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Abstract:

 In this paper, we combine the two universalisms of thermodynamics and dynamical systems theory to develop a dynamical system formalism for classical thermodynamics. Specifically, using a compartmental dynamical system energy flow model we develop a state-space dynamical system model that captures the key aspects of thermodynamics, including its fundamental laws. In addition, we establish the existence of a unique, continuously differentiable global entropy function for our dynamical system model, and using Lyapunov stability theory we show that the proposed thermodynamic model has finite-time convergent trajectories to Lyapunov stable equilibria determined by the system initial energies. Finally, using the system entropy, we establish the absence of Poincaré recurrence for our thermodynamic model and develop clear and rigorous connections between irreversibility, the second law of thermodynamics, and the entropic arrow of time.
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1. Introduction

The arrow of time and the second law of thermodynamics is one of the most famous and controversial problems in physics. The controversy between the course of time (i.e., a timeless universe) and the arrow of time (i.e., a constantly changing universe) can be traced back to the famous dialogues between the ancient Greek philosophers Parmenides and Herakleitos on being and becoming. Parmenides, like Einstein, insisted that time is an illusion, that there is nothing new, and that everything is (being) and will forever be. This statement is, of course, paradoxical since the status quo changed after Parmenides wrote his famous poem. Herakleitos’ aphorism on the other hand is predicated on change (becoming); namely, the universe is in a constant state of flux and nothing is stationary—T[image: there is no content]. Furthermore, Herakleitos goes on to state that the universe evolves in accordance with its own laws which are the only unchangeable things in the universe (i.e., universal conservation and nonconservation laws). His statements that everything is in a state of flux—T[image: there is no content]—and that man cannot step into the same river twice, because neither the man nor the river is the same—[image: there is no content]—give the earliest perception of irreversibility of nature and the universe along with time’s arrow. The idea that the universe is in constant change and there is an underlying order to this change—the Logos ([image: there is no content])—postulates the existence of entropy as a physical property of matter permeating the whole of nature and the universe.

Herakleitos’ statements are completely consistent with the laws of thermodynamics which are intimately connected to the irreversibility of dynamical processes in nature. In addition, his aphorisms go beyond the worldview of thermodynamics and have deep relativistic ramifications to the space-time fabric of the cosmos. Specifically, Herakleitos’ profound statement—All matter is exchanged for energy, and energy for all matter ([image: there is no content])—is a statement of the law of conservation of mass-energy and is a precursor to the principle of relativity. In describing the nature of the universe Herakleitos postulates that nothing can be created out of nothing, and nothing that disappears ceases to exist. This totality of forms, or mass-energy equivalence, is eternal and unchangeable in a constantly changing universe.

Energy is a concept that underlies our understanding of all physical phenomena and is a measure of the ability of a dynamical system to produce changes (motion) in its own system state as well as changes in the system states of its surroundings. Thermodynamics is a physical branch of science that deals with laws governing energy flow from one body to another and energy transformations from one form to another. These energy flow laws are captured by the fundamental principles known as the first and second laws of thermodynamics. The first law of thermodynamics gives a precise formulation of the equivalence between heat and work and states that among all system transformations, the net system energy is conserved. Hence, energy cannot be created out of nothing and cannot be destroyed; it can merely be transformed from one form to another.

The law of conservation of energy is not a mathematical truth, but rather the consequence of an immeasurable culmination of observations over the chronicle of our civilization, and is a fundamental axiom of the science of heat. The first law does not tell us whether any particular process can actually occur, that is, it does not restrict the ability to convert work into heat or heat into work, except that energy must be conserved in the process. The second law of thermodynamics asserts that, while the system energy is always conserved, it will be degraded to a point where it cannot produce any useful work. Hence, it is impossible to extract work from heat without at the same time discarding some heat, giving rise to an increasing quantity known as entropy.

As discussed in the recent monograph [1], there have been many different presentations of classical thermodynamics with varying hypotheses and conclusions. To exacerbate matters, the careless and considerable differences in the definitions of two of the key notions of thermodynamics—namely, the notions of reversibility and irreversibility—have contributed to the widespread confusion and lack of clarity in the exposition of classical thermodynamics over the past one and a half centuries. For example, the concept of a reversible process as defined by Clausius, Kelvin, Planck, and Carathéodory has very different meanings. In particular, Clausius defines a reversible (umkehrbar) process as a slowly varying process wherein successive states of this process differ by infinitesimals from the equilibrium system states. Such system transformations are commonly referred to as quasistatic transformations in the thermodynamic literature.

Alternatively, Kelvin’s notions of reversibility involve the ability of a system to completely recover its initial state from the final system state. Planck introduced several notions of reversibility. His main notion of reversibility is one of complete reversibility and involves recoverability of the original state of the dynamical system while at the same time restoring the environment to its original condition. Unlike Clausius’ notion of reversibility, Kelvin’s and Planck’s notions of reversibility do not require the system to exactly retrace its original trajectory in reverse order. Carathéodory’s notion of reversibility involves recoverability of the system state in an adiabatic process [2,3,4], resulting in yet another definition of thermodynamic reversibility. These subtle distinctions of (ir)reversibility are often unrecognized in the thermodynamic literature. Notable exceptions to this fact include [1,5,6], with [1,6] providing an excellent exposition of the relation between irreversibility, the second law of thermodynamics, and the arrow of time.

The arrow of time [7] remains one of physics’ most perplexing enigmas [8,9,10,11,12,13]. Even though time is one of the most familiar concepts humankind has ever encountered, it is the least understood. Puzzling questions of time’s mysteries have remained unanswered throughout the centuries—questions such as, Where does time come from? What would our universe look like without time? Can there be more than one dimension to time? Is time truly a fundamental appurtenance woven into the fabric of the universe, or is it just a useful edifice for organizing our perception of events? Why is the concept of time hardly ever found in the most fundamental physical laws of nature and the universe? Can we go back in time? And if so, can we change past events?

