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Abstract: The effect of gravity upon changes of the entropy of a gravity-dominated system 

is discussed. In a universe dominated by vacuum energy, gravity is repulsive, and there is 

accelerated expansion. Furthermore, inhomogeneities are inflated and the universe 

approaches a state of thermal equilibrium. The difference between the evolution of the 

cosmic entropy in a co-moving volume in an inflationary era with repulsive gravity and a 

matter-dominated era with attractive gravity is discussed. The significance of conversion of 

gravitational energy to thermal energy in a process with gravitational clumping, in order 

that the entropy of the universe shall increase, is made clear. Entropy of black holes and 

cosmic horizons are considered. The contribution to the gravitational entropy according to 

the Weyl curvature hypothesis is discussed. The entropy history of the Universe  

is reviewed. 

Keywords: entropy; gravity; gravitational contraction; cosmological constant; black hole; 

horizon; Weyl curvature hypothesis; inflationary era 
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1. Introduction 

The arrow of time arises from the universe being far from equilibrium in a state of low entropy. The 

Second Law of Thermodynamics requires that the entropy of the universe does not decrease. Hence the 

universe must initially have been in a state of very low entropy. Callender [1] has discussed this “Past 

Hypothesis”, writing: “The Boltzmann entropy of the entire universe was very low (compared to now) 

roughly 15 billion years ago. In particular, the entropy of this state was low enough to make 
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subsequent entropy increase likely for many billions of years.” Then he notes: “When we look to 

cosmology for information about the actual Past State, we find early cosmological states that appear to 

be states of very high entropy, not very low entropy. Cosmology tells us that the early universe is an 

almost homogeneous isotropic state of approximately uniform temperature, i.e. a very high  

entropy state.”  

Observations favor that the spatial geometry of the universe is Euclidean. This means that with the 

topology R3 the universe has infinitely large spatial extension. Then the evolution of “the entropy 

within a surface co-moving with the Hubble flow” is representative of the evolution of “the entropy of 

the universe”. 

A homogeneous universe with a perfect fluid expands adiabatically with constant entropy. 

Measurements of temperature variations in the cosmic microwave background has shown that 400,000 

years after the Big Bang the universe was in a state very close to thermal equilibrium. Later attractive 

gravity made the original small mass concentrations larger, and created hot regions like stars. The 

temperature differences became much larger, and one might wonder if the thermodynamic entropy of 

the universe had become smaller in conflict with the Second Law of Thermodynamics. Maybe gravity 

saves the Past Hypothesis. Callender [1] argues that this is far from obvious. In the present review we 

shall consider different aspects of this question. 

2. Entropy Change during Gravitational Contraction 

Let us first calculate the change of entropy of a gas in which gravity may be neglected, evolving 

away from equilibrium due to some external agent acting on it. The change of thermal entropy of a gas 

of N molecules originally in thermal equilibrium at a temperature T, then separated into two parts with 
temperatures 1T  and 2T  with constant thermal energy so that   1 21/ 2 T T T , is:  

2 2
3 1 3 1

ln 1
4 2 4 2

             
     

Nk T Nk T
S

T T
 (1)

where 231.38 10 J / K k  is Boltzmann’s constant and 1 2  T T T . This decrease of entropy due to 

evolution away from thermal equilibrium is a second order effect in /T T .  

Next we shall make a Newtonian calculation of the effect of gravity upon the change of entropy of 

an expanding or contracting distribution of ideal gas, giving a further development of a simple model 

introduced by Wallace [2]. The thermal entropy of an ideal gas with temperature T and volume V, 

consisting of N molecules, is:  

3
ln ln

2
    
 

S Nk T V C  (2)

where C is a constant. The internal energy of the gas is equal to the kinetic energy KE  of the gas 

molecules. In the case of monoatomic molecules  3 / 2KE NkT . We consider a spherically 

symmetric distribution of N molecules each with mass   inside a radius R. The volume inside R is 

  34 / 3V R , and mass inside R is M N . Hence, the thermal entropy of the gas is: 

 23
ln

2
 KS Nk R E C  (3)
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where C  is another constant. The surface with radius R  is comoving with the matter. Hence, when the 

cloud expands or contracts so that the value of R  changes, the mass M  inside this surface is constant. 

The change of the thermal entropy when the radius R changes, is: 

3
2

2

 
  

 
K

K

dE dR
dS Nk

E R
 (4)

The total mechanical energy of the gas molecules is equal to the sum of the kinetic and potential 
energy in the field of gravity of the cloud,  K PE E E . Since the total energy is constant, the kinetic 

energy changes as  K PdE dE . In the case of contraction this is a conversion of gravitational energy to 

thermal energy of the gas. Assuming that the gas is homogeneous the potential energy of the gas inside 

the radius R is: 
23

5
 PM

GM
E

R
 (5)

where G is Newton’s constant of gravity. Hence the change of kinetic energy of the gas molecules is 
 /K PdE E R dR . The rate of change of the thermal entropy of the gas is: 

3 1
2

2
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M K

EdS dR
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dt E R dt
 (6)

which may be written explicitly as a function of R as: 

 
2
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The thermal entropy is: 

 0

3
ln

2
     MS Nk ER R R C  8) 9) (8)

with 0E  for 0R R  and 0E  for 0R R . The kinetic energy is: 

01
   
 

K

R
E E

R
 (9)

Since 0KE  we have the conditions: if 0E  then 0R R , and there is expansion i.e. motion 

upwards along the curve (b) in Figure 1, and the entropy increases. If 0E  then 0R R , and there is 

contraction say from 0R R  along the right hand part of the curve (a). Again the entropy increases 

until it reaches a maximum at 0 / 2R R . When the cloud contracts further its entropy decreases. 

In terms of the energies the entropy has a maximum if / 2 K PME E . According to the virial 

theorem the gas is at dynamical equilibrium when this condition is fulfilled. One can show that if the 
kinetic energy of the gas is less than / 2 PME , then the cloud will collapse. In this case 

0 / 2 , 0 R R E  so that  02 2 / 0   K PME E R R E , and during the collapse / 0dR dt  giving 

/ 0dS dt  . Hence the thermal entropy of the gas decreases due to the increasing temperature gradient 

in the gas although there is a conversion of gravitational energy to thermal energy.   

