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Abstract: This study aims to disentangle complexity from randomness and chaos, and
to present a definition of complexity that emphasizes its epistemically distinct qualities. I
will review existing attempts at defining complexity and argue that these suffer from two
major faults: a tendency to neglect the underlying dynamics and to focus exclusively on
the phenomenology of complex systems; and linguistic imprecisions in describing these
phenomenologies. I will argue that the tendency to discuss phenomenology removed from
the underlying dynamics is the main root of the difficulties in distinguishing complex from
chaotic or random systems. In my own definition, I will explicitly try to avoid these pitfalls.
The theoretical contemplations in this paper will be tested on a sample of five models: the
random Kac ring, the chaotic CA30, the regular CA90, the complex CA110 and the complex
Bak-Sneppen model. Although these modelling studies are restricted in scope and can only
be seen as preliminary, they still constitute on of the first attempts to investigate complex
systems comparatively.

Keywords: complexity; complexity definition; entropy

1. Introduction

“Was sich überhaupt sagen läßt, läßt sich klar sagen; und wovon man nicht reden kann, darüber
muß man schweigen.”
(L. Wittgenstein, Tractatus Logico-Philosophicus)

During the last ten years complexity research has received a relatively large amount of attention by
both the scientific community and the general public: Paramount scientific figures like Nobel Laureate
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Murray Gell-Mann have championed its cause (e.g., [1]); Science magazine devoted a special issue to it;
and in the 2004’s bestseller lists, The Swarm [2] explored the sinister consequences of not paying enough
attention to complex systems.

One of the greatest draws of complexity as a field of research is the possibility of recognizing it in
virtually every branch of science and the social sciences (e.g., [3]). However, despite the labelling of an
increasingly large number of models and natural systems as “complex”, the definition of the term has
remained vague. Standish [4] pointed out that these difficulties extend to both a qualitative identification
of a conclusive set of defining features that a complex system should possess, as well as to the quantitative
measurements of complexity as a property. The difficulty of finding an unequivocal conceptualization
and measure of complexity is also recognized by Gell-Mann [5], who states that (p. 1):

“[A] variety of different measures would be required to capture all our intuitive ideas about what
is meant by complexity and by its opposite, simplicity.”

In fact, Lloyd [6] enumerates forty-two different existing complexity measures in what is described
as “a nonexhaustive list” (p. 7).

Despite the lack of agreement on the definition of complexity, complexity scientists have been eager
to stress the importance of the concept as central to nature. For example, Wolfram [7] writes about
his work:

“Perhaps the most dramatic [benefit] is that it yields a resolution to what has long been considered
the single greatest mystery of the natural world: what secret is it that allows nature seemingly so
effortlessly to produce so much that appears to us complex.” (p. 2)

However, the failure to precisely state what it actually is that needs to be studied in order to unravel
“nature’s greatest mystery” has drawn extensive criticism. Horgan [8] describes complexity as an
unjustifiably hyped “pop-science movement” that spun off from chaos theory. A closer review of the
complexity measures compiled by Lloyd [6] reveals that they indeed borrow heavily from a number
of “ancestor theories” like statistical mechanics, chaos theory and computational physics. Likewise, a
closer look at the conception of these measures reveals that the struggle for a definition of complexity is
fueled by two factors: a failure to fully emancipate oneself from these epistemological ancestors and the
uncritical use of metaphorical and imprecise language.

This paper aims to present a structured account of the “intuitive ideas of what is meant by complexity”
mentioned by Gell-Mann [5]. With the possible exception of the currently mostly speculative work by
Wolfram [7], intuitions about complexity have been largely restricted to its phenomenology. I will argue
that the tendency to discuss phenomenology removed from the underlying dynamics is the main root
of the difficulties in distinguishing chaotic from complex systems. I will claim that a purely dynamical
definition of complexity is possible, however, it would be more inclusive than the complexity community
wishes it to be. Instead, a phenomenological sieve must be imposed to distinguish the “interesting”
systems from “simple” ones with similar dynamics.

Secondly, I will show that both previous attempts to design such a sieve as well as the general
complexity discourse suffer from either semantic circularities or an over-reliance on metaphorical
language, which seems to compensate for a potentially fundamental difficulty in arriving at an objective
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description. It will also be shown that quantitative complexity measures based on the most prevalent
metaphors are not successful in identifying complex models as such. As indicated by the mildly
ironic motto of this paper I believe that it would have aided the the progress of complexity science if
the community had refrained from hiding the inability to recognize the essence of complexity behind
eye-catching but fundamentally imprecise phrases.

Based on the insights gained in the first parts of this paper, we will finally design our own
complexity definition.

Methodologically, I complement my theoretical investigation by the analysis of a sample of five
simple models. The phenomenologies of two of these are generally judged to be complex: the
Wolfram Cellular Automaton (CA) 110 (e.g., [7]) and a discrete Bak-Sneppen model [9]. I have
deliberately sought to include models that are based on very different dynamical premises (e.g., the
CA110 is deterministic while the Bak-Sneppen model is probabilistic), thereby hoping to address a
lacuna in comparative complexity studies. In addition to these I will consider: the Wolfram CA30,
a model with pseudo-random (often called “chaotic”) output; the Kac ring, a dynamically random
and phenomenologically entropy-maximizing model; and the Wolfram CA90, a model with regular
phenomenology. The models will be used as both a means of verifying existing assumptions about
complexity as well as a testbed for my own ideas. Underlying the reliance on these simple computer
models is the assumption that complexity science can still very much be identified with the study of such
simulations (e.g., [10]).

In Section 2 I will describe the models used in this study. Section 3 contains a discussion of dynamical
complexity definitions and measures. In Section 4 I will examine qualitative and quantitative descriptions
of complex phenomenology. Conclusions will be drawn in Section 5, which also contains my attempt at
a rudimentary complexity definition.

2. Five Simple Models

In this section I will describe the five simple models used in this study. Wherever possible, the models
have been chosen as typical, or even well-known, representatives of a larger class of such simulations. I
have also deliberately included both a deterministic as well as probabilistic complex model.

2.1. The Kac Ring

The Kac model was developed by Kac [11] as a means of demonstrating that coarse graining and
Stosszahlansatz-like dynamical assumptions can lead to irreversible evolution of a macroscopic entropy.
It describes an idealized system of particles whose phase-space values are determined by randomized
collisions only. Dorfmann [12] and Gottwald and Oliver [13] provide a detailed discussion of the
dynamics of the system in the context of thermodynamics and statistical physics. My abbreviated account
below is based on their exposition.

The KAC model consists of a one-dimensional, periodic lattice of N sites arranged around a ring.
Each site is occupied by a particle, which has either the property “black” or the property “white”.
Neighbouring sites are joined by edges. Each of the N edges is assigned one of two markers, which
will be denoted as S and S̄.
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The dynamics of the system is discrete and consists of particles moving clockwise to the neighbouring
site. Thereby, the edge markers control the evolution of the colour property: a particle changes colour
if it traverses an edge marked S̄ but remains unchanged if the edge marker is S. If the same number of
steps is retraced in the counter-clockwise direction, the initial state is reached again. The dynamics of
the ring is therefore reversible. Furthermore, the time evolution of the system is periodic. Depending on
the number n of colour-changing edges S̄, states reoccur with a period of N or 2N time-steps for even
or odd n, respectively.

Mimicking the dual mode of description employed in statistical physics and thermodynamics,
microscopic and macroscopic variables will be used to describe the Kac model. On the macroscopic
level, the number B of black particles and the number W of white particles will be used as fundamental
variables. On a mesoscale level, convenient properties to consider are the number of black or white
particles before an S̄ edge: b and w, respectively. From the previous paragraph, the importance of these
quantities for the evolution of the model in the next step is immediately apparent: b is equal to the number
of particles changing from black to white and w is equal to the number of particles changing from white
to black. Since the computation of b and w requires knowledge of the exact location of the particles on
the ring, while that of B and W only relies on the overall ratio of particles regardless of their location,
the choice of these two pairs of properties is in keeping with the analogy to a microscopic/macroscopic
description in statistical mechanics. Using these definitions, the dynamics of the macroscopic quantities
are given by the following equations:

B(t+ 1) = B(t) + w(t)− b(t) (1)

and
W (t+ 1) = W (t)− w(t) + b(t) (2)

where t is the discrete time step and constitutes a single, clockwise shift of the ring. Equations (1) and (2)
can be combined into a single difference equation:

∆(t+ 1) := B(t+ 1)−W (t+ 1) = ∆(t) + 2w(t)− 2b(w) (3)

Since Equation (3) still depends crucially on the microscopic properties b and w, no closed macroscopic
description has been achieved.

