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Abstract: We examine the weak version of the third law of black hole thermodynamics in
the n-dimensional Einstein–Gauss–Bonnet system with a negative cosmological constant.
To see whether the extreme black hole solution with zero temperature is formed, we
investigate the motion of the thin shell that has the equal mass to the extreme black hole
in the background described by the non-GR branch solutions. The interior of the shell is
empty. Our analysis using the generalized Israel’s junction condition shows that the shell
can contract beyond a certain radius and the degenerate horizon is formed for same range of
parameters. Hence, this model can be a counterexample of the third law.
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1. Introduction

Black holes are characteristic objects to general relativity (GR). From the observational point of view,
recent data show the existence of one or more huge black holes in the central region of a number of
galaxies, and it becomes recognized commonly that the galaxies evolve together with such black holes.

From the theoretical point of view, there are a large number of interesting topics. Among them,
black hole thermodynamics is one of the most important themes (for a review see, e.g., [1]). It was
pointed out that there are remarkable relationship between the ordinary laws of thermodynamics and the
certain properties of black hole [2,3]. After that, the concept of a black hole temperature was established
by the discovery of the Hawking radiation [4,5], and evidences for the “generalized second law” were
proposed [6–10].

The third law of thermodynamics is formulated in a several ways. The statement given by Nernst,
which is sometimes called the strong version, asserts that the entropy of a system tends to a universal
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constant as its temperature approaches absolute zero. However, it can be easily checked that the analogue
of the strong version does not hold for Kerr–Newman black hole at least theoretically. There are still
some discussions on this violation [11]. In black hole thermodynamics the weak version of the third law
is more often discussed [2], which states that the temperature of a system cannot be reduced to zero in a
finite number of operations, i.e., the extreme black hole of which temperature is zero cannot be produced
by any physical processes. Several evidences for this unattainability principle were shown in GR [12–15]
except for one interesting counterexample in a black hole system with a non-Abelian hair [16].

On the other hand, black holes and their thermodynamics are one of the main topics also in
superstring-M theories, in particular, following the discoveries of the microscopic origin of black
hole entropy [17,18] and the AdS/CFT correspondence [19,20]. Since no much is known about the
non-perturbative aspects of the theory, taking string effects perturbatively into classical gravity is one
approach to the study of the quantum effects of gravity. Among the correction terms with respect to
the curvature in the low-energy supergravity action coming from superstrings, the simplest one can be
described by the Gauss–Bonnet (GB) term [21,22], which is ghost-free combinations [23,24] and gives
the second order field equations. The gravitational theory including the GB term is considered as one
of the modified gravity theories, which attracts much attention recently. For instance, the problem of
the dark energy is intensively studied in the context of modified gravity (See [25] for recent review and
references therein).

The black hole solutions in GB gravity were discovered by Boulware and Deser [26]. Since then,
many types of black hole solutions have been intensively studied (See [27,28], and references therein).
The black hole solutions are classified into the GR and the non-GR branches according to whether there
is GR limit or not, respectively. By the recent work, it was found that the black hole solutions in the
non-GR branch have peculiar properties [29]. In this paper, we show that the peculiar black hole solutions
also become the counterexample for the third law of black hole thermodynamics in the Einstein–GB-Λ
system. The only one counterexample of the weak version is given in [16] to the best of our knowledge.
There the discussion relies on a quasi-static treatment and the result can be considered as a prediction.
However, we consider an infalling matter and show that the extreme black hole is formed through such
dynamical process. This can be the direct evidence for the violation of the weak version of the third law.

It should be commented here that when we consider these objects, we need thermodynamics of the
black holes in generalized theories of gravity. Iyer and Wald formulated the black hole thermodynamics
in arbitrary diffeomorphism invariant theories of gravity [30–32]. In their formulation, the black hole
entropy is defined as a Noether charge and satisfies the first law of black hole thermodynamics.

