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Abstract: We demonstrate two periodic or quasi-periodic generalizations of the Chaplygin
gas (CG) type models to explain the origins of dark energy as well as dark matter by using
the Weierstrass ℘(t), σ(t) and ζ(t) functions with two periods being infinite. If the universe
can evolve periodically, a non-singular universe can be realized. Furthermore, we examine
the cosmological evolution and nature of the equation of state (EoS) of dark energy in the
Friedmann–Lemaı̂tre–Robertson–Walker cosmology. It is explicitly illustrated that there
exist three type models in which the universe always stays in the non-phantom (quintessence)
phase, whereas it always evolves in the phantom phase, or the crossing of the phantom divide
can be realized. The scalar fields and the corresponding potentials are also analyzed for
different types of models.
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1. Introduction

Inflation in the early universe has been confirmed by the recent observations of cosmic microwave
background (CMB) radiation [1–4]. In addition, the accelerated expansion of the current universe has
also been suggested by recent observations, e.g., Type Ia Supernovae [5,6], CMB radiation [1–4], the
large scale structure LSS [7,8], baryon acoustic oscillations (BAO) [9], and weak lensing [10]. To explain
such a cosmic acceleration, one provides the existence of so-called dark energy in the framework of
general relativity (for reviews, see, e.g., [11–18]), or one supposes that gravity is modified on the large
scale (for reviews, see, e.g., [19–26]).

In the expansion history of the universe, there exist two singularities. One is a Big Bang
singularity. The other is the finite-time future singularities [27–54,56–60,62–74,113,114], which
occurs at the last stage of the universe filled with dark energy, or a Big Crunch singularity.
To avoid these singularities, various cosmological scenarios have been proposed, e.g., the cyclic
universe [75,76,78–85,90] (for a reference in a different context, see [86]), the ekpyrotic scenario [87–
90], and the bouncing universe [91–102]. Furthermore, related to the cyclic universe, the (trefoil and
figure-eight) knot universe has been investigated in [103–106]. In addition, motivated by the studies on
the role of applying the Weierstrass ℘(t), ζ(t) and σ(t)-functions and the Jacobian elliptic functions
to astrophysics and cosmology [107–111], the equation of state (EoS) for the cyclic universes in
the homogeneous and isotropic Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) spacetime has been
reconstructed by using the Weierstrass and Jacobian elliptic functions in [112].

In this paper, based on the reconstruction method in [19,20,71,113,114], with the Weierstrass
℘(t)-function, we examine the cosmological evolution of the EoS for dark energy in FLRW cosmology.
In particular, it is shown that two periodic generalized Chaplygin gas (GCG) type models for dark energy
can be reconstructed. To account for the origins of dark energy as well as dark matter with a fluid, the
original CG [115], GCG [116] and the modified CG (MCG) [117,119] have been explored. We mention
that the reconstruction of periodic cosmologies has been widely studied. Especially, the reconstruction
of periodic EoS has been investigated, e.g., in [118]. In this reference, with an inhomogeneous EoS
for dark energy fluid, it has been demonstrated that an oscillating universe can occur. Also, the Hubble
parameter with a periodic behavior can realize both inflation in the early universe and the late-time
cosmic acceleration under the same mechanism in a unified manner. In addition, it has been verified
that a coupling between dark energy fluid (which has a homogeneous and constant EoS) and matter can
present a periodic behavior of the universe. Furthermore, as several theoretical issues in the universe with
its oscillatory behavior, the phantom phase and finite-time future singularities have been investigated. A
scalar-tensor description of the oscillating universe has also been explored. As stated, there exist various
theoretical subjects in the periodic cosmological evolution of the universe. The essential property of
the Weierstrass functions is to have two periods m1 and m2. Hence, the periodical and quasiperiodical
models that we show in Section 3 are periodical or quasiperiodical in terms of the energy density ρ.
In addition, these models with the periods m1 and m2 being infinite are reduced to the Chaplygin
gas models (as is seen from the formulae in Equation (6)). Thus, the reconstruction procedure of
these models corresponds to two periodic or quasi-periodical generalizations of the CG models. This
justifies the use of the Weierstrass functions in cosmological models. Furthermore, the models given
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in Section 4 are periodic on the cosmic time t (which is a dimensionless quantity in our analysis),
although the models in Section 3 are periodic/quasi-periodic on ρ. The periodicity of the cosmological
evolution comes from the periodic nature of the Weierstrass functions. Also, the periodic/quasi-periodic
models in Section 3 are singular at ρ = 0, whereas those in Section 4 are singular at t = 0. If the
periodic evolution of the universe can be realized, various scenarios to avoid cosmological singularities
can be constructed. This is the important cosmological motivation to obtain such periodical solutions.
Moreover, we explicitly demonstrated that there exist three type models in which (i) the universe always
stays in the non-phantom (quintessence) phase, (ii) it always evolves in the phantom phase, and (iii)
the crossing of the phantom divide can be realized. It has recently been shown that these three cases
have also been realized in non-local gravity [120]. It is also interesting to remark that according to
the analysis of recent cosmological observational data, in the past the crossing of the phantom divide
occurred [121–125]. We use the units of the gravitational constant 8πG = c = 1 with G and c being the
gravitational constant and the seed of light.