In order to eradicate these variables one needs to make further assumptions about their relation to
the large-scale properties of the system. In analogy to Boltzmann’s Stosszahlansatz, one assumes that
each particle is equally likely to experience a “collision” and change its colour property. Noting that the
proportion of edges around the ring carrying the marker S̄ is given by n/N , one thus assumes that this
ratio must also be the probability for a particle to change colour, i.e., one requires:

µ :=
n

N
=

b

B
=

w

W
(4)

Since µ can be derived from the macroscopic quantities n and N , we can use Equation (4) to remove the
microscopic quantities from Equation (3):

∆(t+ 1) = ∆(t) + 2µ(W (t)−B(t)) = ∆(t)(1− 2µ) (5)



Entropy 2012, 14 181

Equation (5) defines a geometric sequence, which can be rewritten as a function of the initial state ∆(0).

∆(t) = (1− 2µ)t∆(0) (6)

It is notable that Equation (6) is not time reversible, since we necessarily have µ ≤ 1 and therefore
∆(t) → 0 for t → ∞. The only exception to this asymptotic behaviour is an initial set-up where the
number of S edges equals the number of S̄ edges and thus n = (1/2)N , in which case Equation (6) is
trivially zero. The Kac model thus captures the time development contrast between macroscopic and
microscopic variables that is characteristic of statistical mechanical systems.

2.2. Wolfram Cellular Automata

Von Neumann [14] is generally credited with the invention of cellular automata. However, only after
computational resources became more readily available in the 1970s were large-scale studies of such
discrete systems conducted. The three cellular automata investigated in this paper belong to a group
of one-dimensional, nearest-neighbour automata most extensively studied by Wolfram [7,15–19]. These
are particularly suitable for a comparison to the Kac ring since, under periodic boundary conditions, they
likewise can be visualised as a ring of black and white particles.

Like the Kac model, Wolfram cellular automata consist of one-dimensional, periodic lattices of N
sites arranged around a ring. Each site is again occupied by a particle of either colour “black” or “white”.
However, in contrast to the Kac ring, the colour assumed by a particle at position xn,t in the next time
step t + 1 does not depend on an external property but is determined by the colours of both the given
particle as well as its two nearest neighbours at xn+1,t and xn−1,t.

Working with only two colours, there are 23 = 8 different configurations for the colouring of a triplet
(xn−1,t, xn,t, xn+1,t). To each of these possibilities a resulting colouring of xn,t+1 as either black or
white is assigned. The complete set of eight such assignments constitutes the rule set of the given
cellular automaton. For the nearest-neighbours set-up with two possible states discussed here, there are
28 = 256 possible rule sets. All of these have been catalogued and named by Wolfram [7]. The naming
convention is such that the binary code spelled out by the assigned states (with 1 denoting black and
0 denoting white) of the eight rules is translated into a base 10 number.

In this paper I will consider three of the 256 possible Wolfram cellular automata, CA30, CA90 and
CA110. The rule sets for these are given in Table 1.

Table 1. Wolfram cellular automata rule sets. The upper line shows the parent triplet
(xn−1,t, xn,t, xn+1,t), the resulting colouring for xn,t+1 is given below. 1 denotes black and
0 denotes white.

Parent triplet 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0

CA 30 0 0 0 1 1 1 1 0
CA 90 0 1 0 1 1 0 1 0
CA 110 0 1 1 0 1 1 1 0
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2.3. The Bak-Sneppen Model

The Bak-Sneppen model was developed by Bak and Sneppen [20]. It has since become a much-cited
example of a system with self-organized criticality (e.g., [21–23]) and thus holds at least some
epistemological credentials towards a claim of complexity. The natural process the model represents
is the co-evolution of a number of species.

In its one-dimensional form, which I will consider for better comparison to the other models
discussed, the Bak-Sneppen model consists of a ring of N sites connected to each other by edges. The
general set-up is therefore very similar to the Kac model and the Wolfram cellular automata. Each site
represents a species with fitness value xn,t (xn,t ϵ [0,1]). As in the Wolfram models, the development
of connected sites—the triple (xn−1,t, xn,t, xn+1,t)—is interlinked, in a crude attempt to capture the
evolution of co-dependent species. During a time-step, the site with the lowest fitness value xmin,t is
determined. Its fitness value and those of its two neighbours, xmin−1,t and xmin+1,t, are then replaced
by equi-distributed random numbers on the unit interval. This represents the extinction of the three
co-evolving species and their replacement by three new ones. Therefore, in contrast to the Wolfram
cellular automata or the Kac ring, not all sites are updated during a time step.

While the classic version of the Bak-Sneppen model uses a continuous spectrum of fitness values, I
will consider a discrete version which only employs values of 1 and 0 [9]. This model will be directly
comparable to those discussed in the previous sections. In the discrete Bak-Sneppen model, the site to
be updated, xrand,t, is chosen randomly. If xrand = 0 then the triple around xrand is updated by a renewed
fitness calculation. Otherwise the ring remains unchanged. This computation randomly assigns either a
new fitness value of 1 or 0 to each of the three sites.

2.4. Model Results

I have simulated rings of 100 sites, usually for 200 time steps. A uniformly random distribution
of edge markers around the ring (giving µ = 0.51) was used for the Kac ring. The initial state was a
single black particle at position x50,0. All models were written in FORTRAN. MathCad and the standard
Microsoft Office package were used for post-processing.

Results from the simulations are summarized in Figures 1 and 2. Figure 1 shows the space-time
diagrams for all five models in comparison. In Figure 2 the rings are displayed at the four consecutive
time steps between t = 150 and t = 153. A better impression of the phenomenology in this naturalistic
representation can be gained by watching the animations appended to this article (Appendix A), which
show the full run for each of the five models.

My results for the Kac ring model compare well with those obtained by Gottwald and Oliver [13].
Since the ring features an odd number of markers, it is symmetric with a period of 2N , i.e., the
time development repeats itself after 200 time steps. Similarly, my discrete Bak-Sneppen model
compares well to previous results with a similar model [9]. The space time diagrams simulated for
the Wolfram cellular automata are identical to the ones collected in the literature for the given rules and
initialisation (e.g., [7]).



Entropy 2012, 14 183

Figure 1. Space time diagrams of the five models.

Figure 2. Time steps 150 to 153 for all five rings in naturalistic representation.
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2.5. A Note on Boolean Networks

It could be argued that the third large class of complex models, besides those aimed at producing
self-organized criticality and cellular automata, are Boolean networks. These have featured prominently
in the work of Stuart Kauffman and his evolutionary theory of complexity [23,24]. In a Boolean network,
each node xn,t is connected to k other nodes by one of the following Boolean functions: AND, OR,
TRUE, FALSE and potentially a set of non-exclusive variations. The state of xn,t+1 is then determined
by this function from the k input values of the connected nodes. In random Boolean networks the
functions are assigned randomly to the sites.

For my ring with nearest-neighbour dynamics and two states of black or white, the minimum set of
functions translates into the rule set summarized in Table 2. However, I was not able to obtain complex
phenomenologies for this simple one-dimensional set-up. Figure 3b shows a typical result for a ring
where each site carries a randomly assigned exclusive Boolean function fed by its two nearest-neighbours
(Figure 3a). As displayed in the figure, the system quickly settled onto a stationary state. This might
simply be the result of the need (induced by the desire to preserve comparability with the models
presented in Sections 2.1 to 2.3) to use k = 2 and to prescribe nearest-neighbour interactions. The
model also does not use the full range of Boolean functions available since we have restricted ourselves
to exclusive ones. However, it is also consistent with a tendency observed by Bak, one of the designers
of the original Bak-Sneppen model, when working with random Boolean networks (quoted in [25],
pp. 126–127):

“The result was always the same. The model would converge either to the frozen phase or to the
chaotic phase, and only if the parameter C [equivalent to k above] was tuned very carefully would
we get interesting complex, critical behaviour. [ . . .] Despite Stu’s early enthusiastic claims, for
instance in his book The Origins of Order, [ . . .] that they exhibit self-organized criticality, they
simply don’t.”