The change of thermal entropy of matter that collapses to a star can be estimated in the following way [2]. 

About 300,000 years after the Big Bang there was a nearly homogeneous cosmic plasma with density 
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14

1 10  baryons/m3 and temperature 4
1 10T  K. There are about 5710N  baryons in the Sun. The 

average density and temperature of the Sun are, respectively 30
2 10   and 7

2 10T  . The entropy 

change  MS  when the matter of the Sun changed from its state as a nearly homogeneous cosmic 

plasma 300,000 years after the Big Bang to a star, can be calculated from Equation (2). Using that 

1 1 2 2  M V V  leads to: 

3 2
352 1

3 2
1 2

ln 10
2M

TN J
S k

T K




 
    

 
 (10)

Figure 1. Thermal entropy (modulus an undetermined constant and in units of (3/2)Nk) as 

a function of R for a gas cloud contracting or expanding under the action of its own 

gravity. (a) Contraction. Here R < R0. Then the entropy first increases towards a maximum 

at R = R0/2, and then decreases. (b) Expansion. Here R > R0. The entropy of the gas 

increases.  

  

This is roughly how much the thermal entropy of the matter decreases when matter that existed in 

the cosmic plasma 300,000 years after the Big Bang later is formed to a star due to gravity. However, 

in order to calculate the entropy change of the universe one also has to find the entropy change of the 

environment during the collapse. Due to the conversion of gravitational energy to thermal energy the 

temperature of the gas increases, leading to an increased rate of electromagnetic radiation from the  

gas. Following Wallace [2] I will make a rough estimate of the accumulated entropy of the 

electromagnetic radiation emitted by the gas. The entropy of electromagnetic radiation with energy E 

and temperature T is: 

4

3
R

E
S

T
 (10)

Assuming that the collapsing mass has lost a tenth of its mass as radiation, the energy of the 

radiation is 4610E J . Wallace [2] has calculated the entropy of this radiation for the case that it has 
the temperature 100T K . The result is 4510 / RS J K . This is a factor 1010  larger than the decrease 

in entropy of the star’s matter. Hence the entropy of the universe has increased during the formation of 

the star due to gravitational collapse.  
If / 2 K PME E  so that 2 0 K PME E  , then the kinetic energy of the molecules is sufficiently great 

that the cloud will expand, / 0dR dt , and / 0dS dt . In spite of the fact that in this case there is a 
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conversion of thermal energy to gravitational energy, the thermal entropy of the gas will increase. This 

is due to the approach towards thermal equilibrium in this process. 
We shall now see how Lorentz invariant vacuum energy (LIVE) which may be represented by a 

cosmological constant,  , in the gravitational field equations, modifies these results. In this case  

the Poisson equation for the gravitational potential   in a distribution of matter with density   takes  

the form [3]: 
2 24 G c      (11)

Assuming a spherical matter distribution with constant density out to a boundary with radius R, the 

potential inside the matter is: 

 2 2 2 22
3
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with zero potential at: 
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which is outside the comoving volume with mass M . The potential energy of the mass distribution is: 
2 2

23

5 10


    P PM P

GM Mc
E E E R

R
 (14)

The rate of change of the entropy of the gas is: 

,


           
     G M

dS dS dS

dt dt dt
  (16)

where the contribution of the vacuum energy to the rate of change of the entropy is: 

1
3 .



    
 

P

K

EdS dR
Nk

dt E R dt
 (15)

Since / 0 P KE E  this shows that the contribution of LIVE to the rate of change of the entropy is 

to increase the entropy during expansion and decrease the entropy during contraction. Amarzguioui 

and Grøn [4] have presented a relativistic calculation of the effect of gravitational contraction upon the 

cosmic entropy to first order in /T T . They perturbed a homogeneous FRW universe model and 

calculated the increase of temperature, T , due to conversion of gravitational energy to thermal 

energy. In this way they showed that during this process there would be a corresponding increase of 

thermal entropy: 

3 3
ln 1

4 4

       

Nk T Nk T
S

T T
  (16)

Hence, due to the release of gravitational energy there is an increase of thermal entropy to first 

order in /T T . Comparing with eq.(1) it is clear that the evolution of a gas in which gravity may be 

neglected, and the evolution of a self gravitating gas, is very different as illustrated in Figure 2. 
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Figure 2. Evolution of a system (a) in which gravity may be neglected, and (b) in a self 

gravitating system where the box is much larger than the Jean’s length of the gas  

it contains. 

 

The importance of gravity in connection with the Second Law has been discussed by several 

authors. One of the first of those discussions appeared in the remarkable book The Physics of Time 

Asymmetry by P. C. W. Davies [5]. He clearly expected the result of Amarzuioui and Grøn [4] because 

already in 1974 he wrote: “gravitational condensation and collapse is itself a means of bringing about 

an increase of entropy.” And: “At first sight it appears paradoxical that an element of the cosmological 

fluid can start out in a quasi-equilibrium condition, and yet still increase in entropy at later epoch.” He 

further notes that this paradox is resolved because a self-gravitating system has no equilibrium 

configuration. Hence the origin of all thermodynamic irreversibility in the real universe depends 

ultimately on gravitation. In this connection Leubner [6] writes: “In contrast to thermodynamic 

systems driven to a uniform distribution, the components of gravitating systems tend to clump, thus 

implying a gravitational arrow of time, which points in the direction of growing inhomogeneity”, and 

further: “Increasing inhomogeneity due to gravitational clumping reflects increasing gravitational 

entropy in a time evolving universe”. 

3. Entropy of Black Holes and Cosmic Horizons 

In 1974 Bekenstein [7] conjectured that the black hole entropy is proportional to the area 24B SA R  

of its event horizon divided by the square of the Planck length, 3 35/ 1.6 10  Pl G c m , and in the 

case of a Schwarzschild black hole Hawking [8] deduced the proportionality constant: 
2 4

2 2 2

1

4 4
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l l l
 (19)

where 22 /SR GM c  is the Schwarzschild radius of the black hole, and 2 / 2  Sc R  is the surface 

gravity at the horizon. This formula shows that the Bekenstein-Hawking entropy of a black hole is 

equal to the Boltzmann constant times one fourth of the spatial area of its event horizon in Planck 
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units. A black hole with the mass of the Sun, for example has a Schwarzschild radius 32,95 10SR m   

and hence a Bekenstein-Hawking entropy 541.5 10 /S J K  . 

