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Abstract:

 We explore the meaning of information about quantities of interest. Our approach is divided in two scenarios: the analysis of observations and the planning of an experiment. First, we review the Sufficiency, Conditionality and Likelihood principles and how they relate to trivial experiments. Next, we review Blackwell Sufficiency and show that sampling without replacement is Blackwell Sufficient for sampling with replacement. Finally, we unify the two scenarios presenting an extension of the relationship between Blackwell Equivalence and the Likelihood Principle.
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1. Introduction


One of the goals of statistics is to extract information about unknown quantities of interest from observations or from an experiment to be performed. The intuitive definition of information that we adopt from Basu [1] is:


“Information is what it does for you, it changes your opinion”.







One might further question:

	
Information about what?








We are interested in information about a quantity of interest, [image: there is no content]. A quantity of interest represents a state of nature that we are uncertain of. For example, one might be interested in the number of rainy days next year. For instance, θ can be this number and Θ all natural numbers smaller or equal to 366.




	
Where is the information?








Stating Θ already uses previous knowledge about θ. In the example in the last paragraph, we have informed that any year has at most 366 days and, therefore, θ must be smaller than this number. Besides stating Θ, one might also think that some values are more probable than others. This kind of knowledge is used to elicit the prior distribution for θ. The prior distribution represents a description of our present state of uncertainty about θ. Usually, the scientists’ goal is to decrease his uncertainty about θ. Thus, he collects data he believes to be related to the quantity of interest. That is, he expects that there is information about θ in the data he collects.




	
How is information extracted?








We focus on the case in which one uses Bayes’ theorem, to compute the posterior distribution for θ given the observation. The posterior distribution describes the uncertainty about the quantity of interest after calibrating the prior by the observation. (In practice, the posterior distribution can rarely be computed. In these cases, it usually is sufficient to compute a quantity proportional to the posterior or to sample from the posterior.) Information also depends on the statistical framework.




	
How much information is extracted?








In Section 3 we question: How much information is extracted from a given observation? Section 3.1 reviews common principles in Statistics and their relationship with the Likelihood principle. Section 3.2 presents a simple example and discusses information functions compatible with the Likelihood principle.



In Section 4 we consider questions related to experimental design: "How much information do we expect to obtain by performing an experiment?" or "What is the best choice among possible experiments?". Blackwell Sufficiency is a strong criterion for the comparison of experiments. The definition of Blackwell Sufficiency, with a new example, is presented in Section 4.1. If Θ is finite, then two experiments are equally informative in Blackwell’s sense iff the distribution of their likelihoods is the same (Torgersen [2]). In Section 4.2 we extend this result to a setting with no restrictions on Θ. Finally, since not all experiments are comparable in Blackwell’s sense, Section 4.3 explores the metrics discussed in Section 3.2 within the framework of decision theory to compare experiments.



In the following Section, we formalize the definitions here introduced.




2. Definitions


A probability space is a triple [image: there is no content] in which Ω is a set, ℑ is a σ-algebra on Ω and [image: there is no content] is a probability function. A quantity R corresponds to a function from Ω to a set ℜ. We define the probability space induced by R, [image: there is no content], where [image: there is no content] and [image: there is no content]. Finally, the σ-algebra induced on Ω by a quantity R is called [image: there is no content] and corresponds to [image: there is no content].



An experiment corresponds to a mechanism that allows observing a given quantity. The performance of an experiment corresponds to the observation of this quantity. In order to be concise, from this point forward, we use the word experiment for both the experiment itself and the quantity that is observed when the experiment is performed.



Many quantities of interest are not observable. Therefore, it is only possible to learn about them in an indirect manner. Here, we restrict ourselves to performing experiments that are related to the quantity of interest and applying Bayes’ Theorem to update our knowledge about the latter. For example, in Section 1, the quantity of interest θ corresponds to the number of rainy days next year. A possible experiment to learn about θ would be to collect pluviometric data from recent years. Let X be the quantity representing this yet unobserved data. For brevity, we also call X the experiment. Our uncertainty about θ after performing X and observing [image: there is no content] is given by [image: there is no content].