Table 2. Boolean networks minimum rule sets. The upper line shows the parent triplet
(xn−1,t, xn,t, xn+1,t), the resulting colouring for xn,t+1 is given below. 1 denotes black and
0 denotes white.

Parent triplet 1 xn,t 1 1 xn,t 0 0 xn,t 1 0 xn,t 0

AND 1 0 0 0
OR 0 1 1 0
TRUE 1 1 1 1
FALSE 0 0 0 0

Since it appears that including a Boolean ring as displayed in Figure 3 into my ensemble of models
would not add much to either the discussion of dynamics or phenomenology, I have refrained from
doing so.
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Figure 3. Boolean ring model. (a) Distribution of Boolean functions around the ring
(red: AND; green: OR; blue: TRUE; black: FALSE); (b) Space-time diagram.

(a) (b)

3. Dynamical Properties of Complex Systems

In this section I will discuss the defining dynamical properties of complex systems. I will maintain
a focus on differentiating complexity from pseudo-randomness, randomness and chaos. Whenever
possible, I will refer back to our set of sample models for “verification”.

3.1. Complex Systems are Many-Component Systems

The concepts and terminology used in complexity science can be traced back to two genealogical
roots: statistical mechanics and the study of simple computational systems, including chaos theory
(e.g., [26]). The complexity encountered in the former, older field seems to agree closely with the Oxford
dictionary definition of complexity as “the state or quality of being intricate or complicated”. Brownian
motion [27], for example, appears intractable simply because there are so many particles interacting
with each other that it becomes impossible for the human observer to account for them all. The systems
studied in statistical mechanics were also among the first in which scale-dependent levels of descriptions
were discovered. Once translated via probabilistic measures and coarse-graining to the macroscopic
level, the random interactions of the micro-constituents can be captured by macroscopic variables with
much simpler time developments. In an early discussion of complexity in science, Weaver [28] described
the complexity of random systems in the following way:

“From this illustration it is clear what is meant by a problem of disorganized complexity. It is
a problem in which the number of variables is very large, and one in which each of the many
variables has a behavior which is individually erratic, or perhaps totally unknown. However, in
spite of this helter-skelter, or unknown, behavior of all the individual variables, the system as a
whole possesses certain orderly and analyzable average properties.” (p. 539)
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Cellular automata, boolean networks and models of self-organized criticality, which are the categories
under which the vast majority of systems traditionally studied in complexity can be grouped, are all
models of the interaction of many constituents (e.g., for review, [7,22,24]). The two complex models
discussed here each involve 100 cells interacting with each other—and are thereby at the lower end of
the expected size for such simulations.

Given that all five of the studied systems are many-component systems of a similar characteristic size,
this is clearly not a good criterion to demarcate the two complex systems from the random Kac ring, the
pseudo-random CA30 or the regular CA90.

3.2. Complex Systems Feature Directed Interactions

Comparing the dynamics in an ensemble of particles in Brownian motion with those of the CA110
(Section 2.2) or the Bak-Sneppen model (Section 2.3), another important difference becomes apparent:
in complex models constituents are linked by directed interactions. “Directed” here means that a
constituent only interacts with a certain set of specific other constituents (e.g., in the models studied
here, its nearest neighbours). To my knowledge, all of the other models denoted as complex also possess
this property (e.g., for review, [7,22,24]).

In contrast, in the Kac ring model all particles have the same probability µ to experience a colour
change (Section 2.1). Despite the fact that two sites might be placed next to each other on the ring, they
are not linked in any way. Whether a particle will change colour is determined by an external quality, the
edge markers. Similarly, in the random walk idealization of Brownian motion each particle’s likelihood
to experience a collision is not dependent on the behaviour of a specific group of other particles. The
existence of directed interactions is therefore a criterion that successfully distinguishes complex models
from random ones, like the Kac ring.

3.3. Difference Between Complex and Chaotic Dynamics

The two dynamical properties discussed above are sufficient to distinguish complex systems from
the mappings studied in chaos theory. The definition of chaos itself is not yet fully settled; however,
it seem well established that non-linearity in chaotic mappings exclusively arises from self-feedback
in a single, recurrent scalar or vector function (e.g., [29–31]). Considering a smattering of prominent
examples illustrates this impressively: the chaotic pendulum, the Smale horse shoe map, the Hennon
map and the logistic equation all fit this description. Chaotic mappings therefore need not be systems
with a large number of constituents or directed interactions. Hilborn [30] has stated this distinction in
the following way:

“To be somewhat more technical, we could say that these complex systems have many degrees
of freedom, and it is the activity of these many degrees of freedom that leads to the apparently
random behaviour. [ . . .] The crucial importance of chaos is that it provides an alternative
explanation for this apparent randomness—one that depends neither on noise nor on complexity.
Chaotic behaviour shows up in systems that are essentially free from noise and are also relatively
simple—only a few degrees of freedom are active.” (p. 8)
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While not all chaos theorists might subscribe to Hilborn’s [30] strong commitment to simple
mappings, the formalism of chaos theory has been developed to deal predominantly with systems with
few interacting variables (e.g., [29,30]).

While attempts have been made to translate the dynamics of the Wolfram CAs into differential
equations [32] and to map differential equations into Boolean networks [24], none of these have
been successful in establishing complete correspondence. Translating the probabilistic dynamics of the
Bak-Sneppen model into any equivalent deterministic mapping appears to be even more difficult. Works
on the relation between chaotic and probabilistic models so far have been mostly foundational and does
not contain any pointers as to how multi-component interactions should be represented (e.g., [33]). The
dynamics of complex and chaotic models in general are therefore fundamentally different.

Given that chaotic mapping and complex systems can relatively easily be differentiated from each
other by dynamical criteria, it is somewhat surprising that the relationship between chaos and complexity
has been such a convoluted one (e.g., [8]). Many complexity researchers seem to unquestioningly
include chaotic systems under the umbrella of complexity. For example, Davies [34] states that “among
the earliest complex systems to be studied were those we now refer to as chaotic” (p. 25). Similarly,
Crutchfield and Young [35] developed the measure of statistical complexity for the logistic equation and
Crutchfield [36] studied CA110 alongside this mapping.

Those who wish to differentiate between chaos and complexity have usually maintained that chaotic
systems necessarily show sensitivity to initial conditions while complex systems need not do so
(e.g., [7,37]). However, proclaiming directed interactions as necessary for complex dynamics actually
eradicates the need to refer to auxiliary properties of the systems.

There seem to be three primary reasons why a strong separation between chaos and complexity
science has not been achieved yet. One is the tendency to carelessly use the term “chaotic” as a synonym
to “random” and “pseudo-random”, which will be discussed further in Section 4. Secondly, there is a
conflation of historical and sociological continuity with epistemological connections. Thirdly, there is a
misleading similarity of the common representations of chaotic systems to multi-component ones.

The fields of complexity and chaos theory are clearly linked by the biographies of some of their
main protagonists. A sizeable contingent of the early complexity community, including Doyne Farmer,
James Crutchfield and Norman Packard, recruited itself from the “Dynamical Systems Collective”
(e.g., [38], p. 241), a group of young physicists at the University of California who had been amongst
the first to systematically explore and describe non-linear equations. Potentially due to this very fact,
there are striking similarities in the way the research community depicts complex and chaotic systems.
In particular, despite the fact that chaotic maps only have one dependent scalar or vector variable, often
multiple copies of or features from these maps are plotted against time and a given parameter (e.g., [30]).
The resulting diagrams bear a close resemblance to the space-time diagram of a many-component system
and are often analysed by very similar means. However, this treatment masks three important facts: that
there is no equivalent “space” dimension for a chaotic mapping; that the plotted copies of the map are
independent of each other; and that their ordering and spacing on the parameter dimension is arbitrary.



Entropy 2012, 14 188

3.4. Benefits of a Dynamical Complexity Definition

In the struggle to capture the phenomenological features of complexity, the dynamics of these systems
have often been treated as an afterthought only. Surprisingly, this is strikingly revealed in the attempts
to develop computational (algorithmic) measures of complexity.