Human experience perceives time flow as unidirectional; the present is forever flowing toward the future and away from a forever fixed past. Many scientists have attributed this emergence of the direction of time flow to the second law of thermodynamics due to its intimate connection to the irreversibility of dynamical processes [14]. In this regard, thermodynamics is disjoint from Newtonian and Hamiltonian mechanics (including Einstein’s relativistic and Schrödinger’s quantum extensions), since these theories are invariant under time reversal, that is, they make no distinction between one direction of time and the other. Such theories possess a time-reversal symmetry, wherein, from any given moment of time, the governing laws treat past and future in exactly the same way [15]. For example, a film run backward of a harmonic oscillator over a full period or a planet orbiting the Sun would represent possible events. In contrast, a film run backward of water in a glass coalescing into a solid ice cube or ashes self-assembling into a log of wood would immediately be identified as an impossible event. Over the centuries, many philosophers and scientists shared the views of a Parmenidean frozen river time theory. However, since the advent of the science of thermodynamics in the 19th century, philosophy and science took a different point of view with the writings of Hegel, Bergson, Heidegger, Clausius, Kelvin, and Boltzmann; one involving time as our existential dimension. The idea that the second law of thermodynamics provides a physical foundation for the arrow of time has been postulated by many authors [9,16,17]. However, a convincing argument of this claim has never been given [1,6,10,12,18].

In this paper, we use energy flow compartmental dynamical system theory to place thermodynamics on a system-theoretic foundation so as to harmonize it with classical mechanics. In particular, we develop a novel formulation of thermodynamics that can be viewed as a moderate-sized system theory as compared to statistical thermodynamics. This middle-ground theory involves deterministic large-scale dynamical system models that bridge the gap between classical and statistical thermodynamics. Specifically, since thermodynamic models are concerned with energy flow among subsystems, we use a state space formulation to develop a nonlinear compartmental dynamical system model that is characterized by energy conservation laws capturing the exchange of energy between coupled macroscopic subsystems. Furthermore, using graph-theoretic notions, we state two thermodynamic axioms consistent with the zeroth and second laws of thermodynamics, which ensure that our large-scale dynamical system model gives rise to a thermodynamically consistent energy flow model. Specifically, using a large-scale dynamical systems theory perspective for thermodynamics, we show that our compartmental dynamical system model leads to a precise formulation of the equivalence between work energy and heat in a large-scale dynamical system.

Next, we give a deterministic definition of entropy for a large-scale dynamical system that is consistent with the classical thermodynamic definition of entropy, and we show that it satisfies a Clausius-type inequality leading to the law of entropy nonconservation. However, unlike classical thermodynamics, wherein entropy is not defined for arbitrary states out of equilibrium, our definition of entropy holds for nonequilibrium dynamical systems. Then, using Lyapunov stability theory, we show that in the absence of energy exchange with the environment our thermodynamically consistent large-scale nonlinear dynamical system model possesses a continuum of equilibria and is semistable, that is, it has subsystem energies convergent to Lyapunov stable energy equilibria determined by the large-scale system’s initial subsystem energies.

For our thermodynamically consistent dynamical system model, we further establish the existence of a unique continuously differentiable global entropy function for all equilibrium and nonequilibrium states. Using this global entropy function, we go on to establish a clear connection between thermodynamics and the arrow of time. Specifically, we rigorously show the state irrecoverability and hence the state irreversibility [6,19] nature of thermodynamics. In particular, we show that for every nonequilibrium system state and corresponding system trajectory of our thermodynamically consistent large-scale nonlinear dynamical system, there does not exist a state such that the corresponding system trajectory completely recovers the initial system state of the dynamical system and at the same time restores the energy supplied by the environment back to its original condition. This, along with the existence of a global strictly increasing entropy function on every nontrivial system trajectory, gives a clear time-reversal asymmetry characterization of thermodynamics, establishing the emergence of the direction of time flow. Finally, since for every physical system energy and temperature equipartition is achieved in finite time rather than merely asymptotically, we merge the theories of semistability and finite-time stability developed in [20,21,22] to develop a mathematically rigorous framework for finite-time thermodynamics.



2. Dynamical System Model

In this section, we establish notation and provide a general axiomatic definition of a dynamical system. The notation used in this paper is fairly standard. Specifically, [image: there is no content] denotes the set of real numbers, [image: there is no content] (respectively, [image: there is no content]) denotes the set of nonnegative (respectively, positive) integers, [image: there is no content]q denotes the set of [image: there is no content] column vectors, [image: there is no content] denotes transpose, and [image: there is no content] or I denotes the [image: there is no content] identity matrix. For z∈[image: there is no content]q we write [image: there is no content] (respectively, [image: there is no content]) to indicate that every component of z is nonnegative (respectively, positive). In this case we say that z is nonnegative or positive, respectively. Furthermore, let [image: there is no content]¯+q and [image: there is no content]+q denote the nonnegative and positive orthants of [image: there is no content]q, that is, if z∈[image: there is no content]q, then z∈[image: there is no content]¯+q and z∈[image: there is no content]+q are equivalent, respectively, to [image: there is no content] and [image: there is no content]. Finally, let [image: there is no content], [image: there is no content], and [image: there is no content] denote the boundary, the interior, and the closure of the set [image: there is no content], respectively.

We write · for the Euclidean vector norm, [image: there is no content] for the Fréchet derivative of V at z, [image: there is no content], α∈[image: there is no content]q, [image: there is no content], for the open ball centered at α with radius ε, and [image: there is no content] as [image: there is no content] to denote that [image: there is no content] approaches the set [image: there is no content] (that is, for each [image: there is no content] there exists [image: there is no content] such that dist(z(t),[image: there is no content])<ε for all [image: there is no content], where dist(p,[image: there is no content])≜infz∈[image: there is no content]∥p-z∥). Finally, the notions of openness, convergence, continuity, and compactness that we use throughout the paper refer to the topology generated on [image: there is no content]⊆[image: there is no content]q by the norm [image: there is no content].