The paper is organized as follows. In Section 2, we show the basic equations in the FLRW background
and briefly give the Chaplygin gas type models. In Section 3, we study periodical and quasi-periodical
GCG type models. In Section 4, we demonstrate the other two periodical FLRW models. Finally, several
conclusions are presented in Section 5.

2. Brief Review of the CG Type Models

In this section, we briefly explain the significant features of the CG type models for the spatially flat
homogeneous and isotropic FLRW universe. The action describing general relativity and matter is given
by S =

∫ √
−gd4x(R+Lm), where R is the scalar curvature and Lm is the matter Lagrangian. We take

the flat FLRW spacetime with the metric, ds2 = −dt2 + a2(t) (dr2 + r2dΩ2). Here, a(t) is the scale
factor and dΩ2 is the metric of 2-dimensional sphere with unit radius. We note that in this paper, time
(t) is considered to be a dimensionless quantity. In the flat FLRW background, from the above action we
obtain the gravitational field equations: (

ȧ

a

)2

=
ρ

3
(1)

ä

a
= −ρ+ 3p

6
(2)

Here, the Hubble parameter is defined by H ≡ ȧ/a and a dot denotes the time derivative of ∂/∂t.
By using these equations, we have the expressions of the energy density ρ = 3 (ȧ/a)2 and pressure
p = −2 (ä/a)− (ȧ/a)2.

Next, we explore the CG type models [115–117,119]. The GCG model has been constructed in order
to account for both the origins of dark energy and dark matter with using a single fluid. The equation of
state (EoS) of the GCG is given by [116]:

p = −C1

ρα
(3)
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where C1(> 0) is a positive constant and α is a constant. If we take α = 1, Equation (3) describes the
original CG model [115]. From Equation (3) and the continuity equation ρ̇ = −3H(ρ+ p), we obtain:

ρ =

[
C1 +

C2

a3(1+α)

]1/(1+α)

(4)

where C2 is a constant of integration. From Equation (4), we find the asymptotic behaviors of ρ that
in the early universe a ≪ 1, ρ ∼ C2a

−3, whereas in the late universe a ≫ 1, ρ ∼ C
1/(1+α)
1 . Thus, in

the early universe, the energy density behaves as ρ ∝ a−3, which is the same as non-relativistic matter
such as dark matter. On the other hand, in the late universe the energy density becomes a constant as
ρ → C

1/(1+α)
1 . This means that it can play a role of dark energy. Consequently, the GCG model can

explain the origin of dark energy as well as dark matter simultaneously.
In addition, the MCG has been proposed in [117,119]. The EoS is given by:

p = C3ρ−
C4

ρα
(5)

where C3 and C4(> 0) are constants.

3. Periodical and Quasi-periodical GCG Type Models

In this section, we examine the periodical and quasi-periodical GCG type models by using the
Weierstrass functions, the so-called MG-i models (note that the meaning of the so-called Myrzakulov
Gas MG-i—where i = XII, XIII, XIV, XV, XVI, XVII, XVIII, XIX, XX, XXXIII, XXI, XXII, XXII,
XXIII, XXVII—is the model of some gases/fluid, which is the notation used in [103–106]). The
properties of elliptic functions inform us that the MG-XXV, MG-XXVI and MG-XXIV models (as the
MG-XXIII and MG-XXVI models) are some generalizations of the CG type models due to the following
degenerate cases of some elliptic and related functions as m1 = ∞ and m2 = ∞, where m1 and m2 are
two periods [126]:

σ(x) = x , ζ(x) = x−1 , ℘(x) = x−2 , am(x) = x (6)