The concept of algorithmic information content of a specific binary sequence was developed
independently by Solomonoff [39], Kolmogorov [40] and Chaitlin [41,42]. The algorithmic information
content SK of a given binary sequence s is defined as the (bit) size of the minimum-length program
sU needed to compute s (e.g., [43]). In order to assure absolute minimality, SK is defined for the
Universal Turing Machine, hence the subscript in sU . However, as a consequence of the insolubility
of the halting-problem discovered by Turing [44], minimal programmes on the Universal Turing
Machine cannot be be determined and so algorithmic information content measures are fundamentally
incomputable (e.g., [45]).

In the context of complexity research a variety of associated measures have been devised, for
example logical depth [46] and effective complexity [47]. Dealing with the underlying program to
create complex output, at first sight these measures appear to be dynamical ones. However, all of these
measures, including the ones specifically developed by complexity scientists, are based on a hypothetical
minimum program and not on the actual dynamics of the given system. They are therefore disguised
phenomenological measures, which completely bypass the actual program, or rule set, that nature or our
computer used to create the analysed binary sequences. The fact that the complexity community chose to
base a large set of definitions on hypothetical, incomputable dynamics, rather than those actual occurring
in complex systems, seems to indicate that the later were judged to be of little importance.

Another symptom of this dismissal is the prevalence of parsing studies, of which the best known
ones were conducted by Wolfram [7] and Langton [48]. Instead of constructing dynamics from nature,
these studies use the brute force approach of running large numbers of models based on variations of the
same rule set. The models to be further investigated are then selected according to phenomenological
criteria and any further discussion of their relation to real-life phenomena is based on the output
as well (e.g., [7]). In contrast to traditional computer modelling, where the majority of creative
work goes into designing models that provide a good or at the very least justified representation of
nature (e.g., for review, [49]), the dynamics in these studies have no such specific meanings and are
generated algorithmically.

However, based on the review in this section, I maintain that the complexity definitions developed
above are not only essential in differentiating complexity from random and chaotic systems, but that
they could also act as guide towards those aspects of complexity that are unique and warrant special
academic attention. Conclusive evidence for the prevalence of complexity in nature cannot be obtained
by a mere comparison of phenomenological features: instead, complexity research should aim to identify
and categorise the occurrence of complex dynamics, focusing on directed, many-component interactions.
Similarly, recognizing that complexity is related to unique dynamic properties also provides a firmer
basis for the development of complexity measures. As I will show in Section 4, phenomenological
complexity measures alone are not sufficient to differentiate complexity from pseudo-randomness. A
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more productive way forward could be the development of complexity measures that implicitly refer to
the two dynamical criteria outlined in Sections 3.1 and 3.2.

4. Phenomenological Properties of Complex Systems

In this section I will discuss the phenomenological properties of complex systems and extend our
complexity definition to include a phenomenological sieve, distinguishing those models we want to
denote as “complex” from others with similar dynamics. I will also review previous attempts at defining
complexity phenomenological and will note that the descriptive metaphors abounding in the field often
indicate the presence of dynamic or naturalistic properties of complexity for which there is little or no
justification. I will show that quantitative measures based on these metaphors do not reliably distinguish
complex phenomenons from random and pseudo-random ones.

4.1. The Need for a Phenomenological Sieve

We have seen in Section 3 that a suitable dynamical definition can be found which already
accomplishes the aim expressed in this paper’s title: it disentangles complexity from randomness and
chaos. However, it does not guarantee that every many-component system with directed interactions will
produce output that should be described as complex. In fact, a glance at Figure 1 shows that two of the
Wolfram CAs in my sample produce space-time diagrams which can be adequately described by existing
terminology: the CA30 appears “pseudo-random” and the CA90 shows a “nested, regular structure”. It is
only the CA110 whose representation does not appear to be adequately captured by either of these terms.

It would be fair to say that, in the history of complexity science, the assumption that humans generally
perceive the space-time diagram of CA110 and the Bak-Sneppen model as different from those of CA30
and CA90 constitutes the single most important statement. Complexity scientists are fond of relating
“their discovery” of complexity with the same pathos that particle scientists employ when describing the
discovery of a new quark (e.g., [7,26]). To my knowledge, this proposition has never been explicitly
tested, i.e., there exists no longitudinal studies of whether “complex” phase space diagrams are reliably
recognized as distinct. However, for the purpose of this paper I will assume that there is a universally
recognizable difference between the space-time diagrams of the two complex models and our remaining
three simulations. Most existing complexity definitions aim to go beyond this basic assertion and to
provide a qualitative description of complexity. In the following sections I will consider several pertinent
problems in trying to specify complexity thus.

4.2. Where Does Complexity Manifest Itself?

It is important to realise that complexity science’s phenomenological discussions refer very
specifically to patterns recognized in the models’ computer output. This often requires considerable
restructuring of the data, so that the images shown for illustration might create the illusion of a spatial
pattern in physical space, while in reality it lies in one or more abstract dimensions. For example,
Figure 1 plots the values of one-dimensional models versus time, creating two-dimensional pictures.
Each row is thereby the state of the automaton at a different iteration. The patterns we recognize
are clearly two dimensional ones: nested triangles, patches and stripes. In a naturalistic correct,
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one-dimensional representation of the row of cells that constitute the system, these would manifest as
fluctuations without an obvious geometrical counterpart. This is illustrated in Figure 2, which shows
short sequences of the development of the models in their natural representations. Despite the fact that
I have chosen my set of models so that all of them can be presented as two coloured rings, and thus
ensured comparability, the patterns that are clearly different in the space-time diagrams are not as easily
detectable in this representation.

This can be verified even better by watching the animations of the full runs collected in Appendix
A of this paper. While the regularities in the CA90 automaton quickly become obvious, the four other
rings display virtually indistinguishable disordered flickering of colours. Individuals’ pattern perception
might vary greatly and only careful psychological testing would be able to conclusively decide this point,
but it seems apparent that complexity is much less recognizable in the naturalistic representation than it
is in the space-time diagram.

The importance of data analysis for the definition of complexity was recognized in an early discussion
of the topic by Rosen [50]:

“We are going to define a complex system as one with which we can interact effectively in many
different kinds of ways, each requiring a different mode of system description.” (p. 29)

In modern complexity science, the dimensionality of the representations analysed seems to be
regarded as mostly unimportant. This has already become evident in Section 3.3, where I discussed
the fact that plots of chaotic functions in parameter space are often directly compared with complex
space-time diagrams. It is also apparent in the manner in which the claim for the prevalence of
complexity in nature is frequently justified: by identifying the patterns seen in a model’s space-time
diagram as if they were in physical space. Numerous examples of this practice can be found in
Wolfram [7], who compares images similar to those displayed in Figure 1 to snowflakes, rock fault
lines, leaf arrangements and a variety of other two-dimensional physical patterns. At the same time,
for many of these examples virtually no attempts are made to translate the process of creation that is
associated with the space-time patterns (e.g., production and adjunction of a slightly altered version of
itself, according to certain rules) into a mechanism that could operate in physical space. This holds
true for similar comparisons with higher-dimensional models as well. Disregarding the consequences
that could be drawn from this observation for future research programs in complexity science, the
discussion in this section indicates that our eventual phenomenological sieve will have to be defined
in a representation dependent way.

4.3. How Can Complexity be Described?

Of course, merely recognizing that some many-component systems with directed interactions
(in some representations) can be visually differentiated from pseudo-randomness and regularity is
scientifically unsatisfactory. Such a restricted definition neither allows us to specify how complexity
relates to the two established categories, nor does it lead to a quantitative assessment of complexity. For
example, this basic description would make it impossible for us to decide whether the CA110 or the
Bak-Sneppen model is more complex.
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However, casting the qualitative nature of complexity into words has been proven difficult. As
indicated in the introduction and by the motto I have chosen for this paper, I view a lack of openly
recognizing this difficulty, and instead hiding it behind a mirage of picturesque phrases, as one of the
major problems of complexity science. It is the continuous existence of a number of fuzzy concepts at
the very core of complexity science that rightly provokes criticism like the one by Horgan [8].

A review of previous phenomenological complexity definitions shows that they suffer from two
prime faults: either the description is semantically circular and adds little to the already established
restricted definition; or it is overly metaphorical and implies scientific relationships for which there is
little evidence. I will use these two categories—semantic singularity and metaphorical over-reach—to
structure our review and critique of the most popular complexity definitions.