Next, we define a dynamical system as a precise mathematical object satisfying a set of axioms. For this definition, let [image: there is no content] denote an input space that consists of bounded continuous U-valued functions on [image: there is no content]. The set U⊆[image: there is no content]m contains the set of input values, that is, at any time [image: there is no content], [image: there is no content]. The space [image: there is no content] is assumed to be closed under the shift operator, that is, if u∈[image: there is no content], then the function [image: there is no content] defined by [image: there is no content](t)≜u(t+T) is contained in [image: there is no content] for all [image: there is no content]. Furthermore, we let [image: there is no content] denote an output space that consists of continuous Y-valued functions on [image: there is no content]. The set Y⊆[image: there is no content]l contains the set of output values, that is, each value of [image: there is no content], [image: there is no content]. The space [image: there is no content] is assumed to be closed under the shift operator, that is, if y∈[image: there is no content], then the function [image: there is no content] defined by [image: there is no content](t)≜y(t+T) is contained in [image: there is no content] for all [image: there is no content].


Definition 2.1 
Let [image: there is no content] be a Euclidean space with norm ·. A dynamical system on [image: there is no content] is the octuple ([image: there is no content],[image: there is no content],U,[image: there is no content],Y,[image: there is no content], where s:[0,∞)×[image: there is no content]×[image: there is no content]→[image: there is no content] and h:[image: there is no content]×U→Y are such that the following axioms hold:


	(i)

	(Continuity): [image: there is no content] is jointly continuous for all u∈[image: there is no content].



	(ii)

	(Consistency): [image: there is no content] for all [image: there is no content]∈[image: there is no content], [image: there is no content]∈[image: there is no content], and u∈[image: there is no content].



	(iii)

	(Determinism): [image: there is no content] for all [image: there is no content], [image: there is no content]∈[image: there is no content], and [image: there is no content], u2∈[image: there is no content] satisfying [image: there is no content](τ)=u2(τ), [image: there is no content].



	(iv)

	(Semigroup property): [image: there is no content] for all [image: there is no content]∈[image: there is no content], u∈[image: there is no content], and τ, [image: there is no content].



	(v)

	(Read-out map): For every [image: there is no content]∈[image: there is no content], u∈[image: there is no content], and [image: there is no content]∈[image: there is no content], there exists y∈[image: there is no content] such that[image: there is no content][image: there is no content] for all [image: there is no content].







We denote the dynamical system ([image: there is no content],[image: there is no content],U,[image: there is no content],Y,[image: there is no content] by [image: there is no content]. Furthermore, we refer to the map [image: there is no content] as the flow or trajectory of corresponding to [image: there is no content], and for a given [image: there is no content], [image: there is no content], u∈[image: there is no content], we refer to [image: there is no content] as an initial condition of . Given t∈[image: there is no content], we denote the map s(t,·,·):[image: there is no content]×[image: there is no content]→[image: there is no content] by [image: there is no content]. Hence, for a fixed t∈[image: there is no content] the set of mappings defined by [image: there is no content] for every [image: there is no content]∈[image: there is no content] and u∈[image: there is no content] gives the flow of [image: there is no content]. In particular, if [image: there is no content]0 is a collection of initial conditions such that [image: there is no content]0⊂[image: there is no content], then the flow [image: there is no content]:[image: there is no content]0×[image: there is no content]→[image: there is no content] is the motion of all points [image: there is no content]∈[image: there is no content]0 or, equivalently, the image of [image: there is no content]0⊂[image: there is no content] under the flow [image: there is no content], that is, [image: there is no content]([image: there is no content]0,[image: there is no content])⊂[image: there is no content], where [image: there is no content]([image: there is no content]0,[image: there is no content])≜{y:y=[image: there is no content]([image: there is no content],u)forall[image: there is no content]∈[image: there is no content] and u∈[image: there is no content]}. Alternatively, if the initial condition [image: there is no content]∈[image: there is no content] is fixed and we let [[image: there is no content],[image: there is no content]]⊂[image: there is no content] and u∈[image: there is no content], then the mapping s(·,[image: there is no content],u):[[image: there is no content],[image: there is no content]]→[image: there is no content] defines the solution curve or trajectory of the dynamical system [image: there is no content]. Hence, the mapping [image: there is no content] generates a graph in [[image: there is no content],[image: there is no content]]×[image: there is no content] identifying the trajectory corresponding to the motion along a curve through the point [image: there is no content] with input u∈[image: there is no content] in a subset [image: there is no content] of the state space. Given x∈[image: there is no content] and u∈[image: there is no content], we denote the map s(·,x,u):[image: there is no content]→[image: there is no content] by [image: there is no content].

In general, the output of [image: there is no content] depends on both the present input of [image: there is no content] and the past history of [image: there is no content]. Hence, the output at some time [image: there is no content] depends on the state s([image: there is no content],[image: there is no content],u) of [image: there is no content], which effectively serves as an information storage (memory) of past history. Furthermore, the determinism axiom ensures that the state and thus the output before some time [image: there is no content] are not influenced by the values of the output after time [image: there is no content]. Hence, future inputs to [image: there is no content] do not affect past and present outputs of [image: there is no content]. This is simply a statement of causality that holds for all physical systems. Finally, we note that the read-out map is memoryless in the sense that outputs only depend on the instantaneous (present) values of the state and input.

The dynamical system [image: there is no content] is isolated if [image: there is no content]. Furthermore, an equilibrium point of the isolated dynamical system [image: there is no content] is a point [image: there is no content]∈[image: there is no content] satisfying s(t,[image: there is no content],0)=[image: there is no content],t≥[image: there is no content]. An equilibrium point[image: there is no content]∈[image: there is no content]c⊆[image: there is no content] of the isolated dynamical system [image: there is no content] is Lyapunov stable with respect to the positively invariant set [image: there is no content]c if, for every relatively open subset [image: there is no content] of [image: there is no content]c containing [image: there is no content], there exists a relatively open subset [image: there is no content] of [image: there is no content]c containing [image: there is no content] such that [image: there is no content]([image: there is no content],[image: there is no content])⊂[image: there is no content] for all [image: there is no content], where [image: there is no content]={u:[image: there is no content]→[image: there is no content]m:u(t)≡0}. An equilibrium point [image: there is no content]∈[image: there is no content]c of the isolated dynamical system [image: there is no content] is called semistable if it is Lyapunov stable and there exists a relatively open subset [image: there is no content] of [image: there is no content]c containing [image: there is no content] such that for all initial conditions in [image: there is no content], the trajectory of [image: there is no content] converges to a Lyapunov stable equilibrium point, that is, [image: there is no content] as [image: there is no content], where y∈[image: there is no content]c is a Lyapunov stable equilibrium point of [image: there is no content] and x∈[image: there is no content]. The isolated dynamical system [image: there is no content] is said to be semistable if every equilibrium point of [image: there is no content] is semistable.