Damour [9] has given a thorough discussion of the entropy of black holes, and I refer to this article 

for more references on this topic. Bekenstein’s black-hole entropy was viewed by him as a measure of 

the information about the interior of a black hole which is inaccessible to an external observer. 

Furthermore Bekenstein conjectured the validity of a generalized version of the second law of 

thermodynamics, stating that the sum of the black-hole entropy (19) and of the ordinary entropy in the 

exterior of the black hole never decreases. However, even after Hawking’s deduction the challenge of 
interpreting BHS , in the same way as Boltzmann’s interpretation of thermal entropy, as the logarithm 

of the number of quantum micro-states of a macroscopic black hole, remained. The most striking 

“explanation” of black-hole entropy was obtained within the framework of string theory and was 

reviewed by Damour [9] with many further references. A Boltzmann interpretation of the entropy of a 

black hole, related to general expected properties of quantum gravity, has recently been deduced in a 

model independent way by Saida [10].  
For a star with 3 Sun masses Equation (19) gives 5510 /BHS J K . Wallace [2] calculated that the 

entropy of a neutron star with this mass is 2910 /MS J K . So when a star collapses to a black hole in a 

hypernova explosion producing a gamma ray burst, the entropy increases by more than twenty five 

orders of magnitude.  

Vaas [11] noted that “The strongest ‘concentrations’ of gravity, black holes, are also the biggest 

accumulations of entropy. Physically speaking, gravitational collapse leads to the greatest possible 

amount of disorder. The entropy of a single black hole with the mass of a million suns (such as the one 

at the galactic centre, for example) is a hundred times higher than the entropy of all ordinary particles 

in the entire observable universe.” 

We have seen that the entropy of black holes is extremely large. This may be an expression of the 

fact that classically we have lost all information of the matter that collapsed to a black hole since a 

black holes have at most three properties: mass, charge and angular momentum.  

In spite of the quantum mechanical string theory interpretation of the entropy of black holes, one 

may wonder whether the large entropy of a black hole is a measure of the inhomogeneity of a 

gravitational field on a classical level. Then the entropy of a black hole might be related to the Weyl 

curvature of its gravitational field.  

In 1977 Gibbons and Hawking [12] suggested that one should associate an entropy with an event 

horizon proportional to its area, interpreted as an expression of the lack of information of an observer 

about the region which he cannot see. Similarly to the expression of the entropy associated with  

the event horizon of a black hole, the entropy associated with a cosmic event horizon with proper  
area CA is: 

   
24

 C
C

P

k A t
S t

l
 (20)

This will be called the cosmic event horizon entropy, CEHE. In the case of a flat universe model the 
proper area of the event horizon is      2 22 C CA t a t t . Here  a t  is the scale factor is normalized so 

that its present value is 1, meaning that a represents the distances of objects participating in the Hubble 
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flow at an arbitrary time relative to their present distances. Furthermore   is the cosmic radial 

standard coordinate comoving with the Hubble flow, and:  

   
'

'




 C

t

dt
t

a t
 (21)

its value at the event horizon, which exists only if this integral is finite. The definition (21) implies that 
the value of C  decreases with time for all universe models. For universe models with an event 

horizon the CEHE is:  

2 2
22

 C C
P

k
S a

l
  (22)

This shall now be applied to some important and simple classes of universe models in order to find 

the time evolution of CEHE in these models. A flat universe model dominated by a perfect fluid with 
equation of state p w  with constant value of w  has scale factor: 

 
 

2

3 1

0

 
  
 

wt
a t

t
 (23)

where 0t  is the point of time for which  0 1a t , which may be taken to be the present time. Inserting 

the expression (24) into the integral (21) shows that there exists an event horizon only if 1 1/ 3   w . 

This is just the condition that the universe model has accelerated expansion. In this case the coordinate 

distance to the event horizon is: 

   
1 3

3 1

0
0

3 1

1 3
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C

w t
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w t
 (24)

The CEHE is: 

2
2

9 1

2 1 3

     
C

P

k w
S t

l w
 (25)

Hence the CEHE increases with time as 2t  for all flat, accelerating universe models with an event 

horizon dominated by a single cosmic fluid.  

A flat LIVE-dominated universe model has scale factor: 

   0/3  t ta t e  (26)

In this universe model the coordinate distance to the event horizon is: 

 0/33 /     t t
C e  

 

)(27) 

Hence, the CEHE is: 

2

3

2




C
P

k
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l
 (28)

which is constant. 
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Davis, Davies and Lineweaver [13] have investigated the change of CEHE with time in a spacetime 

with LIVE and radiation. Considering a universe model with flat 3-space the scale factor is: 

     1/2
0 0sinh / , / , 1/ 2 3 /       ra t A t t A t  (29)

where 0 r  and 0  are the present values of the density parameters of the radiation and LIVE, 

respectively. Furthermore    where the density of LIVE,  , is constant. With this scale factor 

the expression (21) for C  is an elliptical integral. However Davis et al. [13] have investigated the 

evolution of CEHE in such universe models with different values of the spatial curvature and of 0 r  

and 0  by performing numerical integrations of Friedmann’s equation for such a universe model. 

They found that the CEHE increases with time in a flat FRW-universe model with LIVE and radiation. 

However, the entropy of the radiation inside the horizon decreases with time. The reason is that the 

entropy is proportional to the number of photons inside the horizon, and inside a surface that is 

comoving with the Hubble flow the number of photons and thus the entropy of the radiation is 

constant. This is in agreement with the fact that there is no heat in a homogeneous universe since there 

are no large scale temperature differences. Thus the universe expands adiabatically. But a comoving 
surface has a constant value of  , and from the definition (21) follows that the radius of the event 

horizon, C , decreases with time. There is a leakage of photons out of the event horizon.  