4.3.1. Semantic Circularity

Wolfram [16] made an early attempt to formalize the intuitive notions of visually detectable
complexity for cellular automata like the ones discussed in Section 2.2. He introduced the following
“classes of behaviour”:

“Class 1—evolution leads to a homogeneous state in which, for example, all sites have value 0.
Class 2—evolution leads to a set of stable or periodic solutions that are separated and simple.
Class 3—evolution leads to a chaotic pattern.
Class 4—evolution leads to complex structures, sometimes long-lived.” (p. 9)

The term “chaotic” is used here to imply “pseudo-random” (Section 3.3). Neither here nor in any of
the author’s later works reiterating this classification scheme [7,17–19,51] is any definition of the term
“complex” given. The connotation attached to it is markedly different from the one used in Wolfram [15],
where a large number of nested, and therefore Class 2, cellular automata are advertised as “complex”.
However, viewed in combination with the other three categories, the Class 4 automata are classified
as “complex” simply because they fit into none of the other categories. This, of course, relies on the
fundamental assertion that we can perceptually detect complexity discussed in Section 4.1. There is
no positive identification for complexity in this scheme—altogether one is left with the feeling that
“complex” is meant to be seen as an intuitively understood description.

However, Wolfram [17]’s later articulation of the scheme added one additional characteristic: he
defines the class 4 automata as “complicated, localised structures, some propagating” (p. 5). While
“complicated” is used interchangeably with “complex” and does not add to the definition, localisation is
clearly a novel qualitative concept and one that is more apparent in the CA110 and Bak-Sneppen model
than in any of the other models (Figure 1). In Section 5, I will return to this idea.

In keeping with the circularity displayed in his categorisation scheme, Wolfram has been adamantly
claiming that complexity will be obvious to the beholder and that no formal definition is necessary.
Asked by Gershenson [52] about a definition of complexity, he states that a formal definition “tends not
to be particularly critical” and that:

“[T]he intuitive notion is fairly clear: things seem complex if we don’t have a simple way to
describe them.” (p. 131)
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However, as outlined in the previous sections of this paper, I believe that while it is certainly prudent to
be conservative about verbalising a phenomenological complexity definition, there are many unexplored
but promising avenues through which one could approach the task.

4.3.2. Metaphorical Over-Reach

Other phenomenological definitions of complexity have tried to move beyond the assumption that
complexity is just “different” and explicitly include a positioning of complexity with respect to
randomness/pseudo-randomness (or chaos) and regularity. These often rely on metaphorical descriptions.
I will discuss the most popular qualitative descriptions and their associated quantitative measures below.
In particular, I will first describe and test the validity of the metaphor of “complexity between order and
disorder”, including the associated concept of “the edge of chaos”. Secondly, I will deal with the idea
of “self-organisation”, which is another key term in complexity science. It will become apparent in my
review that all three of these metaphors are lacking scientific grounding.

4.3.2.1. Complexity Between Order and Disorder

The most successful and widespread of these metaphors is the description of complexity being located
between order and disorder (e.g., for review, [53,54]). Even Wolfram [7] includes this image in the latest
version of his classification scheme:

“And finally [ . . .] class 4 involves a mixture of order and randomness: localised structures are
produced which on their own are fairly simple, but these structures move around and interact with
each other in very complicated ways.” (p. 235)

An advantage of this description is that it can be easily used to create predictions for quantitative
complexity measures. The traditional measure for disorder is entropy, which assigns maximum values
to random phase space distributions and minimum values to regular ones (e.g., [55,56]). If the
phenomenology of complex systems can be adequately described as between order and disorder, then an
analysis of their outputs should yield medium entropy values. A second class of complexity measures
has been defined by rescalings of the traditional entropy in such a way that both a pseudo-random as
well as a regular phase space distribution will yield minimum complexity values (e.g., [53,57]). These
measures are expected to yield maximum values for complex systems, which, according to the metaphor,
should fall somewhere between the two minima.

How accurate is the phenomenological description of complexity as located between order and
disorder? Comparing the two complex space time-diagrams in Figure 1 to the disordered (Kac ring and
CA30) and the regular (CA90) ones does not indicate that the patterns in the complex output are produced
by direct superposition, or as a “mixture” of ordered and disordered patterns. I have tested this explicitly
by producing superpositions of the CA30 and CA90 space-time diagrams (Figure 1), an example of
which is shown in Figure 4a. Thereby, a new space-time diagram is constructed by choosing each
point from either the CA30 or the CA90 diagram with a given probability. Figure 4a mixes 70 percent
of the regular CA90 with 30 percent of the pseudo-random CA30 and represents my best attempt at
creating complexity in this naive way. As can be seen easily by comparison to the space-time diagrams
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of CA110 or the Bak-Sneppen model in Figure 1, it is clearly not successful. Similarly, coupling
the dynamics of CA90 and CA30 fails to produce complex phenomenologies. Figure 4b shows the
space-time diagram obtained for a coupled cellular automaton in which, during each time step, a cell is
updated according to the CA30 rule set (Table 1) with 5 percent probability or according to the CA90
rules (Table 1) with 95 percent probability. The space-time diagram shown is again the “best” result
of a scan through the parameter space of possible probabilities. The resulting space-time diagram only
vaguely resembles the complex phenomenologies in the very early stages of the simulation. While the
coupling studies are crude, they do indicate that a naive interpretation of the “complexity between order
and disorder” metaphor is not correct.

Figure 4. Direct combinations of CA90 and CA30. (a) Superposition of the space-time
diagrams (Figure 1) with probabilities of 0.3 (CA30) and 0.7 (CA90); (b) Space-time
diagram for coupling with probabilities 0.05 (CA30) and 0.95 (CA90).

(a) (b)

Instead, in the complex space-time diagrams (Figure 1) there seem to be localised regions with
potentially different degrees of order. In the CA110 output, a relatively (but not completely) regular
pattern of diagonally running stripes coexists with veins of apparently disorderly distributed small
scale triangles. Similarly, the Bak-Sneppen model produces a (relatively) regular stripe pattern that
is occasionally broken by irregular patches of solid colour. However, it seems that the different localised
patterns present in the complex space-time diagrams tend to one of the two extremes, so that the a
description of complexity as “between order and disorder” is not fully correct. It also implies that,
especially since in both cases we have on average an approximately equal distribution of black and white
balls (also compare Figure 2), the quantitative measures discussed above will most likely not be able to
clearly distinguish complexity from randomness.

This observation is borne out in Figures 5 and 6, which show comparisons of the time development of
the Shannon entropy and the (simplified) statistical complexity for all five models analysed here. Some
technical details of the measures and full explanations of my calculations are given in Appendices B–D
of this paper.
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Figure 5. Shannon entropy of the five models discussed in Section 2. Black: Kac ring.
Green: CA30. Blue: CA90. Red: CA110. Yellow: Bak-Sneppen model. In (a) the entropy
for no spatial partitions of the ring is shown while in (b) the partition included 10 spatial
segments (see Appendix D for details).

(a)

(b)
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Figure 6. Statistical complexity of the five models discussed in Section 2. Black: Kac ring.
Green: CA30. Blue: CA90. Red: CA110. Yellow: Bak-Sneppen model. In (a) the entropy
for no spatial partitions of the ring is shown while in (b) the partition included 10 spatial
segments (see Appendix D for details).

(a)

(b)
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Shannon entropy has been chosen over Boltzmann’s traditional entropy since it is normalized (for
a review of different entropy measures, e.g., [56]). As can be see in Figure 5, the pseudo-random,
random and the complex models quickly approach maximum entropy states. This is true even when
a spatial partition of 10 segments is used (additional computations not shown here indicated that this
result is independent of the spatial partition used). The use of a spatial partition makes the entropy
more sensitive to certain mesoscale structures, e.g., it would give low entropy if many solidly coloured
segments were present. The technical details of partitioning phase spaces for the entropy and complexity
calculations are discussed in Appendix D. The regular CA90 is clearly visible in the entropy diagram: it
is distinguished not so much by consistently low entropy but by regular entropy fluctuations. However,
once the runs have settled, the average entropy values for the complex systems are not hugely different
from the random and pseudo-random ones (Table 3). Similarly, none of the complex models shows an
overall trend of decreasing entropy, as has been predicted by supporters of the “complexity between
order and disorder” metaphor (e.g., for a review of this claim, [37]).