Finally, for a given interval [[image: there is no content],[image: there is no content]], where 0≤[image: there is no content]<[image: there is no content]<∞, let W[[image: there is no content],[image: there is no content]] denote the set of all possible trajectories of given by



W[[image: there is no content],[image: there is no content]]{sx:[[image: there is no content],[image: there is no content]]×[image: there is no content]→[image: there is no content]:sx(·,u(·))satisfies Axioms (i)--(iv)of Definition 2.1,x∈[image: there is no content],and u(·)∈[image: there is no content]}



(1)




where [image: there is no content] denotes the solution curve or trajectory of [image: there is no content] for a given fixed initial condition x∈[image: there is no content] and input u(·)∈[image: there is no content].


3. Reversibility, Irreversibility, Recoverability and Irrecoverability

The notions of reversibility, irreversibility, recoverability, and irrecoverability all play a central role in thermodynamic processes. In this section, we define the notions of R-state reversibility, state reversibility, and state recoverability of a dynamical system [image: there is no content]. R-state reversibility concerns the existence of a system state with the property that a transformed system trajectory through an involution operator R is an image of a given system trajectory of [image: there is no content] on a specified finite time interval. State reversibility concerns the existence of a system state with the property that the resulting system trajectory is the time-reversed image of a given system trajectory of [image: there is no content] on a specified finite time interval. Finally, state recoverability concerns the existence of a system state with the property that the resulting system trajectory completely recovers the initial state of the dynamical system over a finite time interval.

For the results of this section we use the definition of a dynamical system given in Definition Section 2. We start by establishing the notions of (ir)reversibility and (ir)recoverability of a dynamical system [image: there is no content] defined on a Euclidean space [image: there is no content].


Definition 3.1 
Consider the dynamical system [image: there is no content] defined on [image: there is no content]. Let R:[image: there is no content]→[image: there is no content] be an involutive operator (that is, R2=I[image: there is no content], where I[image: there is no content] denotes the identity operator on [image: there is no content]) and let sx(·,u(·))∈W[[image: there is no content],[image: there is no content]], where u(·)∈[image: there is no content]. The function s-x:[[image: there is no content],[image: there is no content]]×[image: there is no content]→[image: there is no content] is an R-reversed trajectory of [image: there is no content] if there exist an input u-(·)∈[image: there is no content] and a continuous, strictly increasing function τ:[[image: there is no content],[image: there is no content]]→[[image: there is no content],[image: there is no content]] such that [image: there is no content], τ([image: there is no content])=[image: there is no content], and



s-x(t,u-(t))=Rsx([image: there is no content]+[image: there is no content]-τ(t),u([image: there is no content]+[image: there is no content]-τ(t))),t∈[[image: there is no content],[image: there is no content]]



(2)







Definition 3.2 
Consider the dynamical system [image: there is no content] defined on [image: there is no content]. Let R:[image: there is no content]→[image: there is no content] be an involutive operator, let r:[image: there is no content]×[image: there is no content]→[image: there is no content], and let sx(·,u(·))∈W[[image: there is no content],[image: there is no content]], where u(·)∈[image: there is no content]. [image: there is no content] is an R-reversible trajectory of [image: there is no content] if there exists an input u-(·)∈[image: there is no content] such that s-x(·,u-(·))∈W[[image: there is no content],[image: there is no content]] and



∫[image: there is no content][image: there is no content]r(u(t),y(t))dt+∫[image: there is no content][image: there is no content]r(u-(t),y-(t))dt=0



(3)




where [image: there is no content] denotes the read-out map for the R-reversed trajectory of [image: there is no content]. Furthermore, [image: there is no content] is an R-state reversible dynamical system if for every x∈[image: there is no content], [image: there is no content], where u(·)∈[image: there is no content] is an R-reversible trajectory of [image: there is no content].


In classical mechanics, R is a transformation that reverses the sign of all system momenta and magnetic fields, whereas in classical reversible thermodynamics R can be taken to be the identity operator. Note that if R=I[image: there is no content], then [image: there is no content], where u(·)∈[image: there is no content] is an I[image: there is no content]-reversible trajectory or, simply, [image: there is no content] is a reversible trajectory. Furthermore, we say that [image: there is no content] is a state reversible dynamical system if and only if for every x∈[image: there is no content], [image: there is no content], where u(·)∈[image: there is no content] is a reversible trajectory of [image: there is no content]. Note that unlike state reversible systems, R-state reversible dynamical systems need not retrace every stage of the original system trajectory in reverse order, nor is it necessary for the dynamical system to recover the initial system state.

The function [image: there is no content] in Definition 3.2 is a generalized power supply from the environment to the dynamical system through the system’s input-output ports [image: there is no content]. Hence, Equation (3) ensures that the total generalized energy supplied to the dynamical system [image: there is no content] by the environment is returned to the environment over a given R-reversible trajectory starting and ending at any given (not necessarily the same) state x∈[image: there is no content]. Furthermore, Equation (3) ensures that a reversible process completely restores the original dynamic state of a system and at the same time restores the energy supplied by the environment back to its original condition. The following result provides sufficient conditions for the existence of an R-reversible trajectory of a nonlinear dynamical system [image: there is no content], and hence, establishes sufficient conditions for R-state reversibility of the dynamical system [image: there is no content].