For simplicity the mathematical expression of this will here be deduced only for a flat universe 
model. Then the volume inside the event horizon is   3 34 / 3 C CV a . As noted by Davis, Davies and 

Lineweaver [13] the entropy of the radiation inside the event horizon is: 

   1/4 3/4 1/4 3/4 3 34 / 3 16 / 9      r r C r CS V a  (30)

where 2 4 3 3/15  k c  is the radiation constant. Since the radiation density fulfills 4
0 r ra , it 

follows that: 

  1/4 3/4 3
016 / 9   r r CS  (31)

which decreases with time. However, Davis, Davies and Lineweaver [13] found that in all cases the 

sum of the CEHE and the radiation entropy increases with time. 

4. The Weyl Curvature Hypothesis 

A universe which obeys the Second Law of Thermodynamics must come from an initial state with 

very low entropy. In this context Wald [14] has written that the claim that the entropy of the very early 

universe must have been extremely low appears to blatantly contradict the “standard model” of 

cosmology. From observations of the very small temperature fluctuations of the cosmic microwave 

radiation we see that the universe was very close to thermal equilibrium 400,000 years after the Big 

Bang, which seems to correspond to a state of nearly maximum entropy.  

However that would be the case only in the absence of gravity. The situation changes dramatically 

when gravity is present. Then, for a sufficiently large system, the entropy can always be increased by 

clumping the system and using the binding energy that is thereby released to heat up the system. The 

state of maximum entropy will not correspond to a homogeneous distribution of matter, but rather to 

that of a black hole. 
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In an effort to incorporate the tendency of (attractive) gravity to produce inhomogeneities–and in 

the most extreme cases black holes–into a generalized Second Law of Thermodynamics, Penrose [15] 

made some suggestions about how to define a quantity representing the entropy of a gravitational field. 

Such a quantity should vanish in the case of a homogeneous field and obtain a maximal value given by 

the Bekenstein-Hawking entropy (19) for the field of a black hole. In this connection Penrose 

formulated what is called the Weyl curvature hypothesis, saying that the Weyl curvature should be 

small near the initial singularity of the universe. Wainwright and Anderson [16] interpreted this 

hypothesis in terms of the ratio of the Weyl and Ricci curvature invariants: 

2







WA

W W
P

R R
 (32)

According to their formulation of the Weyl curvature hypothesis WAP  should vanish at the initial 

singularity of the universe. The physical content of the hypothesis is that the initial state of the 

universe is homogeneous and isotropic. Hence, the hypothesis need not be interpreted as a hypothesis 

about gravitational entropy. Neither need it refer to an unphysical initial singularity, but should instead 

be concerned with an initial state, say at the Planck time. A related attempt to implement Penrose’s 

suggestions was made in a paper by Mena and Tod [17]. 

Wald [14] asked: “What caused the very early universe to be in a very low entropy state?” and 

noted that there are basically two types of answers: (i) The initial state of the universe was random, but 

dynamical evolution caused at least the observable part of the universe to have very low entropy 

initially. (ii) The universe came into existence in a very special initial state. He then argued that the 

latter possibility is the more plausible one, and concluded that it will be more fruitful to seek an answer 

of the second type than to attempt to pursue dynamical explanations. In this connection Lebowitz [18] 

wrote: ”It would certainly be nice to have a theory which would explain the “cosmological initial 

state”. Grøn and Hervik [19,20] tried to follow the path that Wald considered the most fruitful one, by 

investigating whether a quantum calculation of initial conditions for the universe based upon the  

Wheeler-DeWitt equation supports Penrose’s Weyl curvature hypothesis, according to which the Ricci 

part of the curvature dominates over the Weyl part at the initial singularity of the universe. 

The vanishing of the Weyl curvature tensor at the initial singularity is a very special initial 

condition. Due to the evolution during the inflationary era, however, this condition may be relaxed. A 

much larger variety of initial conditions are consistent with the observed approximate homogeneity of 

the universe, as seen in the cosmic background radiation, in inflationary universe models than in 

models without inflation. A relevant question in this connection is: if a larger class of initial conditions 

leads to the same observable universe after a period of inflation, do inflationary processes lead to the 

production of entropy? After all, if entropy counts the number of microstates underlying a macrostate, 

and many more microstates lead to the same macrostate with inflation, then that should be the case. 

This topic will be further discussed in section 7 below. 

It was shown by Grøn and Hervik [19,20] that according to the Einstein’s classical field equations 
2

WAP diverges at the initial singularity both in the case of the homogeneous, but anisotropic Bianchi type 

I universe models and the isotropic, but inhomogeneous Tolman-Lemaitre Bondi (LTB) universe 

models. This means that there are large anisotropies and inhomogeneities near the initial singularities 
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in these universe models. Hence the classical behavior of 2

WAP  is not in agreement with the Weyl 

curvature hypothesis.  
Consequently, WAP  is not a suitable quantity to represent the entropy of a gravitational field. The 

reason for this failure may be that WAP  is a local quantity. In the case of the LTB universe models Grøn 

and Hervik showed that: 

2

3

 


 
  

 
WAP   (33)

where   is the average density and   the actual density. Near the initial singularity WAP  will be 

rapidly fluctuating in space between negative and positive values.  

If the entropy represents a large number of gravitational microstates corresponding to a certain 
gravitational field, it may more properly be represented by a non-local quantity proportional to WAP . 

Such a quantity may be finite at the initial singularity even if WAP  diverges. Grøn and Hervik therefore 

considered the entity:  

 1/2
1 11 22 33, G S WAS k P V V g g g  (34)

Here Sk  is a constant which is determined below, and V  is the invariant volume corresponding to a 

unit coordinate volume in coordinates co-moving with the cosmic fluid. The behavior of this quantity 

in LTB universe models with cold matter and LIVE represented by a cosmological constant Λ  in 

Einstein’s field equations, is as follows [19, 20]: 

• Expanding universe with large Λ : In the initial epoch the dust dominates and G1S  is increasing 

linearly with t . The universe is becoming more and more inhomogeneous. At late times Λ  dominates, 
and G1S  stops growing, evolving asymptotically towards a constant value. The universe inflates. 

• Expanding universe with small Λ : Again the dust dominates initially. In this case 1GS increases 

forever, but with a decreasing rate and again approaches a constant value asymptotically. 
• Expanding universe with vanishing Λ : The quantity G1S  again increases forever, this time 

approaching asymptotically a function     pf t c bt  where c and b are constants and 3p  if 2 1F  

and 1p  if 2 1F . (The function  F r is defined in refs. [19] and [20].)  