In Section 2, we introduce our model and briefly review the black hole solutions in the Einstein–GB-Λ
system in higher dimensions. In Section 3, we derive the equation of motion of a thin shell around the
black hole by using the generalized Israel’s junction condition [33–35]. In Section 4, we investigate the
motion of the thin shell and show the violation of the third law for certain parameter range. In Section 5,
we give conclusions and discuss related issues and future work. Throughout this paper we use units such
that c = ~ = kB = 1. The Greek indices run µ, ν = 0, 1, · · · , n− 1.



Entropy 2012, 14 2293

2. Black Hole Solution in the Einstein–GB-Λ System

2.1. Model

We start with the n-dimensional action:

S =

∫
dnx
√
−g
[

1

2κ2n
(R− 2Λ + αLGB)

]
(1)

where R and Λ are the n-dimensional Ricci scalar and the cosmological constant, respectively.
κn :=

√
8πGn, where Gn is the n-dimensional gravitational constant. The GB Lagrangian LGB is,

LGB = R2 − 4RαβR
αβ +RαβγδR

αβγδ (2)

α is the coupling constant of the GB term. This type of action is derived from the superstring theory in
the low-energy limit [21,22]. Since α is related to inverse string tension in string theory, we assume that
α is non-negative.

The gravitational equation of the system Equation (1) is,

Gµν + αHµν + Λgµν = 0 (3)

where,

Gµν = Rµν −
1

2
gµνR (4)

Hµν = 2
[
RRµν − 2RµαR

α
ν − 2RαβRµανβ +R αβγ

µ Rναβγ

]
− 1

2
gµνLGB (5)

We assume the static spacetime and adopt the following line element:

ds2 = −f(r)e−2δ(r)dt2 + f−1(r)dr2 + r2dΩ2
n−2 (6)

where dΩ2
n−2 = γijdx

idxj is the metric of the unit (n − 2)-dimensional constant curvature space with
curvature k = 0, ±1.

2.2. Solutions

The solution of the gravitational equation is obtained as [26,36]:

f = k +
r2

2α̃
(1 + εx) (7)

δ ≡ 0 (8)

where we have defined α̃ := (n− 3)(n− 4)α, Λ = −(n− 1)(n− 2)/2`2,

x :=

√
1 + 4α̃

(
M̃

rn−1
− 1

`2

)
(9)
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M̃ :=
2κ2nM

(n− 2)Σk
n−2

(10)

The integration constant M is the mass of the black hole. Although we will also consider not only the
black hole solutions but also the AdS solution and singular solutions, we callM the mass of the solution.
Σk
n−2 is the volume of the unit (n− 2)-dimensional constant curvature space. There are two families of

solutions, which correspond to ε = ±1.
In the asymptotic region with large r, the solution is expanded as:

f = k +
r2

2α̃
(1 + εx0) +

εM̃

x0rn−3
(11)

where,

x0 :=

√
1− 4α̃

`2
(12)

It is noted that the conserved mass of the solution is M while the gravitational mass of the solution is,

Mg := −εM
x0

(
M̃g := −εM̃

x0

)
(13)

In the α→ 0 limit,

f = k − M̃

rn−3
+
r2

`2
(14)

for ε = −1 of Equation (7). This is the higher dimensional black hole solution in GR of which spherical
version (k = 1) was found by Tangherlini [37]. On the other hand, there is no GR limit for ε = +1. We
call solutions that have a minus (plus) sign the GR (non-GR) branch solution.

2.3. Properties of the Solutions

When the mass parameter vanishes M̃ = 0, the spacetime is pure vacuum expressed by Equation (7)
with x = x0. For a well-defined theory, the condition 4α̃ ≤ `2 should be satisfied. When 4α̃ = `2, the
pure vacuum solutions of both branches coincide. In this paper, we assume 4α̃ < `2.