Let X be an experiment in [image: there is no content]. A function T:[image: there is no content]↦τ is called a statistic of X. Therefore, [image: there is no content] is also an experiment. Whenever there is no confusion, we use the letter T both to indicate the statistic T and the experiment [image: there is no content].



From now on, we restrict ourselves to quantities in [image: there is no content] with probability distributions that are discrete or are absolutely continuous with respect to the Lebesgue measure. [image: there is no content] is the conditional probability (density) function of the experiment X given the quantity of interest θ. After the experiment is performed we write [image: there is no content] for the likelihood function of X at point x. Whenever clear in the context, we write [image: there is no content] and [image: there is no content] for the former functions. The prior distribution of θ is denoted by [image: there is no content] and the posterior by [image: there is no content]. Bayes’s Theorem provides [image: there is no content].



Finally, we say that an experiment X:Ω↦[image: there is no content] is trivial for a quantity of interest [image: there is no content] if [image: there is no content] is independent of [image: there is no content]. This condition is equivalent to the assertion that, ∀θ′∈Θ,∀x∈[image: there is no content], [image: there is no content]. We use the word trivial to emphasize that X and θ are not associated. Consequently, performing X alone does not bring “information” about θ.




3. Information after an Experiment is Performed


3.1. Statistical Principles and Information


Let [image: there is no content] denote the information gained about the quantity of interest θ after observing outcome x in experiment X. We follow Basu [1] and Birnbaum [3] in restricting the possible forms for [image: there is no content] by assuming common statistical principles.



A statistic T:[image: there is no content]↦τ is sufficient if X and θ are conditionally independent given T, that is, X is a trivial experiment for θ given T. Thus, since X is a trivial experiment for θ given T, all the information about θ in X is gained by observing T alone. The Sufficiency Principle states that for any sufficient statistic T, for any x and y in [image: there is no content], if [image: there is no content] then [image: there is no content]. This principle is usually followed by all scientists, although not always explicitly mentioned: for inference about θ the scientist only needs to consider a sufficient statistic.



The Conditionality Principle is another important statistical principle: it can be seen as the reciprocal of Sufficiency. The latter states that a trivial experiment performed after T does not bring extra information about θ. The former states that a trivial experiment performed before another experiment does not bring extra information about θ. Let [image: there is no content] and [image: there is no content] be two arbitrary experiments. Let [image: there is no content] be an experiment jointly independent from θ, [image: there is no content] and [image: there is no content]. Let [image: there is no content] be the mixture of [image: there is no content] and [image: there is no content]. [image: there is no content] is performed in the following way: Perform Y. If the result of Y is 1 then perform [image: there is no content], else perform [image: there is no content]. The Conditionality Principle states that Inf((Y,[image: there is no content]),(i,x),θ)=Inf([image: there is no content],x,θ), [image: there is no content]. This principle is more controversial than that of Sufficiency.



The Likelihood Principle states that any two possible outcomes having proportional likelihood functions must provide the same information about the quantity of interest. Therefore, for any experiments [image: there is no content] and [image: there is no content] and any [image: there is no content]∈[image: there is no content]1 and [image: there is no content]∈[image: there is no content]2, if [image: there is no content], then Inf([image: there is no content],[image: there is no content],θ)=Inf([image: there is no content],[image: there is no content],θ). This principle is stronger than the Sufficiency Principle and the Conditionality Principle. Birnbaum [3], Basu 4] present the converse statement,



Theorem 1 The Sufficiency and the Conditionality Principles hold iff the Likelihood Principle holds.



A scientist who follows the Likelihood Principle can perform inference about the quantity of interest solely based on the likelihood function. Lindley and Philips [5] and Pereira and Lindley [6] provide examples in which some frequentist methods violate the Likelihood Principle. Indeed, Frequentist Statistics does not follow the Conditionality Principle. On the other hand, Wechsler et al. [7] shows that Bayesian Statistics follows the Likelihood Principle.