• Recollapsing universe: Due to the dust term the final singularity will be more inhomogeneous 

than the initial singularity. 
This shows that in the LTB universe the quantity G1S behaves in accordance with the Weyl 

curvature hypothesis. It should be noted that the Schwarzschild spacetime is a special case of the 
general LTB models. It has   constantm t and a vanishing Ricci tensor. Hence, the quantity G1S  

diverges in the Schwarzschild spacetime. This is in some sense the maximal possible value of G1S  , the 

Weyl tensor is as large as possible, and the Ricci tensor is as small as possible. Thus if one wants to 

associate entropy with a gravitational field, then at the classical level it seems that the Schwarzschild 

spacetime has the largest possible value of such a gravitational entropy.  
The unphysical divergence of G1S  is probably not a physical reality, but due to the lack of a 

quantum gravity theory. Even though the classical vacuum has vanishing Ricci tensor, a quantum field 

will fluctuate and cause the expectation value of the square of the Ricci tensor to be non-zero. Hence, 
there will probably be an upper bound on how large G1S  can be, even in a vacuum. 
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As to the Bianchi type I universe models Grøn and Hervik [19,20] showed that magnitude of G1S  at 

the initial singularity is proportional to the inverse of the dust density. Furthermore in universe models 
with LIVE a large value of Λ means that GS  has a small value and a small value of Λ means that G1S  

has a large value. For a more general class of universe models dominated by a fluid with equation of 
state p w  it was shown that G1S  increases as long as 1/ 3 1/ 3  w .  

5. The Weyl Curvature Hypothesis and Black Hole Entropy 

Rudjord, Grøn and Hervik [21] have investigated how far the black hole entropy can be accounted 
for by an entropy, G2S , due to the inhomogeneity of a gravitational field as suggested in the Weyl 

curvature hypothesis. This work was followed up by Romero, Thomas and Pérez [22].  

Considering the spacetime of a black hole we define a gravitational entropy current vector by the 

expression: 

ˆ P rΨ e  (35)

where P2 is a quantity proportional to the Weyl curvature invariant. However, it cannot be given by 

eq.(32) since the Ricci curvature invariant vanishes in the Schwarzschild spacetime. So Rudjord et al. [21] 

replaced the Wainwright, Anderson expression (32) by: 

2








W W

P
R R

 (36)

where the denominator is the Kretschmann curvature scalar. They proved that 2 1P  in all spacetimes 

with vanishing energy flux, which encompasses the spacetime outside the most general Kerr-Newman 

black hole and the isotropic and homogeneous Friedman universe models. 

According to eq. (19) the entropy of a black hole is proportional to the area of the black hole 

horizon. Hence, the entropy can be described as a surface integral over the horizon, σ: 
3

2 2
,

4 4
    G S S

P

k k c
S k k

l G
Ψ dσ  (37)

where Sk  has been determined by demanding that the condition 2 G BHS S  as given in eq. (19) shall be 

valid for a Schwarzschild black hole. This means that according to the present theory all of the entropy 

of a Schwarzschild black hole is due to the inhomogeneity of the gravitational field. Writing eq. (37) 

as a volume integral by means of Gauss’ divergence theorem, the entropy density is: 

 Ss k Ψ  (38)

We now consider static spherically symmetric spaces where the space time line element takes  

the form: 

   2 2 2 2 2 2 2 2 2 2, sin           r rds e c dt e dr r d d d d  (39)

in curvature coordinates defined by the condition that the invariant area of a spherical surface with 

radius r is 24 r . In the Schwarzschild spacetime:  

    1   r r SR
e e

r
 (40)
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where 22 /SR GM c  is the Schwarzschild radius, and: 

2

3
12 

 
    
 

SR
R R W W

r
 (41)

giving 2 1P . Romero, Thomas and Pérez [22] showed that 2 1P  also for the Kerr spacetime. This is 

of course a rather obvious result, since the Weyl curvature scalar is equal to the Kretschmann 

curvature scalar in empty space in general. Hence, 2 1P  in every empty region of an arbitrary 

spacetime. However in light of both the expressions (32) and (36) something more can be said about 

the Weyl entropy of a black hole. Considering a black hole as a limit in which space is empty, and the 

density profile has diverged to a Dirac delta function, the numerator of eq. (32) diverges, while at the 

same time, the denominator tends to zero. This shows the very strong way that black holes can be 

considered as the most inhomogeneous possible spacetimes. In this sense one may expect that there is 

maximal gravitational entropy in the Schwarzschild and Kerr spacetimes, and they can thus be 

considered to be the most inhomogeneous possible spacetimes. 

The covariant expression for the entropy density is: 

  0 0

00

,



   


i jS

i j i j

g gk
s h h g

x gh
 (42)

where h  is the determinant of the matrix made of the spatial components i jh  of the spatial metrical 

tensor. In the Schwarzschild spacetime the gravitational entropy density (33) is: 

2
1S Sk R

s
r r

    (43)

Rudjord, Grøn and Hervik [21] then calculated the entropy of the horizons due to  

the inhomogeneity in the gravitational field of a Reissner-Nordström black hole based upon  

the expression (38). It turned out that it was less than the Bekenstein-Hawking entropy of a charged 

black hole. Hence either the gravitational field accounts for only a part of the entropy of a charged 

black hole, or the expression (38) does not catch up all of the gravitational entropy. 

Further they calculated the gravitational contribution to the entropy of the black hole horizon of the 

Schwarzschild-de Sitter spacetime. This spacetime has two horizons, a black hole horizon and a 

cosmological horizon. Their radii are [21]:  

2 2 3 3
cos , cos , arccos

3 3 2

    


  
        

S
BH CH

R
R R

R
 (44)

where SR  and R  are defined in eq. (14). In the limit that the vacuum energy, i.e. Λ vanishes, the 

black hole horizon has a radius SR , and in the limit that the mass, i.e. the Schwarzschild radius, 

vanishes there is de Sitter spacetime and the cosmological horizon has a radius R . The surface 

gravities of the horizons in the Schwarzschild-de Sitter spacetime are: 

 
2 2 2 2 2/3

1
, ,

2 2 1 3 / 2
    

 


    


S S CHBH
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BH CH
S

R R RR

R R R R R R
 (45)

The corresponding entropies are: 
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 BH CH
BH CH

S S  (46)

Shankaranarayanan [23] suggested that the entropy of the Schwarzschild-de Sitter spacetime is: 

2  SdS BH CH BH CHS S S S S  (47)

Rudjord, Grøn and Hervik [21] found that the gravitational contribution according to the expression (38) 

to the black hole horizon in the Schwarzschild-de Sitter spacetime is: 

2 4
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G M

 
(48)

This expression shows that the gravitational contribution to the black hole horizon entropy 
decreases with increasing value of Λ. The entropy of the cosmological horizon, GCS , is given by 

eq.(48) with BHS  and BHR  replaced by CHS  and CHR . 