Here, g2 = g3 = 0 and e1 = e2 = e3 = 0, where g2 and g3 are the Weierstrass invariants.
The physical motivation to examine the series of the MG-i gas is as follows. These models can

realize the cosmological evolution of the GCG type models with the periodical and quasi-periodical
behaviors, which depends on the models. These models are expressed with the Weierstrass functions and
hence various behaviors of the cosmic expansion history with periodicity and/or quasi-periodicity can be
realized. Thus, these models can present novel cosmological scenarios without a Big Bang singularity in
the early universe and the finite-time future singularities or a Big Crunch singularity, such as the cyclic
universe, the ekpyrotic scenario and the bouncing universe.
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3.1. Periodical Generalizations

3.1.1. MG-XXI Model

One of the most interesting examples of gases is the MG-XXI model, which has the following
EoS [103–106]:

p = −B[℘(ρ)]0.5 (7)

where B(> 0) is a positive constant. By using the degenerate case of the function ℘(ρ) in Equation (6),
we can show that the well-known CG model [115] p = −B/ρ, which is equal to Equation (4) with
B = C1 and α = 1, is particular case of the MG-XXI model in Equation (7). The parameter of the EoS
ω for our model is given by:

ω ≡ p

ρ
= −

B
√

℘(ρ)

ρ
(8)

3.1.2. MG-XXII Model

One of the two periodical generalizations of the GCG is given by [103–106]:

p = −B[℘(ρ)]0.5α (9)

In fact, its degenerate case is the GCG [116] p = −B/ρα, which is equivalent to Equation (3) with
B = C1. For this model, the parameter of the EoS looks like:

ω = −B[℘(ρ)]0.5α

ρ
(10)

3.1.3. MG-XXIII Model

Next, we present one of the two periodical generalizations of the MCG. Its EoS reads [103–106]:

p = Aρ−B[℘(ρ)]0.5α (11)

where A is a constant. The corresponding parameter of the EoS is:

ω = A− B[℘(ρ)]0.5α

ρ
(12)

3.1.4. MG-XXIV Model

We now give a more general form of two periodical generalizations of the MCG. Its EoS is
described as:

p = A[℘(ρ)]−0.5 −B[℘(ρ)]0.5α (13)

The parameter of the EoS for the model is written by:

ω =
A[℘(ρ)]−0.5

ρ
− B[℘(ρ)]0.5α

ρ
(14)

Again, by using the degenerate properties of the elliptic functions, we can demonstrate that this model is
reduced to MCG.
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3.2. Quasi-periodical Generalizations

In the preceding subsection, we have considered two periodical generalizations of CG type models.
In this subsection, we study quasi-periodical models.

3.2.1. MG-XXV Model

One of the quasi-periodical models, the so-called MG-XXV model, is given by:

p = Aσ(ρ)− B

[σ(ρ)]α
(15)

where A and B are constants and σ(ρ) is the Weierstrass σ-function. As the σ-function degenerates
according to equations in (6), in this case Equation (15) becomes the MCG in Equation (5). The
corresponding parameter of the EoS is expressed as:

ω =
Aσ(ρ)

ρ
− B

ρ[σ(ρ)]α
(16)

3.2.2. MG-XXVI Model

Our next quasi-periodical model is given by:

p =
A

ζ(ρ)
−B[ζ(ρ)]α (17)

where ζ(x) is the Weierstrass ζ(x)-function. It is the MG-XXVI model. For the degenerate case in
Equation (6), this model is also reduced to the MCG. Its parameter of the EoS takes the form:

ω =
A

ρζ(ρ)
− B[ζ(ρ)]α

ρ
(18)

3.2.3. MG-XXVII Model

We explore the MG-XXVII model. For this model, the EoS reads:

p = Aam(ρ)−B[am(ρ)]−α (19)

where am(x) is the Jacobi amplitude (am(x)) function and α is a constant. In case of the degeneration
in Equation (6), this model recovers the MCG. The parameter of the EoS is written by:

ω =
Aam(ρ)

ρ
− B[am(ρ)]−α

ρ
(20)

It is significant to emphasize that (a) if we substitute σ(t) in Equation (6) into Equation (15); (b) if we
use ζ(t) in Equation (6) and Equation (17); (c) if we combine ℘(t) in Equation (6) with Equation (19),
then we obtain the MCG in Equation (5). As a result, in the limit of m1 = ∞ and m2 = ∞, the
MG-XXV, MG-XXVI and MG-XXIV models are reduced to the MCG [117,119]. This point is the most
important and novel observation in this work.

