)

This proposition is standard (see for example Chapter 2 of [25]).
In order to prove Theorem 2, we apply the above proposition to function I . For this, we use function

V introduced in Equation (59). It is clear that maximizing over C1 function Q → log det (I + QG∗)

is equivalent to maximizing function Q → V(Q, δ∗, δ̃∗) because i(δ∗, δ̃∗) does not depend on Q. We
denote by 〈V′(Q∗, δ∗, δ̃∗),P −Q∗〉 the Gâteaux differential of function Q 7→ V(Q, δ∗, δ̃∗) at point Q∗
in direction P−Q∗. The proof then relies on the observation hereafter proven that, for each P ∈ C1,

〈I ′(Q∗),P−Q∗〉 = 〈V′(Q∗, δ∗, δ̃∗),P−Q∗〉 (71)

Assuming (71) is verified, it holds that the left-hand side of (71) is negative for each P because Q∗
maximizes I over C1. Therefore, we obtain that 〈V′

(Q∗, δ∗, δ̃∗),P −Q∗〉 ≤ 0 for each matrix P ∈ C1.
As the function Q 7→ V(Q, δ∗, δ̃∗) is strictly concave on C1, its unique maximizer on C1 coincides
with Q∗.

It now remains to prove (71). We first mention that functions Q→ δ(Q) and Q→ δ̃(Q) are Gâteaux
differentiable (this is proved in [11,12] in the context of models (27, 36)). Consider P and Q ∈ C1.
Then, (60) implies that

〈I ′(Q),P−Q〉 =〈V′(Q, δ(Q), δ̃(Q)),P−Q〉+
L∑
l=1

(
∂V

∂κl

)
κ=δ(Q),κ̃=δ̃(Q)

〈δ′l(Q),P−Q〉

+
L∑
l=1

(
∂V

∂κ̃l

)
κ=δ(Q),κ̃=δ̃(Q)

〈δ̃′l(Q),P−Q〉 (72)

Using relations (61, 62) and letting Q = Q∗ in (72) yields, as expected,

〈I ′(Q∗),P−Q∗〉 = 〈V′(Q∗, δ(Q∗), δ̃(Q∗)),P−Q∗〉

We mention that a number of authors used, at least implicitly, the result stated in Theorem 2,
but sometimes with partial or non-convincing justifications. We hope that the above proof is
more convincing.

5. Optimization Algorithms of I(Q)

The most straightforward way to optimize the strictly concave function Q → I(Q) on C1 consists
in implementing a descent algorithm. The constraint Q ≥ 0 may be taken into account by using, e.g.,
barrier interior point methods ([26]). However, an alternative tempting choice consists in proposing an
iterative water-filling algorithm based on the observation that for fixed (κ, κ̃), the optimization w.r.t. Q

of Q → V(Q,κ, κ̃) can be achieved by a classical water-filling. On the other hand, for fixed Q, the
solutions of the canonical equations (δ(Q), δ̃(Q)) can be easily evaluated. Therefore, a tempting choice
is to adapt Q and (δ(Q), δ̃(Q)) separately. In order to present the corresponding algorithms, we assume
that the canonical equations defining (δ(Q), δ̃(Q)) can be written as:

δ(Q) = f(Q, δ(Q), δ̃(Q)) (73)

δ̃(Q) = f̃(Q, δ(Q), δ̃(Q)) (74)
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In order to evaluate numerically the solutions of system (73, 74), it is possible to use the fixed-point
algorithm:

• Initialization: choose δ(0) and δ̃
(0)

as vectors with strictly positive components
• Evaluation of (δ(k+1), δ̃

(k+1)
) from (δ(k), δ̃

(k)
):

δ(k+1) = f(Q, δ(k), δ̃
(k)
) (75)

δ̃
(k+1)

= f̃(Q, δ(k), δ̃
(k)
) (76)

It is proved in [12] that this algorithm converges towards (δ(Q), δ̃(Q)) in the context of model (27).
However, the approach used in [12], based on analytic continuation methods, can be extended to the
other kinds of canonical equations.