Table 3. Average entropy and complexity values for the last 100 time steps of the five
models. Partition 1 is the partition without spatial cells and Partition 2 is a partition with
10 spatial segments.

Entropy Complexity

Partition 1 Partition 2 Partition 1 Partition 2

Kac ring 0.985 0.980 0.00463 0.0053

CA30 0.993 0.982 0.00475 0.00493

CA110 0.980 0.982 0.0136 0.00505

Bak-Sneppen 0.984 0.972 0.0106 0.00762

CA90 0.587 0.885 0.126 0.0240

I am using the simplified statistical complexity [58] which is an adapted version of the measure
developed by Crutchfield and Young [35]. The statistical complexity assigns minimum values to
both disordered as well as ordered states and has therefore been endorsed by Ladyman et al. [53] as
“illustrative of a good measure of complexity” (p. 31). However, the most frequent application of
this measure has been to the logistic equation [35,36,57–59] and, to our knowledge, there exists no
comparative studies of complex and non-complex models. These are clearly the type of studies in which
quantitative complexity measures will have to prove their worth.

In Figure 6 the statistical complexity values for the five models are plotted. The Kac ring and CA90
both have low complexity values, as expected for random and pseudo-random phenomenologies. The
regular model is again clearly distinguished from the other four by large fluctuations and a generally
higher complexity. Given that the statistical complexity was designed so that low values should be
assigned to ordered sequences, this is a somewhat surprising result. In addition, this measure also fails
to clearly pick out the complex models, which are also given relative low values. After a short initial
“spin-up” period the statistical complexity of CA110 is only marginally higher than that of the Kac-ring
or CA30 (Table 3 and Figure 6). The Bak-Sneppen model fares somewhat better and even experiences
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a short intermittent period of increasing complexity, but the overall trend is towards a decrease in
complexity as the run progresses. After 160 time steps the complexity profiles of the complex and
the random/pseudo-random models are virtually indistinguishable. This is true for all spatial partitions
used (e.g., Figure 6b).

In comparative study such as this, the statistical measures based on the metaphor cannot be judged
successful in distinguishing between complexity and pseudo-randomness/randomness. They also provide
no meaningful quantitative ranking of the complex models tested. This seems to be due to the fact that
each of the localised, differently patterned regions composing the complex models’ space-time diagrams
individually have high entropy and low complexity, i.e., they have a relatively even spread through a
phase space consisting of the two colours and, if a spatial partition is used, the positions on the ring. It
should be noted that I have started the simulations from an initial sate that maximizes differences in the
phenomenology. Appendix E contains results from runs started from a random initial state. The entropy
and complexity values for the five models are even less distinguishable in this case.

Atmanspacher et al. [60] have argued that traditional complexity measures are too simplistic to
adequately describe complex models:

“In general, their analysis has to be a meta-analysis, and in general it has to be based on
meta-statistics instead of conventional first-order statistics.” (p. 828)

The block entropy devised by Wolfram [7,17], mutual entropy [43] or the original version of the
statistical complexity by Crutchfield [36]—which all aim to calculate entropies based on the occurrence
of sub-sequences rather than simple phase space spread—might constitute such meta-statistical
measures. However, unless huge computational resources are to be mobilised for each entropy
computation, the measures will have to rely on the heuristics of human perception to pick out
sub-sequences that are apparent in the space-time diagrams and can be parameterized in a search
algorithm. These could be, for example, the stripes and solid regions in the Bak-Sneppen model, or
the diagonally stacked small scale and pseudo-randomly distributed mesoscale triangles for the CA110.
However, even such meta-statistics would still assign higher complexity values to the regular CA90.
which is composed of a larger number of regular sequences. This, and the computational expense, might
be the reason that very few studies of actual complex models, and no comparative investigations, have
been undertaken with these measures.

4.3.2.2. Complexity at the Edge of Chaos

The description of complexity between order and disorder has spawned another popular phrase:
complexity as located “at the edge of chaos”. Langton [48] introduced a concept called the
λ-parameterisation of the CA rule space. Thereby rules which heavily favour one particular transition
state (called the quiescent state) sc are assigned low λ values, while high values of λ indicate that very few
configurations of CA will lead to sc. He found that class IV behaviour is displayed by CAs with rule sets
characterised by medium λ values. For high λ values one obtains class III (pseudo-random) behaviour,
for low ones the phase space outputs were ordered (class I) or periodic (class II). A further discovery of
Langton [48]’s scan through the parameterized rule space was the fact that the transition from ordered to
disordered regime appears to be sudden rather than gradual. In analogy to the phenomenon in thermal
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physics, this has been named a “phase transition” [48] (p. 24). The realisation that the complex CAs
occupy only the small region of rule parameter space right before the order-disorder transition occurs fits
with the earlier hypothesis that the class IV set of rules should have zero measure [61]. This parameter
space location of the class IV automata inspired the influential phrase of complexity being located at the
“edge of chaos” (e.g., [48], p. 36).

Langton [48]’s experiments have not been unequivocally replicated and it is therefore debated whether
the transition between the CA behaviour classes really exists [62]. Interviewed by Coveney [10],
Mitchell, a colleague of Langton’s at the Santa Fe Institut, passes a damning verdict on both the metaphor
and the study:

“To the extent that one can make sense of what Packard and Langton meant by “the edge of
chaos”, their interpretation of their simulation results are neither adequately supported nor are
they correct on mathematical grounds.” (p. 276)

However, the phrase itself has become wide-spread and features in all of the popular books on
complexity (e.g., [3,23,26]).

As I have shown in Section 3.3, chaotic systems are dynamically distinct from complex ones and
Langton [48]’s cellular automata were clearly not transitioning to a chaotic phenomenology but to a
pseudo-random one. “Complexity at the edge of pseudo-randomness” does not have as much of poetic
ring to it but would probably have lead to an earlier severing of the (we think) unhelpful ties to chaos
theory. The metaphor has both prolonged the widespread use of “chaotic” as interchangeable with
“disordered” and directly led to the development of some complexity measures on chaotic mappings
(Section 4.3.2.1). In fact, the fast majority of actual quantitative complexity calculations seem to have
been carried out for the logistic equation [35,36,57–59]—often specifically in search for the “edge of
chaos”—and therefore provide little indication for the behaviour of the complex systems studied here.

Outside the context of genetic algorithms, it is difficult to relate the phrase (which was after all
defined during a dynamical investigation) to phenomenologies like the ones displayed in Figures 1
and 2. Kauffmann [23] contains the following illustration of “the edge of chaos”-type behaviour in
the naturalistic representation of a field of inter-connected light bulbs:

“But at the edge of chaos, the twinkling unfrozen islands are in tendrils of contact. Flipping any
single lightbulb may send signals in small or large cascades of changes across the systems to
distant sites, so the behaviours in time and across the webbed network might become coordinated.
Yet since the system is at the edge of chaos, but not actually chaotic, the system will not veer into
uncoordinated twitching . . .” (p. 90)

However, our previous attempts at qualitatively describing both naturalistic and space-time
representations of complex systems illustrates that a more technical language use is required to devise a
description that can be translated into a successful quantitative measure. Since the validity of the “edge
of chaos” proposition is doubtful even in the narrow sub-field it was originally coined for and it has
significantly furthered the false impression of a close connection between complexity and chaos, the
popularity of this expression seems to have done more harm than good.
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4.3.2.3. Self-Organized Complexity

In parallel to the metaphors based on the relation of complexity to order and disorder, another set of
metaphorical descriptions inspired by biology and artificial life has been developed. These are related
to the concept of “self-organisation” and use terms like “memory”, “co-ordination” and “self-organized
criticality” to describe the phenomenology of complex models (e.g., [23,37,63]). The Bak-Sneppen
model and its classical cousins were instrumental in introducing the term “self-organized” criticality,
which crucially depends on “avalanches” (e.g., [64])—the appearance of episodes of short but intense
change; in Figure 1 these are indicated by solid coloured areas in the model, in the continuous version
they show up more impressively as multi-coloured patches. The size of these events can be related to their
frequencies by a power law (e.g., [25]). Frigg [22] contains an expansive critique of generalist claims
made for the occurrence of “self-organized criticality” in nature. I agree with his scepticism, however,
my own focus here is not on the realism of the conceptual content of this sub-field of complexity science
but on a mismatch between this content and the language used to describe it. Self-organized criticality
and similar metaphors interpret phenomenological features like episodic turmoil as a crucial mechanism
to adjust the overall state of the model. Ladyman et al. [53] even include a mention of “memory” into
their general complexity definition (which I will discuss in detail in Section 5).