In the limit of the small energy density ρ → 0 as well as ρ → ∞, the behaviors of the EoS for
the universe in the MG-XXI, MG-XXIV, MG-XXV, MG-XXVI and MG-XXVII models asymptotically
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approach those in the CG model. On the other hand, in the middle regime of ρ, since the EoS for the
universe in the MG-XXI, MG-XXIV, MG-XXV, MG-XXVI and MG-XXVII models is described by
using elliptic functions with a periodic or quasi-periodic property, the EoS for the universe expresses
also periodic or quasi-periodic behaviors.

From the above considerations, the cosmological evolution of the universe is described as follows.
First, the energy responsible for inflation would be released to radiation (i.e., relativistic matter) through
a reheating process and the universe enters the radiation dominated stage. Here, the concrete mechanism
for both inflation and the reheating stage is not specified. After that, as the universe expands, its
temperature decreases in proportion to a−1, and the matter (i.e., non-relativistic matter) dominated stage
appears. This can be seen in our models in the limit of ρ → ∞, namely ω asymptotically approaches
zero, which corresponds to the EoS of the dust. Finally, the universe enters the dark energy dominated
stage. This can also be understood in the limit of ρ → 0, where ω < −1/3. Thus, it is considered that
the cosmological evolution of the universe can be realized in our models.

4. Other Two Periodical FLRW Models

The EoS for dark energy is one of the most significant cosmological quantities. In this paper, we
concentrate on the evolution of the EoS for dark energy. In the FLRW spacetime, the effective EoS for
the universe is given by [19,20] ωeff ≡ peff/ρeff = −1−2Ḣ/ (3H2). Here, ρeff and peff can be considered
as the total energy density and pressure of the universe, respectively. Since we examine the dark energy
dominated stage, the energy density ρDE and pressure pDE of dark energy can be regarded as ρDE ≈ ρeff

and pDE ≈ peff . As a result, we find ωDE ≈ ωeff .
In addition, we represent ρDE and pDE as ρ in Equation (2) and p in Equation (1), respectively.

In the non-phantom (quintessence) phase, Ḣ < 0 and hence ωeff > −1, which is the non-phantom
(quintessence) phase, while in the phantom phase Ḣ > 0 and therefore ωeff < −1. If Ḣ = 0, ωeff = −1,
which is the case that dark energy is the cosmological constant.

As a qualitative criterion to constrain the models, we examine the evolution of the EoS ω of a fluid
corresponding to dark energy. If ω is always less than −1, the universe stays in the phantom phase in all
the cosmic evolution history. This case is clearly inconsistent with the standard cosmological evolution
and hence it can be ruled out. On the other hand, if ω is always larger than −1 or it crosses the line of
−1, these cases are not ruled out, namely these models may have the possibility to realize the standard
evolution history of the universe.

In this section, we study two new periodical FLRW models. These models are expressed by
using the Weierstrass ℘(t)-function, which as well known satisfies the following ordinary differential
equations [126]:

℘̇2(t) = 4℘3(t)− g2℘(t)− g3 (21)

℘̈(t) = 6℘2(t)− 0.5g2 (22)
...
℘(t) = 12℘(t)℘̇(t) (23)

....
℘ (t) = 120℘3(t)− 18g2℘(t)− 12g3 (24)
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where ℘̇(t) = d℘(t)/dt and so on. In what follows, by using the reconstruction method
in [19,20,71,113,114], and the Weierstrass ℘(t)-function, for ten models (the MG-i models where i =
XII, XIII, XIV, XV, XVI, XVII, XVIII, XIX, XX, XXXIII), we reconstruct the EoS for dark energy and
explore its cosmological evolution in FLRW cosmology.

4.1. MG-XII Model

We suppose that the Hubble parameter is represented as:

H = ℘(t) (25)

From this expression, the scale factor becomes:

a(t) = a0e
−ζ(t) (26)

where a0(> 0) is a positive constant and ζ(t) is the Weierstrass ζ(t)-function. Then, Equation (25) and
the gravitational field Equations (1) and (2) lead to the parametric EoS:

p = −2
√
4℘3(t)− g2℘(t)− g3 − 3℘2(t) (27)

ρ = 3℘2(t) . (28)

By using Equations (27) and (28), we see that the EoS parameter is written as:

ω =
p

ρ
= −1−

2
√
4℘3(t)− g2℘(t)− g3

3℘2(t)
(29)

In order to describe our models in terms of the scalar field theory, we introduce a scalar field ϕ and its
self-interacting potential V (ϕ). The Lagrangian for the scalar field theory is given by (see, e.g., [19,20]):

Lϕ = 0.5ϕ̇2 − V (ϕ) (30)