We briefly show the properties of the solutions with the parameters n ≥ 6, k = −1 and ε = +1.
With this parameter, there is an extreme black hole solution without an electromagnetic charge and the
solutions have interesting properties from the viewpoint of the third law, as we will see below. The
properties of other solutions are summarized in [27,28].

The horizon radius rh is obtained by the condition f(rh) = 0. Figure 1 shows the M̃ -rh diagram. This
diagram shows that the horizon radius (or the area) decreases as the mass of the black hole increases.
This implies that the area theorem does not hold in this system. (It is confirmed that the second law of
black hole thermodynamics holds [27].) For the Reissner–Nordström black hole in GR, the charged shell
must be fallen into the non-extreme black hole against the Coulomb force, or the evaporation through
Hawking radiation must be completed to zero temperature within a finite time to obtain the extreme black
hole. However, these processes are forbidden [14]. For our black hole, we do not need such process but
only have to add some matter to the black hole. The black hole solutions with this type exist only for
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the parameter n ≥ 6, k = −1 and ε = +1. Although there is a possibility that the third law would be
violated for other parameters and dimensions, we explore this case in this paper as the first step.

Figure 1. The M̃ -rh diagrams of the static solutions in the six-dimensional Einstein–GB-Λ
system. We set 1/`2 = 1 (negative cosmological constant), k = −1, ε = +1 (the non-GR
branch) and α̃ = 0.2. For 0 < M̃ < M̃ex, the solution has a black hole horizon (the
upper one) and an inner horizon (the lower one). The dot with character “E” implies the
degenerate horizon.

The pure vacuum solution has a black hole event horizon, of which radius r0 is given by:

r20 =
`2

2

(
1−

√
1− 4α̃

`2

)
(15)

Although the solution has the black hole event horizon, the center is not singular but regular
and spacelike.

For M̃ = M̃ex, the solution has a degenerate horizon rex and represents the extreme black hole
spacetime. The mass of the extreme solution is,

M̃ = M̃ex =
2

n− 1

(
2α̃

r2ex
− 1

)
rn−3ex (16)

where the radius of the degenerate horizon is,

r2ex =
(n− 3)`2

2(n− 1)

[
1−

√
1− 4α̃

`2
(n− 1)(n− 5)

(n− 3)2

]
(17)

For 0 < M̃ < M̃ex, the solution has a black hole horizon and an inner horizon. The center of the
spacetime is timelike singularity. For M̃ > M̃ex, the solution has no horizon and represents the spacetime
with a globally naked singularity.
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3. Equation of Motion of the Thin Dust Shell

We define the trajectory of the (n− 1)-dimensional thin shell moves as t = t(τ) and r = R(τ) in the
n-dimensional spacetime with the metric Equations (6)–(8), where τ is the proper time on the shell. The
induced metric on the shell defined by hµν = gµν − nµnν is written as:

dl2 = −dτ 2 +R(τ)2dΩ2
n−2 (18)

The tangent vector of the shell is uµ = (ṫ, 0, · · · , 0, Ṙ). By the normalization condition uαuα = −1,
we find:

f 2ṫ2 − Ṙ2 = f (19)

The unit normal vector defined by uαnα = 0 becomes nµ = (−Ṙ, 0, · · · , 0, ṫ), where the normal vector
points to the outward direction r > R(τ).

The non-zero components of the extrinsic curvature Kµν := h α
µ h

β
ν ∇αnβ are:

Kαβu
αuβ = − 1

f ṫ

(
R̈ +

f ′

2

)
(20)

Kij =
f ṫ

a
gij (21)

where a prime denotes the differentiation with respect to r.
The junction condition at the shell is [34,35],

[Kij]± − hij[K]± + 2α
(

3[Jij]± − hij[J ]± − 2Piajb[K
ab]±

)
= −κ2nτij (22)

where,

Jij =
1

3

(
2KKiaK

a
j +KabK

abKij,−2KiaK
abKbj −K2Kij

)
(23)