3.2. Information in the Observation


After performing an experiment, how much information about θ does one obtain? In the last section, we argued that the information obtained from points with proportional likelihoods should be the same. Nevertheless, this property only gives a vague idea about how the information function should be. In order to add precision to the definition of information we again rely on: “Information is what it does for you, it changes your opinion”.



Before one performs an experiment, his opinion about θ is given by his prior distribution. On the other hand, his opinion after the experiment is performed is given by his posterior distribution. Hence, since the information should represent the change in opinion, it should be a function of prior and posterior distributions. If prior and posterior distributions are equal, there is no gain of information.



Next, we use an intuitive example to illustrate some information functions that satisfy this property. Consider that there are 4 balls, 2 of them are black and 2 are white. 3 of these 4 balls are put in an urn. You do not know which ball was left out. You are offered the possibility of performing one of the following three experiments; Experiment 1 consists of taking only one ball from the urn; Experiment 2 consists of taking two balls with replacement and; Experiment 3 consists of taking two balls without replacement. Your goal is to guess the number of white balls in the urn, 1 or 2. Assume that, a priori, you do not believe any combination of balls is more likely, a uniform prior. Also assume that all balls in the urn have equal probability of being selected. Let θ be the number of white balls in the urn and [image: there is no content] be the number of white balls observed in the i-th experiment. The posterior probabilities P(θ=1|[image: there is no content]=j) are provided in Table 1.


Table 1. P(θ=1|[image: there is no content]=j).


	i/j
	0
	1
	2





	1
	0.33
	0.67
	-



	2
	0.20
	0.50
	0.80



	3
	0
	0.50
	1











Some information functions that can be applied to these experiments are:

	
The Euclidean distance: InfE([image: there is no content],[image: there is no content],θ)=∑jP(θ=j)-P(θ=j|[image: there is no content]=[image: there is no content])2.



	
InfV([image: there is no content],[image: there is no content],θ)=[E(θ|[image: there is no content]=[image: there is no content])-E(θ)]2.



	
Kullback–Leibler divergence: InfKL([image: there is no content],[image: there is no content],θ)=∑jP(θ=j|[image: there is no content]=[image: there is no content])logP(θ=j|[image: there is no content]=[image: there is no content])P(θ=j).








Which of the experiments is the most informative? That is, which experiment do you expect to most change your opinion? Table 2 does not provide a straightforward answer. For example, Experiment 1, in a worst case scenario, brings more information than Experiments 2 and 3. Similarly, P([image: there is no content]=1)<P(X3=1) and, thus, obtaining no information in Experiment 2 is less likely than in Experiment 3. On the other hand, Experiment 3 provides the largest possible increments in information. In the next section, we discuss how to decide which experiment is the most informative.


Table 2. From left to right, tables for InfE([image: there is no content],j,θ), InfV([image: there is no content],j,θ) and InfKL([image: there is no content],j,θ).


	i/j
	0
	1
	2
	i/j
	0
	1
	2
	i/j
	0
	1
	2





	1
	0.23
	0.23
	-
	1
	0.03
	0.03
	-
	1
	0.02
	0.02
	-



	2
	0.42
	0
	0.42
	2
	0.09
	0
	0.09
	2
	0.08
	0
	0.08



	3
	0.7
	0
	0.7
	3
	0.25
	0
	0.25
	3
	0.30
	0
	0.30













4. Information before an Experiment is Performed


4.1. Blackwell Sufficiency


Consider two experiments, X and Y, that depend on θ. One usually wants to choose between X and Y for inferences about θ based solely on the conditional distributions of X given θ and Y given θ. In this section we review the concept of Blackwell Sufficiency Blackwell [8] and show that it is a generalization of the Sufficiency Principle for comparison of experiments.



A statistic T is sufficient for an experiment X, if X and θ are conditionally independent given T. Consequently, T is sufficient iff [image: there is no content]. The conditional distribution of X given θ can be generated by observing T and sampling from [image: there is no content].