In the limit that 0M  there is de Sitter spacetime with no black hole horizon, only a cosmological 
horizon with radius R  and entropy:  

2

2
 

 
P

R
S k

l
 (49)

In this limit 0CGS . There is no gravitational contribution to the entropy of the de Sitter horizon. 

This is the “opposite” limit to that of the Schwarzschild black hole limit representing a spacetime in 

which the gravitational field is homogeneous. This will be the case in all conformally flat spacetimes, 

for example in all the Friedmann-Robertson-Walker universe models. Hence the entropy of horizons in 

conformally flat spacetimes must be of nongravitational origin according to the theory based upon the 

Weyl curvature hypothesis. It should also be noted that Penrose has expressed a doubt as to whether 
the entropy S associated with the de Sitter horizon has any physical significance. He writes [24]: “I 

am inclined to be sceptical about S  representing a true entropy in any case, for at least two further 

reasons. In the first place if Λ  really is a constant, so S  is just a fixed number, then   does not give 

rise to any actually discernible physical degrees of freedom. Moreover, I am not aware of any clear 
physical argument to justify the entropy S , like the Bekenstein argument for black hole entropy.”  

6. Is There a Maximal Entropy for the Universe? 

Processes supporting the existence of life in the universe depend upon the possibility that the 

entropy has not yet reached a maximal value where all organized activity cease. But there still remains 

some ambiguity about how to best define the maximum entropy. This question was recently discussed by 

Egan [25]. There are several conjectures as to what the maximal entropy may be [26]. One is the so-

called Bekenstein bound [27]. The maximum entropy of a system with radius R and non-gravitational 

energy E is:  

2 
MAX Bek

k
S RE

c
  (50)
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The physical meaning is that the entropy lost into a black hole cannot be larger than the increase in 

the horizon entropy of the black hole. In the context of a flat FRW-universe the Bekenstein bound says 
that the maximal entropy inside a co-moving surface with standard coordinate radius   is:  

2
4 48

3

   
MAX Bek

k
S a

c
 (51)

where   is the density of the cosmic fluid and a the scale factor. For a universe dominated by a 

cosmic fluid with equation of state p w , the density changes during the expansion according to 
 3 1

0  wa  where 0  is the present density. Hence the Bekenstein bound of the cosmic entropy is 

proportional to 1 3 wa . In the radiation dominated that lasts for about fifty thousand years after the Big 

Bang, the dominating fluid, i.e. the radiation, had 1/ 3w . Hence the Bekenstein maximum of entropy 

was constant during the radiation dominated era. For cosmic matter with 1/ 3w , for example cold 

dark matter with 0w , the Bekenstein bound increases with time, and for cosmic dark energy with 

1/ 3 w  the Bekenstein bound of maximal entropy increases faster that in the matter dominated era.  

Secondly the Holographic bound [28,29] may be formulated by asserting that for a given volume V, 

the state of maximal entropy is the one containing the largest black hole that fits inside V, and this 

maximum is given by the finite area that encloses this volume. The maximum entropy is not 

proportional to the volume as one might have expected. As applied to the space inside the 

cosmological horizon in a FRW universe this gives the entropy bound: 
2



 
  

 
MAX Hol
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a
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l
 (52)

In the present era of our universe which is dominated by dark energy, possibly in the form of LIVE, 

the holographic bound (52) increases exponentially fast in the future. Several versions of this bound 

have been discussed by Custadio and Horvath [30]. However, as noted by Veneziano [31], entropy in 

cosmology is extensive, i.e. it grows like 3R , but the holographic entropy boundary grows like 2R . 

Therefore at sufficiently large R  the holographic entropy boundary must be violated. 

Frautschi [32] identified the maximum entropy inside the particle horizon of a universe as the 

entropy that is produced if all matter inside the horizon collapses to a single black hole. Again as 

applied to a flat FRW universe this leads to: 

 
3

23 364

9

   
MAX Fra PH

kG
S a

c
 (53)

For a universe dominated by a cosmic fluid with equation of state p w , this implies that 
3

  w
MAX FraS a . Hence, an era dominated by cold matter has approximately constant value for this upper 

bound on the entropy. The bound decreased in the radiation dominated era and increases in the present 

and future LIVE-dominated era. 

Pavon and Radicella [33] have recently discussed the question whether the entropy of the universe 

will tend to a maximum. They took as a point of departure that the dominating contribution to the 

entropy of the universe is that associated with a cosmological horizon, and represented for simplicity 

the horizon by the surface around an observer where the velocity of the Hubble flow is equal to the 

velocity of light. Hence the physical radius of the surface is equal to the Hubble radius, /c H . The 

area of this surface is 2 24 /A c H  , and the entropy is:  
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The Hubble factor and hence the entropy is here assumed to be given as a function of the scale 
factor,  H HS S a , and differentiation of HS  with respect to a is denoted by 'HS . According to the 

second law of thermodynamics the entropy of the universe does not decrease, ' 0HS . Then, if the 

entropy shall reach a maximum the condition '' 0HS  must be obeyed for large values of a.  

Let us look at the time evolution of HS  in the flat ΛCDM universe model which has: 

  3
0 0 0


  MH a H a   (55)

where 0  and 0 01M     are the present values of the density parameter of LIVE and dark matter, 

respectively. Hence 
2

0
3
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, ,
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S S k N

N a l H
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In this universe model, which is compatible with all cosmological observations so far, the entropy 

HS  approaches the finite maximal value S . 