The most problematic aspect of these “self-organisation” metaphors is the suggestion of dynamical
processes when they are actually describing phenomenology. “Memory” and “organisation” are
meta-dynamical descriptions that should be inferred from the dynamics of the system (e.g., by
considering the effects of directed interactions) rather than ascribed to a model’s output. The use of the
terms again shows a tendency to construct retrospective virtual dynamics rather than to view the model
as an entity in which the phenomenology is fundamentally linked to a given dynamics (Section 3). In the
realm of science fiction this disconnection has given rise to the commercially successful idea of “swarm
intelligence” [2]—however, science itself should not be at liberty to choose prose over factual accuracy.

Due to the fact that the “self-organization” metaphors have no dynamical counterparts, their epistemic
usefulness appears to be very low. This sentiment is well illustrated by a statement from Francis
Crick, made when interviewed by Coveney [10] about the importance of self-organisation during
brain development:

“Who or what else is organizing it [the brain] if it is not doing it itself? There are a number of
ways that the brain can self-organize. What we want to know is which way it does it.” (p. 285)

When viewed as mere descriptions of phenomenology, it seems doubtful whether the “self-organisation”
metaphors add much to the descriptions of diagrams like the ones displayed in Figures 1 and 2. For
example, the expression “memory”, with its connotation of temporal continuity, could be employed
to describe the elongated structure of dense, meso-scale triangles in the CA110 space-time diagram.
However, this seems to improve little to the geometric description given in the second part of the last
sentences—and introduces the faulty dynamical connotations exposed above.
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5. Conclusions

Following my brief review of previous attempts to qualitatively and quantitatively define complexity,
I will now combine the results from Sections 3 and 4. My major concern will be to avoid the
semantic circularities while committing myself to a more austere linguistics standard than the existing
metaphorical descriptions. I also wish to give due weight to the dynamical properties of complex
systems, which are instrumental in distinguishing complexity from randomness and chaos.

Reflecting my view that recognition of phenomenological complexity is fundamentally a process
of human perception, I will use the psychological term “pattern” to indicate the spatial structures
seen in the complex space-time diagrams in Figure 1. Following Wolfram [7,17–19,51]’s definition,
I will use the term “localised” to indicate that different regions of the diagram can be distinguished
by their patterns. Lastly, Section 4.2 indicates that it will be prudent to include a pointer towards the
representation dependency of phenomenological complexity. Combining these elements we add the
following phenomenological sieve to our dynamical complexity definition:

Definition 1. A complex system is a many-component system with directed interactions for which locally
distinct patterns can be recognized in at least one representation of its development.

My definition is successful in demarcating the models in my small sample set (Section 2): the Kac
ring is weeded out by the dynamical criterion of directed interactions and the two “boring” CAs with
global chaotic and regular patterns are kept back in the phenomenological sieve. More important than
securing the verdict that the Kac ring is non-complex, which would also have been accomplished by
the phenomenological part, the requirement of directed interactions also clearly renders all chaotic
systems non-complex, independent of their phenomenologies. A cursory application of the definition
to the models collected in Wolfram [7] shows that it will successfully describe those CAs which are
commonly categorized into Class 4 (Section 4.3).

To see how my definition fares in comparison to other authors’ formal ones, I will consider the
following example by Ladyman [53], who set out on a similar quest to mine and who end up proposing
to define complexity in the following way:

“A complex system is an ensemble of many elements which are interacting in a disordered way,
resulting in robust organisation and memory.” (p. 25)

Interaction in a disordered way is clearly a feature of random systems rather than of complex ones
(Section 3.2). Further perusal of their article shows that this is in fact just a lapse in language and
what they mean is a disordered phase-space distribution. “Robust organisation” and “memory” are
taken from the stock of metaphors commonly used to described complexity. In keeping with the
general trend discussed in Section 4, it remains unclear whether “organisation” and “memory” refer
to phenomenological appearance or dynamical properties. The definition is neither precise enough in
distinguishing between dynamics and phenomenology nor does it enforce enough clarity in the use of
terminology to meaningfully set aside complexity from chaos or randomness.

Gershenson [52] made a collection of short interviews with influential complexity researchers. Asked
in these questionnaires how they would define complexity, the large majority declines to offer a formal
definition. However, I see several benefits in having made the effort to design Definition 1. Firstly, the
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process of clarifying the boundaries of a concept and disentangling it from its hereditary fields helps to
eradicate unsuitable connotations and imprecise language. In my case, the most prominent victim of this
pruning process is clearly the “edge of chaos”. Secondly, the definition itself acts as a guide towards the
essential properties of the concept and those that warrant further investigation. These, in my opinion, are
the definition and detection of patterns in the phenomenology as well as the influence of interconnection
and interaction in multi-component systems. The latter dynamical aspect and its relation to nature should
be examined without the influence of vague metaphors derived from the phenomenological description
of the systems. Ideally, a future description of the phenomenologies of complex models should relate
these directly to the underlying dynamics. This might utilize the existing large-scale parsing studies
(e.g., [7,48])—or might start from completely new premises!
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Appendices

A. Model Animations

The following animations show the evolution of each of the rings in Figure 1 over 200 time steps:

• Kac.wmv
• CA30.wmv
• CA90.wmv
• CA110.wmv
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• BakSneppen.wmv

B. Shannon Entropy

In the late 1980s and early 1990s, the advent of complexity science coincides with a general
“ ‘informatisation’ of biology” [65] (p. 315). Many of the complexity measures derived from the
computer science heritage of complexity research are therefore information-based.

Shannon [66] developed a measure to calculate the amount of information gained from an ensemble of
strings. In this framework, m1 . . .mN is a set of N letters with a corresponding probability distribution
p1 . . . pN indicating the probability that the letter is sent. The discrete Shannon entropy is then defined as

SSh = −
∑
i

pi logN pi (7)

where SSh fulfils the requirements for reasonable information measures (e.g., [56]) and is maximal for
a set of equally likely letters, i.e., pi = 1/n. Using logarithms of base N ensures that the distribution is
normalized (i.e., SSh = 1 at the maximum). Several generalizations and extensions of Equation (7) have
been developed (e.g., [67]).

If the probabilities pi in Equation (7) are interpreted as probabilities of finding a constituent of a
given system in a cell wi of a coarse grained phase space, then it can be shown that SSh and the
traditional Boltzmann entropy [68–70] are equivalent (e.g., [56], Section 4). This implies that both
entropy measures of such a system will be maximal if a constituent is equally likely to be in any given
phase space cell wi. Rephrasing this in terms of information, it means that an outside observer has
maximum uncertainty as to the phase space location of a given constituent [71,72].

The Shannon entropy values discussed in Section 4.3 were computed using Equation (7).

C. Statistical Complexity

While my conceptual analysis in the main part of the article clearly suggests that complexity science
should disentangle itself from the field of chaos research and ditch the unsuitable metaphor of “the edge
of chaos”, research on complexity measures inspired by chaos theory has yielded the only alternative
strand to the traditional entropy measures oriented on randomness.

C.1. Crutchfield’s Statistical Complexity

The concept of statistical complexity was developed by Crutchfield and Young [35] in an attempt to
integrate the notion of complexity between order and disorder (Section 4.3) into a quantitative measure.
The aim is thereby to “adequately capture the correlational structure in its behaviour” ([57], p. 1), while
keeping in mind that “both maximally random and perfectly ordered systems possess no structure” and
should thus be assigned vanishing or low complexity values. The general principle behind statistical
complexity is the compilation of a statistic of sub-strings (or patterns) in a suitably reorganized output
of a model system. A rough outline of the algorithm is the following:

• The system is decoded into a string with an alphabet of N symbols sk. In most cases this means
coarse graining the model’s phase space into N cells; e.g., for a system with the output of a simple



Entropy 2012, 14 206

sine curve a partition of P = {(0, 0.5]; (0.5, 1)} could be assigned. If an element of the system is in
the lower cell it will be represented by 0, if it is in the upper cell by 1. Depending on the length of
the original time step, a periodic system will be encoded as a string similar to

010101010101 . . .