Thus, this scalar is corresponding to a phantom one with ω < −1, which can be seen in Equation (29).
The energy momentum tensor of the scalar field ϕ(t) is identical to a fluid with the energy density ρϕ

and pressure pϕ given by:

ρϕ = −0.5ϕ̇2 + V (ϕ) = ρ (31)

pϕ = −0.5ϕ̇2 − V (ϕ) = p (32)

By using these expressions, we find:

− ϕ̇2 = ρ+ p (33)

V (ϕ) = 0.5(ρ− p) (34)

In addition, it follows from Equations (33) and (34) that the scalar field ϕ and self-interacting potential
V (ϕ) are written as:

ϕ = i
√
2

∫ √√
4℘3(t)− g2℘(t)− g3dt (35)

V = 3℘2 (t) +
√
4℘3 (t)− g2℘ (t)− g3 (36)



Entropy 2012, 14 2359

In Figure 1, we show the cosmological evolution of EoS ω as a function of t for ℘ (t, 1, 1), i.e., the
model parameters of the Weierstrass invariants of g2 = 1 and g3 = 1. From Figure 1, we see that the
universe always stays in the phantom phase (ω < −1). Hence, this model is ruled out. Furthermore, we
find the two periodic oscillatory behavior of ω.

Figure 1. The EoS ω in Equation (29) as a function of t for ℘ (t, 1, 1), i.e., the model
parameters of the Weierstrass invariants of g2 = 1 and g3 = 1. The line of ω = −1 is
also plotted.
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We remark a point in terms of the expression of V . In the above procedure, first the form of the scale
factor a = a(t) or the Hubble parameter H = H(t) is supposed. Next, from this form we obtain the
pressure p = p(t) and the energy density ρ = ρ(t). On the other hand, in the description of the scalar
field theory, the scalar field ϕ = ϕ(t) and its potential V = V (ϕ) are expressed with p = p(t) and
ρ = ρ(t). Accordingly, V = V (ϕ) = V (ϕ(t)). This means that V is written as a function of cosmic time
t. Thus, in principle, if a, H , p and ρ are inversely solved in terms of t, V can also be described by the
expressions of a, H , p and ρ.

4.2. MG-XIII Model

We express the Hubble parameter as:
H = ℘̇(t) (37)

From this expression, the scale factor is given by:

a(t) = a0e
℘(t) (38)

By combining Equation (37) with the gravitational field Equations: (1) and (2), we find that the
parametric EoS is written as:

p = −12℘3(t)− 12℘2(t) + 3g2℘(t) + g2 + 3g3 (39)

ρ = 3
(
4℘3(t)− g2℘(t)− g3

)
(40)
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It follows from Equations (39) and (40) that the EoS parameter is given by:

ω = −12℘3(t) + 12℘2(t)− 3g2℘(t)− g2 − 3g3
3 (4℘3(t)− g2℘(t)− g3)

(41)

By using Equations (33) and (34), we obtain the expressions of the scalar field ϕ and self-interacting
potential V (ϕ):

ϕ =

∫ √
−12℘2 (t) + g2dt (42)

V = 12℘3 (t) + 6℘2 (t)− 3g2℘ (t)− 3g3 − 0.5g2 (43)

In Figure 2, we depict the cosmological evolution of EoS ω as a function of t for ℘ (t, 1, 1). From
Figure 2, we see that the universe always evolves within the phantom phase (ω < −1). Consequently,
this model is ruled out.

Figure 2. The EoS ω in Equation (41) as a function of t. The legend is the same as
in Figure 1.

2 4 6 8 10
t

-15

-10
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5

Ω

4.3. MG-XIV Model

We provide that the Hubble parameter is described as:

H = ℘̈(t) (44)

so that the scale factor can read as:
a(t) = a0e

℘̇(t) (45)

From Equation (44) and the gravitational field Equations (1) and (2), we have the parametric EoS:

p = −24℘(t)
√
4℘3(t)− g2℘(t)− g3 − 3

(
6℘2(t)− 0.5g2

)2 (46)

ρ = 3
(
6℘2(t)− 0.5g2

)2 (47)

Hence, the EoS parameter is written as:

ω = −1−
8℘(t)

√
4℘3(t)− g2℘(t)− g3

(6℘2(t)− 0.5g2)
2 (48)
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With Equations (33) and (34), we have:

ϕ = 2i
√
6

∫ √
℘ (t)

√
4℘3 (t)− g2℘ (t)− g3dt (49)

V (ϕ) = 3
(
6℘2 (t)− 0.5g2

)2
+ 12℘ (t)

√
4℘3 (t)− g2℘ (t)− g3 (50)

In Figure 3, we illustrate the cosmological evolution of EoS ω as a function of t for ℘ (t, 1, 1). From
Figure 3, we see that the universe always stays in the non-phantom (quintessence) phase (ω > −1).