Pijkl = Rijkl + 2hi[lRk]j + 2hj[kRl]i +Rhi[khl]j (24)

and τij is the energy-momentum tensor on the shell. We have introduced the bracket:

[X]± := X+ −X− (25)

where X± are X’s evaluated either on the outer (for the plus sign) or inner (for the minus sign) side of
the shell, and Pµνρσ is the divergence free part of the Riemann tensor, i.e.,

DαP
α
ijk = 0 (26)

The shell is assumed to be dust with the surface energy density ρ. Since the surface energy of the dust
shell is conserved [38], it behaves as:

d

dτ
(ρRn−2) = 0 (27)

The proper mass of the dust shell defined by Ms = Σk
n−2R

n−2ρ remains constant. The difference
between the gravitational mass and the proper mass Ms −Mg can be interpreted as a kind of binding
energy of the shell.
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The (τ, τ) component of the junction condition (22) is,[
1− 2α(n− 1)(n− 6)Ṙ2

3R2
+

4αk

R2

][
f ṫ
]
±

R
− 2α̃

3

[
f 2ṫ
]
±

R3
= − κ2n

n− 2
ρ = − M̃s

2Rn−2 (28)

where,

M̃s :=
2κ2nMs

(n− 2)Σk
n−2

(29)

By using the normalization condition (19), the equation of the shell becomes:[
1− 2α(n− 1)(n− 6)Ṙ2

3R2
+

4αk

R2

][√
f + Ṙ2

]
±
− 2α̃

3R2

[
f

√
f + Ṙ2

]
±

= − M̃s

2Rn−3 (30)

4. Motion of the Shell in 6-dimensional Spacetime

In the 5-dimensional spacetime, the solution (7)–(9) is not an extreme black hole and T 6= 0 for
any M . For n ≥ 6, the black hole solutions have qualitatively same properties independent of the
dimensions. Among these dimensions, Equation (30) becomes simple for n = 6. Hence, we focus on
the 6-dimensional spacetime. In 6-dimensional spacetime, the Equation of motion (30) can be written in
a simple form as: [

D

√
f + Ṙ2

]
±

= −C (31)

where,

C :=
M̃s

2R3
(32)

D := 1 +
4αk

R2
− 2α̃

3R2
f (33)

This equation can be written as:

1

2
Ṙ2 + V (R) = 0 (34)

where,

V (R) = − 1

2(D2
+ −D2

−)2

{
C2(D2

+ +D2
−)− (D2

+ −D2
−)(f+D

2
+ − f−D2

−)

±2C
√
D2

+D
2
−
[
C2 − (f+ − f−)(D2

+ −D2
−)
]}

(35)

The signs in the potential V should be chosen to satisfy the original Equation (31). Since the “energy”
of the shell is zero in Equation (34), the shell can move the region where V (R) ≤ 0.

When α = 0, i.e., in GR without the GB term, the potential of the shell is,

V (R) =
1

2C2

[
f+f− −

1

4
(f+ + f− − C2)2

]
(36)

We assume the inside of the dust shell is empty and its metric function f is described by Equation (7)
with x = x0 and that the exterior solution is described by Equations (7), (9) and (16), i.e., the extreme
black hole spacetime.
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Here we set the parameter as α̃ = 0.2, `2 = 1, k = −1 and ε = 1. (When the cosmological constant
is nonzero, the curvature radius ` is scales out by introducing new variables as r := r/`, t := t/`,
M̃ := M̃/`n−3, α := α/`2, R := R/`, τ := τ/`, and M̃s := M̃s/`

n−3.) For the exterior solution,
the mass parameter is M̃ex = 0.035771. When the shell shrinks inside the radius rex = 0.276393, the
degenerate horizon is formed at r = rex.