Let X∈[image: there is no content](X) and Y∈[image: there is no content](Y) be two statistical experiments. X is Blackwell Sufficient for Y if there exists a map H:[image: there is no content](X)×[image: there is no content](Y)↦[0,1], a transition function, satisfying the following properties:

	
For any y∈[image: there is no content](Y), [image: there is no content] is measurable on the σ-algebra induced by X, [image: there is no content].



	
For any x∈[image: there is no content](X), [image: there is no content] is a probability (density) function defined on ([image: there is no content](Y),ℑ|Y).



	
For any y∈[image: there is no content](Y), [image: there is no content], the conditional expectation of [image: there is no content] given θ.








Let [image: there is no content](X) and [image: there is no content](Y) be countable sets and define for all x∈[image: there is no content](X), [image: there is no content]∈[image: there is no content](Y) as a trivial experiment such that [image: there is no content]. From the definition of Blackwell Sufficiency, the quantities [image: there is no content] and [image: there is no content] are equally distributed: X is Blackwell Sufficient for Y if and only if one can obtain an experiment with the same distribution as Y by observing [image: there is no content] and, after that, performing the “randomization”, [image: there is no content].



Next, we provide two examples of Blackwell Sufficiency that address the question in the end of Section 3.2. Example 1 is a version of that in Basu and Pereira [9]. Example 2 is new and shows that sampling without replacement is Blackwell sufficient for sampling with replacement. Other examples of Blackwell Sufficiency can be found, for example, in Goel and Ginebra [10] and Torgersen [2].



Example 1 Let X and Y be two experiments, π a quantity of interest in [image: there is no content] and q and p known constants in [image: there is no content]. Representing the Bernoulli distribution with parameter p by Ber[image: there is no content], consider also that the conditional distributions of X and Y given π are, respectively:


[image: there is no content]











X is Blackwell Sufficient for Y regarding π.



Proof. Let [image: there is no content] and [image: there is no content], both independent of all other variables, then defining [image: there is no content], [image: there is no content] and [image: there is no content] are equally distributed. Therefore, X is Blackwell Sufficient for Y.



Example 2 Next, we generalize the example of Section 3.2. Consider an urn with N balls. θ of these balls are black and [image: there is no content] are white. n(≤N) balls are drawn from the urn.



By stating that ([image: there is no content],…,Xn) is a sample with replacement from the urn, we mean:

	
Conditionally on θ, [image: there is no content]∼BerθN;



	
Conditionally on θ, [image: there is no content],…,Xn are identically distributed;



	
[image: there is no content] is conditionally independent of ([image: there is no content],…,[image: there is no content]) given θ, [image: there is no content].








Analogously, [image: there is no content] corresponds to a sample without replacement, that is:

	
Conditionally on θ, [image: there is no content];



	
[image: there is no content],



[image: there is no content], [image: there is no content].








[image: there is no content] is Blackwell Sufficient for ([image: there is no content],…,Xn) regarding θ.



Proof. Define [image: there is no content], [image: there is no content] and [image: there is no content] two quantities [image: there is no content] and [image: there is no content]. These two quantities are such that:

	
[image: there is no content]∼BerN-iN, and is independent of all other variables;



	
[image: there is no content]|Ti=ti∼Bertii;



	
[image: there is no content], conditionally on [image: there is no content], [image: there is no content] is jointly independent of [image: there is no content] and θ.








Define:


[image: there is no content]=[image: there is no content]Yi+1+(1-[image: there is no content])[image: there is no content]











Conditionally on θ, [image: there is no content] Ber[image: there is no content], [image: there is no content]. Therefore, [image: there is no content] Ber[image: there is no content] and is conditionally independent of [image: there is no content] given θ. Finally, since [image: there is no content] is a function of [image: there is no content], [image: there is no content] and ([image: there is no content],…,B2), conclude that [image: there is no content] is independent of [image: there is no content] given θ. By the previous conclusions, [image: there is no content] is identically distributed to ([image: there is no content],…,Xn,θ). Also, by construction, [image: there is no content] is trivial, [image: there is no content]. Hence, sampling without replacement is Blackwell Sufficient for sampling with replacement.