Figure 3. The EoS ω in Equation (48) as a function of t. The legend is the same as
in Figure 1.
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4.4. MG-XV Model

We take the form of the Hubble parameter as:

H =
...
℘(t) (51)

From this form, the corresponding scale factor is given by:

a(t) = a0e
℘̈(t) (52)

With Equation (51) and the gravitational field Equations (33) and (34), we obtain the parametric EoS:

p = −12
(
20℘3(t)− 3g2℘(t)− 2g3

)
− 432℘2(t)

(
4℘3(t)− g2℘(t)− g3

)
(53)

ρ = 432℘(t)2
(
4℘3(t)− g2℘(t)− g3

)
(54)

It follows from Equations (53) and (54) that the parametric EoS is given by:

ω = −1− 20℘3(t)− 3g2℘(t)− 2g3
36℘(t)2 (4℘3(t)− g2℘(t)− g3)

(55)

By using the formulae in Equations (33) and (34), we acquire:

ϕ = 2i
√
3

∫ √
20℘3 (t)− 3g2℘ (t)− 2g3dt (56)

V (ϕ) = 6
(
20℘3(t)− 3g2℘(t)− 2g3

)
+ 432℘2 (t)

(
4℘3 (t)− g2℘ (t)− g3

)
(57)
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In Figure 4, we display the cosmological evolution of EoS ω as a function of t for ℘ (t, 1, 1). From
Figure 4, we understand that the universe always evolves within the phantom phase (ω < −1). Thus,
this model is ruled out.

Figure 4. The EoS ω in Equation (55) as a function of t. The legend is the same as
in Figure 1.
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4.5. MG-XVI Model

We assume that the Hubble parameter is written as:

H =
....
℘ (t) (58)

In this case, the scale factor becomes:
a(t) = a0e

...
℘ (t) (59)

Using Equation (58) and the gravitational field Equations: (1) and (2) yields:

p = −36
(
20℘2(t)− g2

)√
4℘3(t)− g2℘(t)− g3 − 3

(
120℘3(t)− 18g2℘(t)− 12g3

)2 (60)

ρ = 3
(
120℘3(t)− 18g2℘(t)− 12g3

)2 (61)

Hence, the parametric EoS is expressed as:

ω = −1−
12 (20℘2(t)− g2)

√
4℘3(t)− g2℘(t)− g3

(120℘3(t)− 18g2℘(t)− 12g3)
2 (62)

From Equations (33) and (34), we acquire:

ϕ = 6i

∫ √
(20℘2(t)− g2)

√
4℘3 (t)− g2℘ (t)− g2dt (63)

V = 18
(
20℘2(t)− g2

)√
4℘3 (t)− g2℘ (t)− g2 + 3

(
120℘3 (t)− 18g2℘ (t)− 12g3

)2 (64)

In Figure 5, we plot the cosmological evolution of EoS ω as a function of t for ℘ (t, 1, 1). From
Figure 5, we find that the universe always evolves within the phantom phase (ω < −1). Therefore, this
model is ruled out. In addition, we clearly see the two periodic oscillating evolution of ω.
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Figure 5. The EoS ω in Equation (62) as a function of t. The legend is the same as
in Figure 1.
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4.6. MG-XVII Model

We take the scale factor as:
a (t) = ℘(t) (65)

From this expression, the Hubble parameter becomes:

H =

√
4℘3 (t)− g2℘ (t)− g3

℘ (t)
(66)

Equation (66) and the gravitational field Equations (1) and (2) present the parametric EoS:

p = −16℘3 (t)− 2g2℘ (t)− g3
℘2 (t)

(67)

ρ = 3
4℘3 (t)− g2℘ (t)− 3g3

℘2 (t)
(68)

Furthermore, the EoS parameter is represented as:

ω = − 16℘3 (t)− 2g2℘ (t)− g3
12℘3 (t)− 3g2℘ (t)− 3g3

(69)

From Equations (33) and (34), we have:

ϕ = i

∫ √
4℘3 (t) + g2℘ (t) + 2g3

℘ (t)
dt (70)

V =
28℘2 (t)− 5g2℘ (t)− 4g3

2℘2 (t)
(71)