Figure 2 shows the potential V (R) of the shell. V (R) behaves as −R4 for large R, which means
that Ṙ ∝ R2. (The asymptotic behavior of the shell is discussed in Appendix A.) For the case with
M̃s = 0.1M̃ex, the contracting shell from the infinity bounces at r = 5.1648 and expands to infinity.
This means that the degenerate horizon is not formed and the spacetime is everywhere regular.

Figure 2. “Potential” of the thin shell around the black hole. We set α̃ = 0.2, `2 = 1,
k = −1, ε = 1, and M̃s = 0.1M̃ex (red solid curve), M̃s = 2.0M̃ex (blue dashed curve). The
shell can move the region where V (R) ≤ 0.
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# " % & ' $ ( ) *

On the other hand, for the case with M̃s = 2.0M̃ex, the contracting shell from the infinity continues to
collapse to the center since V (R) < 0 everywhere and would form the central singularity. In this case, the
degenerate horizon is formed without any irrelevant phenomena. Hence, this can be the counterexample
to the third law of the black hole thermodynamics.

5. Conclusions

In this paper we examined the third law of black hole thermodynamics and found a counterexample
in the n-dimensional Einstein–GB system with the negative cosmological constant. The spacetime
is assumed to have symmetry corresponding to the isometries of an (n − 2)-dimensional maximally
symmetric space with negative curvature. To obtain the extreme black hole solution with zero
temperature, we investigate the motion of the thin shell that has the equal mass to the extreme black
hole. The interior of the shell is empty. Our analysis using the generalized Israel’s junction condition
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shows that the shell can contract beyond a certain radius and the degenerate horizon is formed for same
range of parameters. This model can be a counterexample of the third law.

We only consider the six-dimensional spacetime concretely. However, that violation of the third law
is expected also in higher-dimensions. In this case, it seems difficult to derive the potential function of
the shell, and Equation (30) should be solved directly. It should be noted here that our counterexample
presumably comes about the peculiar properties of the black hole solutions in the non-GR branch. It is
not sure whether the third law is violated for more physically reasonable black holes or not. Furthermore,
the shell in our analysis is infinitely thin and produces a kind of discontinuous behavior. It gives more
strict result to consider a thick shell or more physically reasonable matter fields. As mentioned above,
our system is highly different from the physical situation, and the third law in ordinary thermodynamics
is an empirical law that is not needed to construct the thermodynamics. In this sense, it is difficult to point
out direct effects of our counterexample on the physics at this stage. However, even so the discovery of
the counterexample of the third law in GB gravity gives potential applicability to unsolved problem in
the context of modified gravity. These prospects are left for possible future investigations.
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Appendix

A. Asymptotic Motion of the Shell

In this appendix, we briefly examine the motion of a shell in the asymptotic region (r → ∞) for the
non-GR branch solution. For the large radius,

f+ = f− −
M̃g

R3
(37)

Note that M̃g defined by Equation (13) is negative for the non-GR branch solution. Substituting this
equation into Equation (31), we obtain,

x0 +
8α(k + Ṙ2)

R2
= −M̃s

M̃g

√
k + Ṙ2 +

R2

2α̃
(1 + x0) (38)

The leading order gives,

Ṙ = ∓ M̃s

8αx0M̃g

R2 (39)

for the non-GR branch. The plus and minus signs mean the expanding and contracting shells,
respectively. This is consistent with Figure 2. This means R ∝ ∓(τ − τ0)

−1, where τ0 is the time
when the shell is at infinity. Hence, the shell reaches AdS infinity within a finite time.

On the other hand, in GR, when the radius of the shell becomes large, it inevitably bounces at some
finite radius in the AdS spacetime because the potential Equation (36) behaves as:

V (R) ∼ +
R2

2`2
(40)

The difference comes from the gravitational mass of the shell. In the Einstein–GB-Λ system, the
gravitational mass of the shell defined at infinity becomes negative for the non-GR branch solution.
Hence, the shell seems to have negative surface energy, and the expansion does not stop for the expanding
shell. As a result, the motion of the shell shows the qualitatively different behavior from GR.
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