Hence, in Section 3.2, Experiment 3 is Blackwell Sufficient for Experiment 2. Similarly, Basu and Pereira [11] shows that Experiment 3 is Blackwell Sufficient for 1. One expects that the information gained about θ by performing Experiment 3 is at least as much as one would obtain by performing Experiments 1 or 2. Are experiments 1 or 2 also Blackwell Sufficient for 3? In this case, the experiments would be equally informative. In the next subsection we present a theorem that characterizes when two experiments are equally informative in Blackwell’s sense and, thus, also answers the comparison of the experiments in Section 3.2.




4.2. Equivalence Relation in Experiment Information


In this section, the experiments can assume values in a countable set. For an experiment X:Ω↦[image: there is no content], we assume that X is measurable on the power set of [image: there is no content] and that ∀θ∈Θ,∃x∈[image: there is no content],P(x|θ)>0. No assumption is required of Θ.



Using Blackwell Sufficiency, it is possible to define an equivalence relation between experiments: X and Y are Blackwell Equivalent if any one is Blackwell Sufficient for the other, [image: there is no content]. This equivalence relates to the Likelihood Principle in Section 3.1 through:



Theorem 2 Let X∈[image: there is no content] and [image: there is no content] be two experiments. [image: there is no content] iff, for every likelihood function [image: there is no content],


∀θ∈Θ,P({x∈[image: there is no content]:LX(·|x)∝L(·)}|θ)=P({y∈[image: there is no content]:LY(·|y)∝L(·)}|θ)











The following notation reduces the algebra involved. Since all sets are countable, consider them to be ordered. Let, [image: there is no content], [image: there is no content] be a probability function, then we define that [image: there is no content] is a vector such that in its i-th position the value assumed is [image: there is no content]; [image: there is no content] is the i-th element of the ordering assumed in the set of values of X. Consider F to be an arbitrary map from [image: there is no content]×[image: there is no content] into [image: there is no content]. We also use the symbol F for the countably infinite matrix that has in its j-th row and i-th column position the value of F([image: there is no content],[image: there is no content]); [image: there is no content] is the i-th element of the ordering in [image: there is no content] and [image: there is no content] is the j-th element of the ordering in [image: there is no content]. Finally, a (transposed) transition matrix is such that all of its elements are greater or equal to 0 and for any column the sum of its elements is equal to 1.



Proof. (⇐) Let S:[image: there is no content]↦[image: there is no content]Θ and T:=[image: there is no content]↦[image: there is no content]Θ, such that [image: there is no content] and [image: there is no content] are likelihood nuclei of x and y—a likelihood nucleus is a chosen likelihood between all of those that are proportional. Recall from Basu [4] that S and T are, respectively, minimal sufficient statistics for X and Y. Therefore, [image: there is no content] and [image: there is no content]. By the hypothesis, [image: there is no content] and [image: there is no content] are identically distributed, therefore they are Blackwell Equivalent. By transitivity of Blackwell Equivalence [image: there is no content], since [image: there is no content].



(⇒) Consider the above statistics S and T. For simplicity, we call (For an arbitrary function f and set A, we define [image: there is no content] as the image of A through f.) [image: there is no content] and [image: there is no content]. We also call [image: there is no content] and [image: there is no content]. Clearly, by construction, for every two points in [image: there is no content] or in [image: there is no content], if their likelihood functions are proportional, then they are the same point. Since S and T are minimal sufficient statistics, [image: there is no content], [image: there is no content] and, therefore, [image: there is no content].