The iterative water-filling algorithm proposed in [11,12] is a follows:

• Initialization: Q(0) = I

• Evaluation of Q(m+1) from Q(m): δ(m+1) and δ̃
(m+1)

are defined as the solutions of the canonical
Equations (73, 74) when Q = Q(m), and Q(m+1) coincides with the argument of the maximum
w.r.t. Q of log det

(
I + QG(δ(m+1), δ̃

(m+1)
)
)

.

It is proved in [11,12] that if this algorithm is convergent, then it converges towards the optimal matrix
Q∗. We do not reproduce the proof here, but mention that it is again based on Equation (71). While
the algorithm seems to converge very often, in [15] an example was quite cleverly found for which
sequence (Q(m))m≥0 may oscillate between two non-full rank positive matrices Q1 and Q2 such that
Rank(Q1) 6= Rank(Q2). Interestingly, [15] suggested a very simple modification of the above scheme
and proved its convergence in the context of model (15):

• Initialization: choose δ(0) and δ̃
(0)

as vectors with strictly positive components
• Evaluation of δ(n+1) and δ̃

(n+1)
from δ(n) and δ̃

(n)
: Q(n) coincides with the argument of the

maximum w.r.t. Q of log det
(
I + QG(δ(n), δ̃

(n)
)
)

and δ(n+1) and δ̃
(n+1)

are defined by:

δ(n+1) = f(Q(n), δ(n), δ̃
(n)

) (77)

δ̃
(n+1)

= f̃(Q(n), δ(n), δ̃
(n)

) (78)

The two schemes differ in that [15] does not solve the canonical equations at each iteration, but
implements (77, 78), which is somewhat similar to an iteration of the fixed point algorithm.

We finally provide here some simulation results to evaluate the performance of the optimization
algorithms in the context of model (27) with L = 5. In order to generate the matrices C(l) and C̃(l),
we use the propagation model introduced in [27]; for every l, the matrices C(l) and C̃(l) correspond to a
path, which is characterized by a mean angle of departure, a mean angle of arrival and an angle spread
for each of these two angles (these parameters are given in Table 1 in radians).
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Table 1. Paths angular parameters (in radians).

l = 1 l = 2 l = 3 l = 4 l = 5

mean departure angle 4.44 0.20 1.74 0.29 0.61

departure angle spread 0.09 0.08 0.04 0.11 0.01

mean arrival angle 4.12 0.22 5.34 5.87 4.26

arrival angle spread 0.09 0.08 0.05 0.08 0.03

In the simulations featured in Figure 1(a) (respectively in Figure 1(b)), we consider a MIMO system
with r = t = 4 (respectively r = t = 8). In both figures, we have represented the average mutual
information I(It) (i.e., without optimization), the optimal average mutual information I(Q∗) (i.e., with
an input covariance matrix maximizing the approximation I) obtained by the iterative water-filling
introduced in [11,12] (also called frozen water-filling [15]) and the same quantity I(Q∗) obtained this
time by the water-filling introduced by [15]. All the mutual information are evaluated by Monte-Carlo
simulations with 20 000 channel realizations. All the values given by iterative algorithms are calculated
with a relative precision of 10−3. The average mutual information I(Q∗) obtained with the Vu–Paulraj
direct approach [2] is also represented as a reference.

Figure 1. Comparison with Vu–Paulraj algorithm.
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(b) r = t = 8

Vu–Paulraj’s algorithm is a direct approach to optimize I(Q). It is composed of two nested iterative
loops. The inner loop evaluates Q

(n)
∗ = argmax {I(Q) + kbarrier log detQ} thanks to the Newton

algorithm with the constraint 1
t
TrQ = 1, for a given value of kbarrier and a given starting point Q

(n)
0 .