Theorem 3.1 
Consider the dynamical system [image: there is no content] defined on [image: there is no content]. Let R:[image: there is no content]→[image: there is no content] be an involutive operator, and let sx(·,u(·))∈W[[image: there is no content],[image: there is no content]], where u(·)∈[image: there is no content]. Assume there exist a continuous function V:[image: there is no content]→[image: there is no content] and a function r:[image: there is no content]×[image: there is no content]→[image: there is no content] such that [image: there is no content], x∈[image: there is no content], and for every x∈[image: there is no content] and all [image: there is no content], [image: there is no content], [image: there is no content]≤[image: there is no content]<[image: there is no content]≤[image: there is no content],



V(sx([image: there is no content],u([image: there is no content])))≥V(sx([image: there is no content],u([image: there is no content])))+∫[image: there is no content][image: there is no content]r(u(t),y(t))dt



(4)




Furthermore, assume there exists [image: there is no content]⊂[image: there is no content] such that for all [image: there is no content], [image: there is no content], [image: there is no content]≤[image: there is no content]<[image: there is no content]≤[image: there is no content], and sx(t,u(t))∉[image: there is no content], t∈[[image: there is no content],[image: there is no content]], Equation (4) holds as a strict inequality. If [image: there is no content] is an R-reversible trajectory of [image: there is no content], then sx(t,u(t))∈[image: there is no content], t∈[[image: there is no content],[image: there is no content]].



Proof. 
Let sx(·,u(·))∈[image: there is no content][[image: there is no content],[image: there is no content]], where u(·)∈[image: there is no content], be an R-reversible trajectory of [image: there is no content] so that there exists u-(·)∈[image: there is no content] such that s-x(·,u-(·))∈[image: there is no content][[image: there is no content],[image: there is no content]]. Suppose, ad absurdum, there exists t∈[[image: there is no content],[image: there is no content]] such that sx(t,u(t))∉[image: there is no content]. Now, it follows that there exists an interval [[image: there is no content],[image: there is no content]]⊂[[image: there is no content],[image: there is no content]] such that for [image: there is no content]≤[image: there is no content]<[image: there is no content]≤[image: there is no content],



V(sx([image: there is no content],u([image: there is no content])))>V(sx([image: there is no content],u([image: there is no content])))+∫[image: there is no content][image: there is no content]r(u(t),y(t))dt



(5)




which further implies that


V(sx([image: there is no content],u([image: there is no content])))>V(sx([image: there is no content],u([image: there is no content])))+∫[image: there is no content][image: there is no content]r(u(t),y(t))dt



(6)






Next, since s-x(·,u-(·))∈[image: there is no content][[image: there is no content],[image: there is no content]], where u-(·)∈[image: there is no content], it follows that



V(s-x([image: there is no content],u-([image: there is no content])))≥V(s-x([image: there is no content],u-([image: there is no content])))+∫[image: there is no content][image: there is no content]r(u-(t),y-(t))dt



(7)




Now, adding Equations (6) and (7), using the definition of [image: there is no content], using the fact that [image: there is no content], x∈[image: there is no content], and using Equation (3) yields


V(sx([image: there is no content],u([image: there is no content])))+V(sx([image: there is no content],u([image: there is no content])))>V(sx([image: there is no content],u([image: there is no content])))+V(sx([image: there is no content],u([image: there is no content])))








which is a contradiction. Hence, sx(t,u(t))∈[image: there is no content], t∈[[image: there is no content],[image: there is no content]].☐
It is important to note that since V:[image: there is no content]→[image: there is no content] in Theorem 3.1 is not sign definite, Theorem 3.1 also holds for the case where the inequality in Equation (4) is reversed. The following corollary to Theorem 3.1 is immediate.


Corollary 3.1 
Consider the dynamical system [image: there is no content] defined on [image: there is no content]. Let R:[image: there is no content]→[image: there is no content] be an involutive operator, let [image: there is no content]⊂[image: there is no content], and let sx(·,u(·))∈W[[image: there is no content],[image: there is no content]], where u(·)∈[image: there is no content]. Assume there exists a continuous function V:[image: there is no content]→[image: there is no content] such that [image: there is no content], x∈[image: there is no content], and for sx(t,u(t))∉[image: there is no content], t∈[[image: there is no content],t2], V(s(t,[image: there is no content],u(·))) is a strictly increasing (respectively, decreasing) function of time. If [image: there is no content] is an R-reversible trajectory of [image: there is no content], then sx(t,u(t))∈[image: there is no content], t∈[[image: there is no content],[image: there is no content]].




Proof. 
The proof is a direct consequence of Theorem 3.1 with [image: there is no content] and the fact that Theorem 3.1 also holds for the case when the inequality in Equation (4) is reversed. ☐



It follows from Corollary 3.1 that if, for a given dynamical system [image: there is no content], there exists an R-reversible trajectory of [image: there is no content], then there does not exist a function of the state of the system that strictly decreases or strictly increases in time on any trajectory of [image: there is no content] lying in [image: there is no content]. In this case, the existence of a completely ordered time set having a topological structure involving a closed set homeomorphic to the real line cannot be established. Such systems, which include lossless Newtonian and Hamiltonian systems, are time-reversal symmetric and hence lack an inherent time direction. However, that is not the case with thermodynamic systems.

Next, we present a notion of state recoverability of a dynamical system [image: there is no content].


Definition 3.3 
Consider the dynamical system [image: there is no content] defined on [image: there is no content]. Let r:[image: there is no content]×[image: there is no content]→[image: there is no content], and let sx(·,u(·))∈W[[image: there is no content],[image: there is no content]], where u(·)∈[image: there is no content]. [image: there is no content] is a recoverable trajectory of [image: there is no content] if there exist u-(·)∈[image: there is no content] and t2>[image: there is no content] such that u-:[[image: there is no content],t2]→U,



s(t2,sx([image: there is no content],u([image: there is no content])),u-(t2))=sx([image: there is no content],u([image: there is no content]))



(8)




and


∫[image: there is no content][image: there is no content]r(u(t),y(t))dt+∫[image: there is no content]t2r(u-(t),y-(t))dt=0



(9)




where [image: there is no content] denotes the read-out map for the trajectory s(·,sx([image: there is no content],u([image: there is no content])),[image: there is no content]. Furthermore, [image: there is no content] is a state recoverable dynamical system if for every x∈[image: there is no content], [image: there is no content] is a recoverable trajectory of [image: there is no content].