Since S is Blackwell Sufficient for T, there exists a map A:[image: there is no content]×[image: there is no content]↦[image: there is no content] such that A is a transition matrix and:


[image: there is no content]











On the other hand, T is also Blackwell Sufficient for S and, similarly, there exists a map B:[image: there is no content]×[image: there is no content]↦[image: there is no content] such that B is a transition matrix and:


[image: there is no content]











From these two equations, there exist two other transition matrices, [image: there is no content] and [image: there is no content], such that:


[image: there is no content]











Since M and N are transition matrices, respectively, from [image: there is no content] to [image: there is no content] and from [image: there is no content] to [image: there is no content], we consider the Markov Chains associated to them. All probability functions in the family [image: there is no content] are invariant measures for M. Note that there are no transient states in M. If there were, let x be a transient state in M, consequently [image: there is no content], [image: there is no content]. This is a contradiction from the assumption that ∀θ∈Θ,∃x∈[image: there is no content],P(x|θ)>0; Conclude that there is no transient state in M.



Next, we use the following result found in Ferrari and Galves [12]:



Lemma 1 Consider a Markov Chain on a countable space [image: there is no content] with a transition matrix M and no transient states. Let M have irreducible components [image: there is no content], …, [image: there is no content], …. Then, there exists an unique set of probability functions [image: there is no content], with [image: there is no content] defined in [image: there is no content], such that all invariant measures (μ) of M can be written as the following:



If [image: there is no content] is the i-th element of [image: there is no content], then μ([image: there is no content])=pk(i).q(k) and q is a probability function in N.



Recall that if a Markov Chain is irreducible, it admits a unique ergodic measure. This lemma states that any invariant measure of an arbitrary countable Markov Chain is a mixture of the unique ergodic measures in each of the irreducible components.



Using the lemma, since [image: there is no content] are irreducible components of M and [image: there is no content] is the element of number i of [image: there is no content], then [image: there is no content]. Consequently,


[image: there is no content]











If two states are in the same irreducible component then their likelihood functions are proportional. The same proof holds to matrix N.



The i-th element of [image: there is no content] is said to connect to the j-th element of [image: there is no content] if [image: there is no content]. Similarly, the i-th element of [image: there is no content] is said to connect to the j-th element of [image: there is no content] if [image: there is no content]. Note that every state in [image: there is no content] connects to at least one state in [image: there is no content] and vice-versa. This is true because A and B are transition matrices.



For all [image: there is no content]∈[image: there is no content], if [image: there is no content] connects to y∈[image: there is no content] then y only connects to [image: there is no content]. If there were a state [image: there is no content]∈[image: there is no content] such that y connected to [image: there is no content], then [image: there is no content] and [image: there is no content] would be on the same irreducible component of M. Therefore [image: there is no content] and [image: there is no content] would yield proportional likelihood functions and, by the definition of S, [image: there is no content]=[image: there is no content]. Similarly, if a state y∈[image: there is no content] connects to a state x∈[image: there is no content] then x connects solely to y.



Finally, we conclude that every state in [image: there is no content] only connects to one state in [image: there is no content] and vice versa. Also, if x∈[image: there is no content] connects to y∈[image: there is no content], then y connects to x and vice-versa. This implies that if x connects to y, then [image: there is no content], [image: there is no content]. Since S and T are sufficient the Theorem is proved.



Applying the above Theorem and the Likelihood Principle, one obtains the following result: if X is Blackwell Equivalent to Y,


Ae=x:Inf(X,x,θ)=e⊂[image: there is no content]1;Be=y:Inf(Y,y,θ)=e⊂[image: there is no content]2








then [image: there is no content], for all possible e—the value of information.


For any information function, [image: there is no content], satisfying the Likelihood Principle — if x and y yield proportional likelihood functions, then [image: there is no content] —, X is Blackwell Equivalent to Y, if and only if, the distribution of [image: there is no content] for X and Y are the same.







Also, since the likelihood nuclei are not equally distributed in the experiments in Section 3.2, conclude that no pair of them is Blackwell Equivalent. Hence, from the conclusions in 4.1, Experiment 3 is strictly more informative than Experiments 2 and 1.