In Figure 6, we plot the cosmological evolution of EoS ω as a function of t for ℘ (t, 1, 1). From
Figure 6, we see that the universe always stays in the phantom phase (ω < −1). Accordingly, this model
is ruled out.
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Figure 6. The EoS ω in Equation (69) as a function of t. The legend is the same as
in Figure 1.
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4.7. MG-XVIII Model

We describe the scale factor as:
a = ℘̇(t) (72)

It follows from this description that the Hubble parameter is given by:

H =
6℘2 (t)− 0.5g2√

4℘3 (t)− g2℘ (t)− g3
(73)

4.8. MG-XIX Model

We consider that the scale factor is given by:

a = ℘̈(t) (74)

so that the Hubble parameter can read:

H =
12℘ (t)

√
4℘3 (t)− g2℘ (t)− g3

6℘2 (t)− 0.5g2
(75)

4.9. MG-XX Model

We suppose the following form of the scale factor:

a =
...
℘(t) (76)

From this representation, the Hubble parameter is written by:

H =
20℘3 (t)− 3g2℘ (t)− 2g3

2℘ (t)
√

4℘3 (t)− g2℘ (t)− g3
(77)
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4.10. MG-XXXIII Model

We suppose that the scale factor takes the following form:

a =
....
℘ (t) (78)

It follows from this representation that the Hubble parameter is described by:

H = −3(g2 − 20℘2 (t))(g3 + g2℘
2 (t)− 4℘3 (t))

2g3 + 3g2℘ (t)− 20℘3 (t)
(79)

It is important to mention that a quintom model (where there must exist both canonical and
non-canonical scalar fields in order that the crossing of the phantom divide can occur) with single
canonical scalar field cannot be reconstructed, in which the crossing of the phantom divide cannot
occur [127]. As explained in the MG-XVIII, XIX, XX and XXXIII models (in Sections 4.7, 4.8, 4.9
and 4.10, respectively), if we reconstruct the corresponding single scalar field model, the crossing of the
phantom divide can be realized. Thus, this implies that for these models, such a reconstruction is not
physical but just a mathematical procedure.

The physical interpretation of our results is considered as follows. By reconstructing the expansion
behavior of the universe, i.e., the Hubble parameter, with the Weierstrass ℘(t)-function, which has a
periodic property, the periodic behavior of the EoS for the universe can be realized. Such a procedure
can be applied to scenarios to avoid cosmological singularities and eventually a non-singular universe
can be realized.

It is also remarkable to note that in terms of all the numerical calculations in Figures 1–6, the
qualitative results do not strongly depend on the initial conditions and the model parameters such as
the Weierstrass ℘(t)-function.

Moreover, for all the models, the scale factor a has to be positive and the Hubble parameter H

should be real. From Equations (26), (38), (45), (52) and (59), a is always positive. Also, it follows
from Equations (65), (72), (74), (76) and (78) that a is written by ℘(t) or its time derivatives. By
using the Laurent expansion of ℘(t) around t = 0 as ℘(t) = 1/t2 + (g2/20) t

2 + (g3/28) t
4 + O(t6),

we find ℘̇(t) = −2/t3 + (g2/10) t + (g3/7) t
3 + O(t5), ℘̈(t) = 6/t4 + g2/10 + (3g3/7) t

2 + O(t4),
...
℘(t) = −24/t5 + (6g3/7) t + O(t3), and

....
℘ (t) = 120/t5 + 6g3/7 + O(t2). Thus, for the cases of

a = ℘̇(t) in Equation (72) and a =
...
℘(t) in Equation (76), around t = 0, the expression of a is not well

defined because the value of a would become negative around t = 0. In this sense, around t = 0, the
MG-XVIII and MG-XX models cannot be used. On the other hand, since the argument of the Weierstrass
functions used in this paper is the cosmic time t, which is real, all the values of the Weierstrass functions
are real. In all the models, H is described by the Weierstrass functions and hence H would be real.

Furthermore, we state that if the evolution of ω is displayed as a function of the red shift z ≡ ap/a−1

with ap the present value of a, the direction of the cosmic time t to go by becomes opposite to that for ω
to be shown as a function of t in Figures 1–6. It would be considered that the main qualitative difference
is only this point and hence other cosmological consequences do not change.

In addition, it is interesting to note that the models examined in this work may solve not only the
dark energy paradigm but also the horizon and flatness problems. In other words, these models may
produce a kind of inflationary epoch or perhaps a contraction phase as in the ekpyrotic scenario. In
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order for inflation or the ekpyrotic scenario to be realized realistically, it is necessary to consider the
way of connecting the inflationary stage and the dark energy dominated stage, i.e., the realization of the
reheating stage. This is a crucial point for these models to be realistic inflation models or the ekpyrotic
scenario.