It follows from the definition of state recoverability that the way in which the initial dynamical system state is restored may be chosen freely so long as Equation (9) is satisfied. Hence, unlike R-state reversibility, it is not necessary for the dynamical system to recover the initial state of the system through an involutive transformation of the system trajectory. Furthermore, unlike state reversibility, it is not necessary for the dynamical system to retrace every stage of the original trajectory in the reverse order. However, Equation (9) ensures that the recoverable process completely restores the original dynamic state and at the same time restores the energy supplied by the environment back to its original condition. This notion of recoverability is closely related to Planck’s notion of complete reversibility, wherein the initial system state is restored in the totality of nature (“die gesamte Natur"). The following result provides a sufficient condition for the existence of a recoverable trajectory of a nonlinear dynamical system [image: there is no content], and hence, establishes sufficient conditions for state recoverability of [image: there is no content].


Theorem 3.2 
Consider the dynamical system [image: there is no content] defined on [image: there is no content]. Let sx(·,u(·))∈W[[image: there is no content],[image: there is no content]], where u(·)∈[image: there is no content]. Assume there exist a continuous function V:[image: there is no content]→[image: there is no content] and a function r:[image: there is no content]×[image: there is no content]→[image: there is no content] such that for every x∈[image: there is no content] and all [image: there is no content], [image: there is no content], [image: there is no content]≤[image: there is no content]<[image: there is no content]≤[image: there is no content],



V(sx([image: there is no content],u([image: there is no content])))≥V(sx([image: there is no content],u([image: there is no content])))+∫[image: there is no content][image: there is no content]r(u(t),y(t))dt



(10)




Furthermore, assume there exists [image: there is no content]⊂[image: there is no content] such that for all [image: there is no content], [image: there is no content], [image: there is no content]≤[image: there is no content]<[image: there is no content]≤[image: there is no content], and sx(t,u(t))∉[image: there is no content], t∈[[image: there is no content],[image: there is no content]], Equation (10) holds as a strict inequality. If [image: there is no content] is a recoverable trajectory of [image: there is no content], then sx(t,u(t))∈[image: there is no content], t∈[[image: there is no content],[image: there is no content]].



Proof. 
Let sx(·,u(·))∈W[[image: there is no content],[image: there is no content]], where u(·)∈[image: there is no content], be a recoverable trajectory of [image: there is no content] so that there exist u-(·)∈[image: there is no content] and t2>[image: there is no content] such that s(t2,sx([image: there is no content],u([image: there is no content])),u-(t2))=sx([image: there is no content],u([image: there is no content])). Suppose, ad absurdum, there exists t∈[[image: there is no content],[image: there is no content]] such that sx(t,u(t))∉[image: there is no content]. Now, it follows that there exists an interval [[image: there is no content],[image: there is no content]]⊂[[image: there is no content],[image: there is no content]] such that for [image: there is no content]≤[image: there is no content]<[image: there is no content]≤[image: there is no content],



V(sx([image: there is no content],u([image: there is no content])))>V(sx([image: there is no content],u([image: there is no content])))+∫[image: there is no content][image: there is no content]r(u(t),y(t))dt



(11)




which further implies that


V(sx([image: there is no content],u([image: there is no content])))>V(sx([image: there is no content],u([image: there is no content])))+∫[image: there is no content][image: there is no content]r(u(t),y(t))dt



(12)






Next, it follows from Equation (10) with t2>[image: there is no content] that



V(s(t2,sx([image: there is no content],u([image: there is no content])),u-(t2)))≥V(s([image: there is no content],sx([image: there is no content],u([image: there is no content])),u-([image: there is no content])))+∫[image: there is no content]t2r(u-(t),y-(t))dt



(13)




Now, adding Equations (12) and (13), using the definition of s(t2,sx([image: there is no content],u([image: there is no content]),[image: there is no content], and using Equation (9) yields


V(sx([image: there is no content],u([image: there is no content])))+V(sx([image: there is no content],u([image: there is no content])))>V(sx([image: there is no content],u([image: there is no content])))+V(sx([image: there is no content],u([image: there is no content])))








which is a contradiction. Hence, sx(t,u(t))∈[image: there is no content], t∈[[image: there is no content],[image: there is no content]].☐
The following corollary to Theorem 3.2 is immediate.


Corollary 3.2 
Consider the dynamical system [image: there is no content] defined on [image: there is no content]. Let [image: there is no content]⊂[image: there is no content], and let sx(·,u(·))∈W[[image: there is no content],[image: there is no content]], where u(·)∈[image: there is no content]. Assume there exists a continuous function V:[image: there is no content]→[image: there is no content] such that for sx(t,u(t))∉[image: there is no content], t∈[[image: there is no content],[image: there is no content]], V(s(t,[image: there is no content],u(·)) is a strictly increasing (respectively, decreasing) function of time. If [image: there is no content] is a recoverable trajectory of [image: there is no content], then sx(t,u(t))∈[image: there is no content], t∈[[image: there is no content],[image: there is no content]].




Proof. 
The proof is a direct consequence of Theorem 3.2 with [image: there is no content] and the fact that Theorem 3.2 also holds for the case when the inequality in Equation (10) is reversed. ☐



As in the case of R-state reversibility and state reversibility, state recoverability can be used to establish a connection between a dynamical system evolving on a manifold [image: there is no content]⊂[image: there is no content] and the arrow of time. However, in the case of state recoverability, the recoverable dynamical system trajectory need not involve an involutive transformation of the system trajectory, nor is it required to retrace the original system trajectory in recovering the original dynamic state. It should be noted here that state recoverability is not implied by the concepts of reachability and controllability, which play a central role in control theory [1]. For example, one might envision, albeit with a considerable stretch of the imagination, perfectly controlled inputs that could reassemble a broken egg or even fuse water into solid cubes of ice. However, in all such cases, an external source of energy from the environment would be required to operate such an immaculate state recoverable mechanism and would violate Equation (9). Clearly, state recoverability is a weaker notion than that of state reversibility since state reversibility implies state recoverability; the converse, however, is not true. Conversely, state irrecoverability is a logically stronger notion than state irreversibility since state irrecoverability implies state irreversibility. However, as we see in Section 8, these notions are equivalent for thermodynamic systems.