4.3. Experiment Information Function


In the last section, we defined properties an information function should satisfy. We reviewed Blackwell Sufficiency as a general rule for comparing experiments. Nevertheless, not every two experiments are comparable through this criterion. Next, we explicitly consider functions capable of describing the information of an experiment. A possible approach to this problem is considering that the information gained is a utility function DeGroot [13] that the scientist wants to maximize. This way, it follows from DeGroot [13] that [image: there is no content]. Since we consider the data information function as non-negative, the utility function is concave, see DeGroot [14] for instance.



Proceeding with this approach, we compare the different information functions presented in Section 3.2. In this example, the maximum information is obtained when the posterior distribution is such that [image: there is no content] or [image: there is no content]. Therefore, to compare those information functions, we divide all of them by these maxima.



First, we consider Euclidean distance as the information function. In the first experiment, with probability 1 the gain of information is [image: there is no content]. That is, a small gain with a small risk. On the second experiment, with probability [image: there is no content] the gain is [image: there is no content] of the maximum and with probability [image: there is no content] it is [image: there is no content] of the maximum, moderate gain with moderate risk. In the third experiment one can get [image: there is no content] of the maximum possible information with probability [image: there is no content] and can get [image: there is no content] of the maximum possible information with probability [image: there is no content], maximum gain with great risk. In conclusion, if one uses the Euclidian’s “utility”, then he/she would have no preference among the three experimnents, since, for all of them, the expected information gain is of [image: there is no content]. This is surprising as the third experiment is Blackwell Sufficient for both the others.



Next, consider [image: there is no content][image: there is no content]. The information of an experiment using this metric is: [image: there is no content]. The expected information gain for each of the three experiments is, respectively, [image: there is no content], [image: there is no content] and [image: there is no content]. Thus, the third experiment is more informative than the second, which in turn is more informative than the first.



Similarly, considering the Kullback–Leibler divergence, the expected gain of information for each of the three experiments is, respectively, [image: there is no content], [image: there is no content] and [image: there is no content]. Again, the ordering induced by information gain in [image: there is no content],[image: there is no content],X3 agrees with the ordering induced by Blackwell Sufficiency. The difference of information between experiments 3 and 2 is much higher than that between 2 and 1 when using Kullblack–Leibler divergence than when using [image: there is no content].





5. Conclusions


We used Basu’s concept of information as a starting point for reflection. To operationalize Basu’s concept, we discussed some common Statistical Principles. While these principles are usually presented under a frequentist perspective, we chose a Bayesian one. For instance, the definition of the Conditionality Principle that we presented is slightly different from that in Birnbaum [3] and Basu [4]. Such principles are based on the idea that trivial experiments (or ancillary statistics) should not bring information about the parameter.



We also discussed comparison experiments. A known alternative to the classical sufficiency definition is that of Blackwell Sufficiency. Let X and Y be two experiments such that X is Blackwell Sufficient for Y, if you are restricted to choose only one, it should be X. We showed that sampling without replacement is preferable to with replacement in this sense. Blackwell Sufficiency is also useful for characterization of distributions, for instance Basu and Pereira [11].



Theorem 2 states that two experiments are Blackwell Equivalent if and only if their likelihood-function statistics are equally distributed conditionally on θ. Two applications of this Theorem are as follows. (i) If one believes in the Likelihood Principle and that two experiments are equally informative if the distribution of the information functions are equal, then the information equivalence between experiments induced by Blackwell Equivalence follows. (ii) To prove that an experiment is not Blackwell Sufficient for another is, in general, difficult: one must show that there is no transition function from one to the other. However, if X if Blackwell Sufficient for Y, using theorem 2, if the likelihood-function statistics, conditionally on θ, are not equally distributed, then Y is not Blackwell Sufficient for X. This is the case for both examples in Section 4.1 and, thus, Blackwell Equivalence does not hold.



We end this paper by evoking the memory of D. Basu who, among other teachings, inspires the authors with the illuminating concept of information: “Information is what it does for you, it changes your opinion”.
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