7. Entropy Change During the Inflationary Era 

The importance of gravity for the establishment of an arrow of time in the universe was emphasized 

by Davies [34] in an article titled Inflation and the time asymmetry in the universe. He noted that when 

gravity is attractive, gravity tends to contract matter and, if possible, make black holes. In this case a 

smooth distribution of matter represents a small gravitational entropy.  

However if gravity is repulsive so that gravity tends to smoothen the distribution of matter and 

energy, it seems natural to say that a state with an irregular mass distribution would be a low entropy 

state and a smooth state would be one of maximal entropy. Under attractive gravity an inhomogeneous 

clumped field has high entropy, but with the switch to repellent gravity it is redefined as low entropy. 

Concentrations of mass, i.e. curvature, try to smooth themselves out and the gravitational field tends 

towards uniformity.  

This way of talking about gravitational entropy is in accordance with the Second Law, securing that 

gravitational entropy increases during a period dominated by repulsive gravity. However, it is in 

conflict with the definition of gravitational entropy defined as an expression of inhomogeneity of a 

gravitational field. A general agreement as to how one should define and describe mathematically the 

gravitational contribution to the cosmic entropy during a period dominated by repulsive gravity has not 

yet been obtained.  

Before the Planck time, 4310 s, the universe was probably in a state of quantum gravitational 

fluctuations. Then it entered an inflationary era lasting for about 3310 s dominated by dark energy with 

a huge density, possibly in the form of LIVE. The universe then evolved exponentially fast toward a 

smooth and maximally symmetric de Sitter space which represents the equilibrium end state with 

maximal entropy when the evolution is dominated by a non-vanishing cosmological constant. This was 

an essentially adiabatic expansion with small changes of entropy. 
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At the end of the inflationary era the entropic situation changed abruptly. The vacuum energy was 

transformed to radiation and matter, gravity became attractive, and it became favorable for the 

Universe to grow clumpy. As pointed out by Veneziano [31] in any inflationary scenario, most of the 

present entropy is the result of these dissipative processes. But not only did the entropy of the matter 

increase. Also the value of the maximum possible entropy increased–and much more than the actual 

entropy. Hence a large gap opened up between the actual entropy of the universe and the maximum 

possible entropy. According to Davies this accounts for all the observed macroscopic time asymmetry 

in the physical world and imprints an arrow of time on it. 

Page [35] has disputed this conclusion. He argues that because the de Sitter spacetime, the 

perturbed form of which is equal to the spacetime during most of the inflationary era, is time 

symmetric, then for every solution of Einstein’s equations which corresponds to decaying 

perturbations, there will be a time-reversed solution which describes growing perturbations. Page also 

noted that a sufficient, though not necessary condition for decaying perturbations is the absence of 

correlations in the perturbations in the region. Davies answered [36]: The perturbations will only grow 

if they conspire to organize themselves over a large spatial region in a cooperative fashion. Hence, it is 

necessary to explain why it is reasonable for the universe to have been in a state with no  

correlations initially. 

Davies then went on to give the following explanation. Due to repulsive gravitation de Sitter 

spacetime may be considered to be a state of equilibrium with maximal entropy. But quantum effects 

will cause fluctuations about the de Sitter background. Large fluctuations are much rarer than small 

fluctuations. At the minimum point of such a fluctuation the perturbations will be uncorrelated. A 

randomly chosen perturbed state will almost certainly be such a state of no correlations at the 

minimum of a fluctuation curve. This state is thus one in which the perturbations will decay rather than 

grow whichever direction of time is chosen as forward.  

Hence inflation lowers the “Weyl-entropy” in a co-moving volume and expansion raises it, and it is 

not obvious which should dominate. We shall therefore calculate the “Weyl-entropy” change during 
the inflationary era in a plane-symmetric Bianchi type I universe dominated by LIVE, using 1GS  given 

in eq. (34) and 2 GS PV  with P  given in eq. (38), as measures of gravitational entropy. 

The line element of the LIVE-dominated, plane symmetric Bianchi type I universe is [37]: 

 22 2 2 2 , 1,2,3   i
ids c dt R dx i  (57)

here: 

  1/22/3 2/3 2/3 1/3 2/3
1 2 32 sinh , 2 coth cosh , 1 / 2 3       R R R t   (58)

The co-moving volume is: 

 sinh 2V  (59)

For this spacetime the Ricci scalar, the Weyl scalar and the Kretschmann curvature scalar are,  

respectively: 
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Hence, the quantities WAP  given in eq.(32) and P  given in eq.(38) are, respectively: 
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This gives: 
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k
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The time variations of these quantities at the beginning of the inflationary era are shown in Figure 3. 

Figure 3. Time-variation of the candidate gravitational entropies 1GS  (upper curve) and 

2GS  in a comoving volume during the beginning of the inflationary era.  

 

We see that if 1GS  or 2GS  were a dominating form of entropy, then the entropy of the universe 

decreased during most part of the inflationary era except possibly during a transient initial period.  

Davies [36] further mentioned the problem of deciding whether the cosmic initial conditions are 

very inhomogeneous resembling a universe with primordial black holes or more homogeneous. If it 

was too inhomogeneous when it entered the inflationary era the inhomogeneities might not have been 

sufficiently inflated during the inflationary era to let the universe evolve towards the homogeneous 

state it was in 400,000 years after the Big Bang when the relative temperature deviations, /T T  from 

homogeneity was of the order of magnitude 10-5.  

More research should be performed on the evolution of the cosmic entropy during the inflationary 

era. Even during an inflationary era, particularly a late phase lambda dominated one, even though the 

lambda term dominates the overall expansion, locally, gravity remains attractive, and so one should 

consider scenarios which are a mixture of repulsive gravity at large scales, and attractive at small ones. 