4. Reversible Dynamical Systems, Volume-Preserving Flows and Poincaré Recurrence

The notion of R-state reversibility introduced in Section 3 is one of the fundamental symmetries that arises in natural science. This notion can also be characterized by the flow of a dynamical system. In particular, consider the dynamical system given by



x˙(t)=f(x(t)),x([image: there is no content])=[image: there is no content],t∈I[image: there is no content]



(14)




where x(t)∈[image: there is no content]⊆[image: there is no content]q, t∈I[image: there is no content], is the system state vector, [image: there is no content] is an open subset of [image: there is no content]q, f:[image: there is no content]→[image: there is no content]q is locally Lipschitz continuous on [image: there is no content], and I[image: there is no content]=[[image: there is no content],τ[image: there is no content]), [image: there is no content]<τ[image: there is no content]≤∞, is the maximal interval of existence for the solution [image: there is no content] of Equation (14). Note that since [image: there is no content] is locally Lipschitz continuous on [image: there is no content], it follows from Theorem 3.1 of ([23], p. 18) that the solution to Equation (14) is unique for every initial condition in [image: there is no content] and jointly continuous in t and [image: there is no content]. In this case, the semigroup property s(t+τ,[image: there is no content])=s(t,s(τ,[image: there is no content])), t,τ∈I[image: there is no content], and the continuity of [image: there is no content] on [image: there is no content], t∈I[image: there is no content], hold. Given t∈[image: there is no content], we denote the flow s(t,·):[image: there is no content]→[image: there is no content] of Equation (14) by [image: there is no content]([image: there is no content]) for [image: there is no content]∈[image: there is no content], and given x∈[image: there is no content], we denote the trajectory s(·,x):[image: there is no content]→[image: there is no content] of Equation (14) by [image: there is no content]. Now, in terms of the flow [image: there is no content]:[image: there is no content]→[image: there is no content] of Equation (14), the consistency and semigroup properties of Equation (14) can be equivalently written as s0([image: there is no content])=[image: there is no content] and (sτ∘[image: there is no content])([image: there is no content])=sτ([image: there is no content]([image: there is no content]))=st+τ([image: there is no content]), where “∘" denotes the composition operator. Next, it follows from continuity of solutions and the semigroup property that the map [image: there is no content]:[image: there is no content]→[image: there is no content] is a continuous function with a continuous inverse [image: there is no content]. Thus, [image: there is no content], t∈I[image: there is no content], generates a one-parameter family of homeomorphisms on [image: there is no content] forming a commutative group under composition.
To show that R-state reversibility can be characterized by the flow of Equation (14), let [image: there is no content]:[image: there is no content]→[image: there is no content] be a continuous map of Equation (14) such that



[image: there is no content]˙(x(t))=-f([image: there is no content](x(t))),[image: there is no content](x([image: there is no content]))=[image: there is no content]([image: there is no content]),t∈I[image: there is no content]([image: there is no content])



(15)




Now, it follows from Equation (15) that


[image: there is no content]∘[image: there is no content]=[image: there is no content]∘[image: there is no content],t∈I[image: there is no content]



(16)




Equation (16), with [image: there is no content] satisfying Equation (15), defines an R-reversed trajectory of Equation (14) in the sense of Definition 3.1 with [image: there is no content].
In the context of classical mechanics involving the configuration manifold (space of generalized positions) [image: there is no content]=[image: there is no content]n, with governing equations given by



q˙(t)=∂H(q(t),p(t))∂p(t)T,q([image: there is no content])=q0,t≥[image: there is no content]



(17)






p˙(t)=-∂H(q(t),p(t))∂q(t)T,p([image: there is no content])=p0



(18)




where q∈[image: there is no content]n denotes generalized system positions, p∈[image: there is no content]n denotes generalized system momenta, H:[image: there is no content]n×[image: there is no content]n→[image: there is no content] is the system Hamiltonian given by [image: there is no content], [image: there is no content] is the system Lagrangian, [24,25] and [image: there is no content], the reversing symmetry [image: there is no content]:[image: there is no content]n×[image: there is no content]n→[image: there is no content]n×[image: there is no content]n is such that [image: there is no content] and satisfies Equation (15). In this case, [image: there is no content] is an involution. This implies that if [image: there is no content], [image: there is no content], is a solution to Equations (17) and (18), then [image: there is no content], [image: there is no content], is also a solution to Equations (17) and (18) with initial condition [image: there is no content]. In the configuration space this clearly shows the time-reversal nature of lossless mechanical systems.
Reversible dynamical systems tend to exhibit a phenomenon known as Poincaré recurrence [26]. Poincaré recurrence states that if a dynamical system has a fixed total energy that restricts its dynamics to bounded subsets of its state space, then the dynamical system will eventually return arbitrarily close to its initial system state infinitely often. More precisely, Poincaré [27] established the fact that if the flow of a dynamical system preserves volume and has only bounded orbits, then for each open set there exist orbits that intersect the set infinitely often. In order to state the Poincaré recurrence theorem, the following definitions are needed.


Definition 4.1 
Let [image: there is no content]⊂[image: there is no content]q be a bounded set. The volume [image: there is no content] of [image: there is no content] is defined as



[image: there is no content]≜∫[image: there is no content]d[image: there is no content]



(19)




where the integration in Equation (19) is the Lebesgue integral over [image: there is no content].



Definition 4.2 
Let [image: there is no content]⊂[image: there is no content]q be a bounded set. A map g:[image: there is no content]→[image: there is no content], where [image: there is no content]⊂[image: there is no content]q, is volume preserving if for every [image: there is no content]0⊂[image: there is no content], the volume of g([image: there is no content]0) is equal to the volume of [image: there is no content]0.