Moreover, it should be cautioned that in Figures 2–4, apparently the EoS ω diverges. However,
the reason is just a way of plotting and therefore there is no divergence in terms of the EoS in all of
the figures.

Finally, we mention the issue of existence of a ghost, namely, the instability for the case of the
crossing of the phantom divide. For a scalar field theory, it is known that if the crossing of the phantom
divide happens in the FLRW universe, there would appear a ghost. In Section 4, we have presented the
interpretations of our models in the framework of a scalar field theory. However, there still exists the
possibility that our models could be regarded as a more complicated theory, e.g., which is described by
the non-linear kinetic terms such as k-essence models [128–133] and the Galileon models [134–138].
These investigations might be one of the interesting future works in our approach to the periodic and
quasi-periodic generalizations of the Chaplygin gas type models.

5. Conclusions

In the present paper, we have reconstructed periodic and quasi-periodic generalizations of the
Chaplygin gas type models by using the Weierstrass ℘(t), σ(t) and ζ(t)-elliptic functions. We have
explored the cosmological evolution of the EoS for dark energy in FLRW spacetime. In particular, we
have shown that by using the degenerate properties of the elliptic functions, the MCG models can be
recovered. This is one of the most important cosmological ingredients obtained in this paper. This result
implies that by plugging the reconstruction method of the expansion history of the universe with the
Weierstrass elliptic functions, we can acquire the MCG models, which have a potential to reveal the
properties of both dark energy and dark matter. In other words, the procedure demonstrated in this paper
can lead to a preferable cosmological model by starting with the mathematical special functions.

It is meaningful to summarize the following significant points. (a) The Weierstrass functions have two
periods m1 and m2. This is their essential property. (b) Our periodic and quasi-periodic models given in
Section 3 are periodic or quasi-periodic in terms of the energy density ρ. (c) Furthermore, if the special
values of the periods m1 and m2 are infinite, these models in Section 3 are transformed into or have limits
of the Chaplygin gas models, which can be seen from the formulae in Section 3.1. Thus, in this sense
to reconstruct these models is considered as two periodic or quasi-periodical generalizations of the CG
models. This is the justification of application of the Weierstrass functions to cosmological models. (d)
Our models presented in Section 4 are periodic on the cosmic time t (which is here dimensionless),
in contrast to the models in Section 3, which are periodic/quasi-periodic on ρ. (e) Moreover, our
periodic/quasi-periodic models in Section 3 are singular at ρ = 0 and those in Section 4 at t = 0.

It is also important to emphasize that the cosmological advantage to acquire the periodic evolution of
the universe is to realize scenarios to avoid a Big Bang singularity, the finite-time future singularities and
a Big Crunch singularity. By applying the obtained results and the discussed procedure to scenarios for
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the avoidance of singularities, e.g., the cyclic universe, the ekpyrotic scenario and the bouncing universe,
we can find a non-singular cosmology.

Furthermore, it has explicitly been illustrated that there are three type models with realizing the
cosmological evolution of the EoS for dark energy: (i) the universe always stays in the non-phantom
(quintessence) phase (the MG-XIV model); (ii) the universe always evolves within the phantom phase
(the MG-XII, MG-XIII, MG-XV, MG-XVI and MG-XVII models); (iii) the crossing of the phantom
divide can be realized (the MG-XVIII, MG-XIX, MG-XX and MG-XXXIII models). If the universe
always stays in the phantom phase, it is impossible to describe the whole evolution history of the
universe, i.e., the decelerated phases such as the radiation and matter dominated stages. Thus, these
models are ruled out. In addition, the corresponding description of a canonical scalar field model to
the models in the above (iii) category is not physical but just mathematical, because in the light of
quintom model [127], it is impossible for a single canonical scalar field to realize the crossing of the
phantom divide.

The scalar fields and the corresponding potentials have been analyzed for different types of MG
models mentioned above. The EoS parameters have been derived and their natures have also been
illustrated graphically during the evolution of the universe.

On the other hand, at the current stage the cosmological constant is consistent with the observational
data [4], but there still exists the possibility of dynamical dark energy, which is, e.g., described by a scalar
field or a fluid. Thus, when we acquire the results of data analysis of the more precise future experiments
like by the PLANCK satellite [139], it is strongly expected that the investigations on the phase of the
universe (i.e., the non-phantom or phantom phase) or the crossing of the phantom divide can become
more meaningful. In the future work, it would be interesting to test whether the above models may be
suitable candidates for dark energy by coming observational data fittings.
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