8. The Entropy of the Universe 

Frampton, Hsu, Kephart and Reeb [38] have recently calculated the entropy within the observable 

part of the universe. This has been followed up by Egan and Lineweaver [39]. They have presented still 

more accurate results and also include the entropy of the cosmological horizon. 
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The observable part of the universe is that part which is inside the event horizon, and has at the 
present time the magnitude   80 33,65 0,10 10  OBSV m . Egan and Lineweaver found that the baryonic 

matter in the universe in the form of stars and interstellar gas and dust contributes with 
  818 6 10  BS k . The microwave background radiation has an entropy   34 / 3  OBSS V T  where 

 8 2 45,67 10 /   W m K  is the Stefan-Boltzmann constant, and the present temperature of the radiation 

is 2.73T K . This gives   892.03 0.15 10   S k . The entropy of the relic neutrinos is a factor 11/4 

larger, i.e.   895.15 0.14 10   S k . Egan and Lineweaver [39] have also estimated the entropy of relic 

gravitons, 
0.2
2.587

6.2 10

 gravS k . The entropy of the dark matter was found to be 88 12 10  DMS k . All of 

these entropy contributions are thermodynamic. Then come two contributions that may be due to 
inhomogeneous gravitational fields. The entropy of the stellar black holes with masses 15 M M , 

where M is the mass of the Sun, is calculated to be 
0.6
1.297

5.9 10

 SBHS k . The corresponding entropy of 

the supermassive black holes in the centers of the galaxies was found to be 3.0 104
1.73.1 10
 SMBHS k . Hence 

these gravitational contributions to the entropy of the Universe are much larger than the 

thermodynamic contributions. Frampton [40] has suggested that intermediate mass black holes in 

galactic haloes may contribute with even more entropy, up to 10610 k . The entropy of the cosmic event 

horizon is vast,  2
/CEH CEH PS k R l  where  15.7 0.4 CEHR Glyr , giving   1222.6 0.3 10  CEHS k . 

Since the spacetime of the universe model is conformally flat, all of this entropy is of non-gravitational 

origin according to the theory based upon the Weyl curvature hypothesis. The physical significance 

and origin of this dominating entropy is still not known. 

The time evolution of the entropy of the universe was summarized briefly by Egan and Lineweaver [39].  

I will here neglect the evolution of the entropy associated with the cosmological horizon, as the 

physical significance of this is rather speculative and not well understood.  
At the Planck time, 445.4 10 Pt s , the universe may have fluctuated into an inflationary era 

dominated by vacuum energy and lasting for about 3310 s . During this era the universe became 

increasingly homogeneous. Then the thermodynamic entropy increased, but as shown above (see 

Figure 3) the gravitational entropy based upon the Weyl curvature hypothesis decreased, and the sum 

of the two can be a decreasing function of time. 

If this theory is correct, we have to modify the second law of thermodynamics. The usual 

formulation is then generally valid only when the dominating cosmic gravity is attractive. In that case 

the entropy of the universe cannot decrease, as we are used to. But the entropy of the universe may 

decrease if the processes determining the change of the entropy in the universe are dominated by 

repulsive gravity like in the inflationary era. Hence, if the arrow of time is due to gravitational entropy, 

then the arrow of time may have been directed along decreasing entropy in the inflationary era. As 

mentioned above there is no general agreement as to how the gravitational contribution to the cosmic 

entropy shall be defined. 

At the end of the inflationary era the vacuum energy was transformed to radiation and matter with 

an enormous heating involved, and gravity became attractive. This produced an increase of 

thermodynamic entropy by many orders of magnitude, and the maximal value of the cosmic entropy 

increased so much that a vast entropy gap opened up, but the Weyl gravitational entropy remained low.  
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After about a hundred million years the first stars formed from collapsing clouds of hydrogen and 

helium, and shortly thereafter the first black holes formed. The entropy in stellar black holes increased 

rapidly during the galactic evolution. Subsequently the gravitational entropy increased further due to 

the formation of supermassive black holes in the centers of the galaxies. In a far away future the black 

holes may disappear due to Hawking radiation, and the asymptotic future of the entropy budget will 

then be radiation dominated. One may wonder whether the disappearance of black holes is an entropy 

increasing process according to the conventional description of the entropy of black holes and of the 

form of energy which is Hawking radiated from a black hole. Presumably it is so, and the entropy 

increase in Hawking evaporation has been estimated by Zurek [41]. 

9. Conclusions 

In this article we have considered four types of entropy: the usual thermal entropy as interpreted by 

Boltzmann, entropy of black holes, entropy of cosmological event horizons and entropy associated 

with the inhomogeneity of gravitational fields, as suggested by the Weyl curvature hypothesis. The 

generalized Second Law of Thermodynamics says that the sum of all these entropies in the universe 

cannot decrease.  

The gravitational entropy given by the volume integral of the divergence of the square root of the 

ratio between the Weyl- and Kretschmann curvature scalars is in general different from the  

Bekenstein-Hawking entropy of the horizons in an arbitrary spacetime. However the Schwarzschild 

spacetime seems to be an exceptional case in which all of the horizon-entropy comes from the 

gravitational entropy due to the inhomogeneity of the gravitational field. On the other hand all 

conformally flat spacetimes have vanishing gravitational entropy. This is the case for all of the 

Friedmann universe models if local inhomogeneities are neglected. In particular there is no 

gravitational contribution to the entropy of the cosmological horizon of the de Sitter universe.  

If the universe has evolved from an initial rather homogeneous state, the gravitational entropy was 

low at the beginning. Also a vast reduction of the gravitational entropy may have taken place in the 

inflationary era while the thermodynamical entropy increased. At the end of the inflationary era the 

universe was in a state with a high degree of homogeneity and nearly perfect thermal equilibrium. 

During the later condensation of matter and increment of local inhomogeneities the temperature 

differences increased, but due to release of gravitational energy which was transformed to thermal 

energy, the thermodynamical entropy increased also during these processes. Furthermore there was a 

great increase of gravitational entropy due to gravitational condensation with production of a large 

number of black holes in our universe.  

Quantum calculations show that an inhomogeneous universe is more likely to be spontaneously 

created than a homogeneous one, and that a universe with a large cosmological constant is more likely 

to be created than a universe with a small cosmological constant. 

As to the evolution of entropy in our expanding universe, it was noted by Wallace [2] that although 

the early universe was at local thermal equilibrium, it was not at global thermal equilibrium because of 

the expansion of the universe and because it was highly uniform, and the process of becoming  

non-uniform is entropy-increasing when conversion of gravitational energy to thermal energy and 
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emission of electromagnetic radiation is taken into account. However, the dominating entropy-

increasing processes are the formation of black holes. 
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