• The decoded output string is then systematically parsed for patterns of a length L, which are
collected in a parse tree. Figure C1a shows the L = 5 parse tree for the periodic string above.

• The parse tree is further decomposed into reoccurring sub-trees of length D called morphs
(Figure C1b). Using the morphs, an ϵ- machine is constructed by decoding the full parse tree
as an equivalent tree diagram for the morphs (Figure C1c). The ϵ-machine is called “minimal” if it
uses the smallest possible number of morphs.

• Each edge e in the ϵ-machine is assigned a probability pe showing how likely the system is to
proceed along this edge from one morph to another.

• The primary complexity measure SSC from this algorithm is then estimated in analogy to the
Shannon entropy SSh in Equation (7):

SSC = −
N∑
e=1

pe logN pe (8)

For our perfectly periodic example one thus obtains SSC = −2 × 1/2 × log2(1/2) = 1, as one
might expect from a periodic system.

The statistical complexity SSC differs from the other complexity measures in that it assumes
maximum values for systems with a large number of equally probable, interconnected morphs. For
(truly) chaotic systems, the largest number of such sub-configurations appear at the end of the
period-doubling cascade, when the system displays a large number of super-imposed frequencies with
some irregularities. This means that for these systems Equation (8) really assumes maximum values
in the vicinity of “the edge of chaos”, albeit in a parameter space that is not usually a spatio-temporal
one. For example, in their study of a version of the logistic map, Crutchfield [36] found relatively high
statistical complexity values around the critical growth rate rc, i.e., at the onset of chaos, and lower
ones at growth rates further into the chaotic regime. However, this seems to be a particular feature of
chaotic maps and their period-doubling cascade to pseudo-randomness. The same paper contains a brief
qualitative discussion of the structures found in two simple CAs. It is apparent that an application of the
statistical complexity algorithm to these cases will be difficult, and that their maximum values of SSC

will not necessarily coincide with the transition between order and disorder (if one could be defined at
all, e.g., Section 4.3.2.1).
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Figure C1. Computing the statistical complexity of the string 010101 . . . (a) Parse tree;
(b) Morphs; (c) Reconstructed parse tree with probabilities indicated above the edges.

While statistical complexity has the merit of being computable, and in the limited numbers of
examples it has been applied to so far, aligns with prevalent conceptual notions of complexity
and information distribution, the procedure is practically very unwieldy. The parsing algorithm
is computationally expensive and only guarantees pattern recognition up to a chosen length L.
Furthermore, any parameterization of the construction of the morphs introduces further estimates
(e.g., [35,36]). In order to allow comparability of different systems, one is further required to find the
minimum number of morphs and thus the minimal ϵ-machine representation. These difficulties might be
the reason that SSC , despite its emphasis on features traditionally highlighted by complexity research,
has not become widely used beyond the confines of Crutchfield’s own research group.

C.2. Simplified Statistical Complexity Measures

A number of simplified statistical complexity measures were developed in the wake of Crutchfield
and Young [35]. These measures also aim to assign vanishing values to both completely ordered and
random distributions. [58] developed a statistical complexity measure that fulfils these requirements by
combining the traditional Shannon entropy in Equation (7) with a disequilibrium term De. For a set of
N outcomes with probabilities pi they then define statistical complexity SSC,2 as

SSC,2 = SSh ·De (9)

where

De =
∑
i

(
pi −

1

N

)2

(10)
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De represents the deviation from the uniform distribution. Due to the fact that SSh will vanish for ordered
distributions and the disequilibrium term De will tend to zero for random distributions, the measure by
definition vanishes for both of these cases, although a much cruder estimate than SSC , SSC,2 clearly has
the advantage of simplicity. Several variations of Equation (9) have been devised, usually based on a
redefinition of the equilibrium value De [57,59,73].

The statistical complexity values shown in Section 4.3 were computed according to Equation (9).

D. Phase Space Partitions

Due to the fact the five systems have been chosen such that they can all be represented in the same
abstract phase space, one can use the same partition for all of the quantitative measure calculation.
Gottwald and Oliver [13] computed one second concept of Boltzmannian entropy for the Kac ring model.
They assume the ring’s phase space to consist of particles’ colour states xi, which can be either white or
black. A natural partition for this space is to assume two cells only, one containing all black particles
and one containing all white particles. The Shannon entropy SSh can be defined in analogy to this by
computing the probabilities for a particle to be found in the black or white box, respectively, as:

pB(t) =
B(t)

N
(11)

pW (t) =
W (t)

N
(12)

Using Equation (7) one then obtains:

SSh = pB log2(pB) + pW log2 pW (13)

One can compute the (simplified) statistical complexity for the rings by inserting Equations (11)–(13)
into Equation (9):

SSC,2 = SSh

[(
pB − 1

2

)2

+

(
pW − 1

2

)2
]

(14)

The partition used by Gottwald and Oliver [13] does not include any spatial cells. This can be justified
by the symmetry of the problems studied and is particularly appropriate for the Kac ring studied by these
authors, where we are expecting a disordered state. However, it also means that situations that are clearly
ordered and should have low entropy (e.g., a ring where all the black balls are in one half and all the
white balls are in the other) are not distinguished from real disordered solutions. In the example above,
if only the state of the balls is considered for the phase space partition, both the ring with the clearly
distinguishable halves as well as a ring with equal numbers of black and white balls perfectly intermixed
have the same entropy and complexity according to Equations (13) and (14), respectively. In this study,
expecting the complex ring models to be potential distinguished by just such spatial structures, I have
also considered some simple spatial partitions.

For the sake of simplicity I will only divide the ring into fixed and equal segments, each of which
accommodates an integer number of balls. Dividing a ring of N balls into m segments, each then
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containing N /m balls, means that there are now 2m partition cells in total. The probability of finding a
ball of a certain colour in the i-th spatial cell is given by:

pBi =
1

m
× mBi

N
=

Bi

N
(15)

pWi =
1

m
× mWi

N
=

Wi

N
(16)

where Bi and Wi are the number of black and white balls in the i-th cell. Using Equation (7), the
Shannon entropy for this partition is given by:

SSh = −
m∑
i=1

(
Bi

N
log2m

Bi

N
+

Wi

N
log2m

Wi

N

)
= − 1

N

m∑
i=1

(
Bi log2m

Bi

N
+Wi log2m

Wi

N

) (17)

Similarly, the statistical complexity under a spatial partition of m segments can be computed from
Equation (9):

SSC,2 =−
m∑
i=1

((
Bi

N
− 1

2m

)2

+

(
Wi

N
− 1

2m

)2
)

× 1

N

m∑
i=1

(
Bi log2m

Bi

N
+Wi log2m

Wi

N

) (18)

In Section 4.3 I show calculations using the traditional partition according to Equations (13) and (14)
(Figures 5a and 6a, respectively) and one with ten spatial cells according to Equations (17) and (18)
(Figures 5b and 6b, respectively).

E. Random Runs

In addition to the runs discussed in the main part of the paper, I have also conducted simulations in
which the models were started off from an uniformly random initial state. The same initial state was
chosen for all models. The space-time diagrams of these models are shown in Figure E1.

Comparing Figure E1 to Figure 1, it is immediately apparent that the phenomenologies become more
similar to each other. This is especially true with respect to the regular CA90, where no overall nested
pattern develops under random initial conditions. Consequently, all five models have almost identical
statistical complexity (Figure E2) and entropy (Figure E3) time developments. This further supports
my hypothesis that these quantitative measures are not successful in distinguishing complexity from
randomness and chaos.
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Figure E1. Space time diagrams of the five models with random initial conditions.

Figure E2. Statistical complexity of the five models with random initial states. Black: Kac
ring. Green: CA30. Blue: CA90. Red: CA110. Yellow: Bak-Sneppen model. In (a) the
entropy for no spatial partitions of the ring is shown while in (b) the partition included
10 spatial segments (see Appendix D for details).

(a)
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Figure E2. Cont.

(b)

Figure E3. Shannon entropy of the five models with random initial states. Black: Kac ring.
Green: CA30. Blue: CA90. Red: CA110. Yellow: Bak-Sneppen model. In (a) the entropy
for no spatial partitions of the ring is shown while in (b) the partition included 10 spatial
segments (see Appendix D for details).

(a)
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Figure E3. Cont.

(b)
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