Maximizing I(Q) + kbarrier log detQ instead of I(Q) ensures that Q remains positive semi-definite
through the steps of the Newton algorithm; this is the so-called barrier interior-point method. The outer
loop then decreases kbarrier by a certain constant factor µ and gives the inner loop the next starting point
Q

(n+1)
0 = Q

(n)
∗ . The algorithm stops when the desired precision is obtained, or, as the Newton algorithm
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requires heavy Monte-Carlo simulations for the evaluation of the gradient and of the Hessian of I(Q),
when the number of iterations of the outer loop reaches a given number Nmax. As in [2], we chose
Nmax = 10, µ = 100, 20 000 trials for the Monte-Carlo simulations, and we started with kbarrier = 1

100
.

Both Figure 1(a) and Figure 1(b) show that maximizing I(Q) over the input covariance leads to
significant improvement of I(Q). All the approaches provide the same results: the two water-filling
procedures presented in this section and the Vu–Paulraj’s direct approach all produce the same results,
confirming the stated results.

Nonetheless, the execution times differ considerably from one algorithm to another. The indirect
approaches are computationally much more efficient: in Vu–Paulraj’s algorithm, the evaluation of the
gradient and of the Hessian of I(Q) needs heavy Monte-Carlo simulations, thus slowing down drastically
the calculations. Besides, the water-filling introduced by [8] is computationally slightly more efficient
than the so-called frozen water-filling. Instead of two nested iterative loops (the outer to optimize the
input covariance matrix Q, the inner to solve the canonical equations), there is only one loop performing
both calculations. For the present case with r = t = 8, an average of 39.7 fixed point iterations is needed
for the frozen water-filling to converge, whereas the water-filling introduced by [8] needs only 7.9 fixed
point iterations on average. Table 2 illustrates these comparisons; for the three algorithms the average
execution time to obtain the input covariance matrix is given, on a 2.93 GHz Intel Core 2 Duo CPU with
4 GB of RAM, for both r = t = 4 and r = t = 8.

Table 2. Average execution time.

r = t = 4 r = t = 8

Vu–Paulraj 503s 1877s

Frozen Water-filling 17.3ms 20.1ms

Water-filling of [8] 5.10ms 7.13ms

6. Concluding Remarks

In this paper, we have given a comprehensive introduction to the evaluation of the capacity achieving
covariance matrices of MIMO channels using large system approximation approaches. When the MIMO
channel is available at the receiver and its probability distribution is available at the transmitter, the direct
maximization of the mutual information w.r.t. the input covariance matrix leads to high complexity
algorithms using intensive Monte-Carlo simulations. An alternative approach consists in approximating
the mutual information in the large number of antennas regime and optimizing the approximation.
We have recalled how it is possible to derive the large system approximations in the context of a
number of MIMO channels, and have addressed their optimization. We have emphasized on important
methodological points that are not necessarily covered by the existing literature, such as the strict
concavity of the approximation, the structure of the argument of its maximum, the accuracy of the
large system approach w.r.t. the number of antennas, and the justification of iterative water-filling
optimization algorithms. We finally mention that the mutual information considered in this paper
allow to obtain insights on the performances of MIMO systems equipped with maximum likelihood
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receivers. As these receivers may be complex to implement, reduced complexity schemes such as the
minimum mean squares (MMSE) receivers are often considered. In this context, the relevant mutual
information to be optimized versus the input precoder is different, and is defined as the sum over the
transmit antennas of terms E(log(1 + βj)) where βj represents the output MMSE signal to interference
plus noise ratio associated to the stream sent by antenna j. The corresponding optimization problems
are more difficult because they are not convex as in the context of the present paper. However, high
accuracy large system approximation techniques can still be developed (see e.g., [28,29]), and provide
both insights on the optimal precoders and low complexity maximization algorithms. The case of
Rayleigh bi-correlated MIMO channels was recently addressed in [30] where the structure of the optimal
precoders was analyzed. However, an important work remains to be done in the context of the other usual
MIMO channels.
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