The following theorem, known as Liouville’s theorem [26], establishes sufficient conditions for volume-preserving flows. For the statement of this theorem, consider the nonlinear dynamical system given by Equation (14) and define the divergence of f=[f1,…,fq]T:[image: there is no content]→[image: there is no content]q by



[image: there is no content]



(20)




where ∇ denotes the nabla operator, [image: there is no content] denotes the dot product in [image: there is no content]q, and [image: there is no content] denotes the ith component of x.

Theorem 4.1 
Consider the nonlinear dynamical system given by Equation (14). If [image: there is no content], then the flow [image: there is no content]:[image: there is no content]→[image: there is no content] of Equation (14) is volume preserving.




Proof. 
Let [image: there is no content]⊂[image: there is no content]q be a compact set such that its image at time t under the mapping [image: there is no content](·) is given by [image: there is no content]([image: there is no content]). In addition, let d[image: there is no content][image: there is no content] denote an infinitesimal surface element of the boundary of the set [image: there is no content] and let n^(z),z∈∂[image: there is no content], denote an outward normal vector to the boundary of [image: there is no content]. Then the change in volume of [image: there is no content]([image: there is no content]) at [image: there is no content] is given by



d[image: there is no content]([image: there is no content])vol=∫∂[image: there is no content](f(x)·n^(x))dtd[image: there is no content][image: there is no content]



(21)




which, using the divergence theorem, implies that


d[image: there is no content]([image: there is no content])vol[image: there is no content][image: there is no content]=∫∂[image: there is no content](f(x)·n^(x))d[image: there is no content][image: there is no content]=∫[image: there is no content]∇·f(x)d[image: there is no content]



(22)




Hence, if [image: there is no content], then [image: there is no content](·) is a volume-preserving map. ☐


Volume preservation is the key conservation law underlying statistical mechanics. The flows of volume-preserving dynamical systems belong to one of the Lie pseudogroups [28] of diffeomorphisms. These systems arise in incompressible fluid dynamics, classical mechanics, and acoustics. Next, we state the well-known Poincaré recurrence theorem. For this result, let g(n)(x),n∈[image: there is no content], denote the n-time composition operator of [image: there is no content] with itself and define [image: there is no content].


Theorem 4.2 
Let [image: there is no content]⊂[image: there is no content]q be an open bounded set, and let g:[image: there is no content]→[image: there is no content] be a continuous, volume-preserving bijective (one-to-one and onto) map. Then for every open set [image: there is no content]⊂[image: there is no content], there exists n∈[image: there is no content] such that g(n)([image: there is no content])∩[image: there is no content]≠Ø. Furthermore, there exists a point x∈[image: there is no content] which returns to [image: there is no content], that is, g(n)(x)∈[image: there is no content] for some n∈[image: there is no content].




Proof. 
The proof of this result is standard; see for example ([26], p. 72). For completeness of exposition, however, we provide a proof here. First, note that the images g(p)([image: there is no content]), p∈[image: there is no content], under the mapping [image: there is no content] of the neighborhood [image: there is no content]⊂[image: there is no content] have the same volume and are all contained in [image: there is no content]. Next, define the union of all the images of [image: there is no content] by



[image: there is no content]≜⋃p=0∞g(p)([image: there is no content])⊂[image: there is no content]



(23)




Since the volume of a union of disjoint sets is the sum of the individual set volumes, it follows that if g(p)([image: there is no content]),p∈[image: there is no content] are disjoint, then [image: there is no content]=∞. However, [image: there is no content]⊂[image: there is no content] and [image: there is no content] is a bounded set by assumption. Hence, there exist k,l∈[image: there is no content], with [image: there is no content], such that g(k)([image: there is no content])∩g(l)([image: there is no content])≠Ø. Now, applying the inverse [image: there is no content] to this relation l times and using the fact that [image: there is no content] is a bijective map, it follows that g(k-l)([image: there is no content])∩[image: there is no content]≠Ø. Thus, g(n)([image: there is no content])∩[image: there is no content]≠Ø, where [image: there is no content]. Hence, there exists a point x∈[image: there is no content] such that g(n)(x)∈g(n)([image: there is no content])∩[image: there is no content]⊆[image: there is no content].☐


The next result establishes the existence of a point x in [image: there is no content]⊂[image: there is no content]q such that [image: there is no content] for some sequence [image: there is no content], with [image: there is no content] as [image: there is no content], under a continuous, volume-preserving bijective mapping [image: there is no content] which maps a bounded region [image: there is no content] of a Euclidean space onto itself. Hence, x returns infinitely often to any open neighborhood of itself under the mapping [image: there is no content].


Theorem 4.3 
Let [image: there is no content]⊂[image: there is no content]q be an open bounded set, and let g:[image: there is no content]→[image: there is no content] be a continuous, volume-preserving bijective map. Then for every open neighborhood [image: there is no content]⊂[image: there is no content], there exists a point x∈[image: there is no content] such that [image: there is no content] for some sequence [image: there is no content], with [image: there is no content] as [image: there is no content]. Hence, x∈[image: there is no content] returns to [image: there is no content] infinitely often, that is, there exists a sequence [image: there is no content], with [image: there is no content] as [image: there is no content], such that g(ni)(x)∈[image: there is no content] for all i∈[image: there is no content].




Proof. 
Let [image: there is no content]⊂[image: there is no content] be an open set, and let [image: there is no content]1≜Bδ1(x1) be such that [image: there is no content]¯1⊂[image: there is no content] for some [image: there is no content] and x1∈[image: there is no content]. Applying Theorem 4.2, with [image: there is no content] replaced by [image: there is no content](·), it follows that there exists n1∈[image: there is no content] such that g(-n1)([image: there is no content]1)∩[image: there is no content]1≠Ø, which implies that g(-n1)([image: there is no content]¯1)∩[image: there is no content]¯1≠Ø. Now, let [image: there is no content]2=Bδ2(x2) be such that [image: there is no content]¯2⊂g(-n1)([image: there is no content]1)∩[image: there is no content]1 for some [image: there is no content] and x2∈g(-n1)([image: there is no content]1)∩[image: there is no content]1. Repeating the above arguments it follows that there exists n2∈[image: there is no content], [image: there is no content], such that g(-n2)([image: there is no content]2)∩[image: there is no content]2≠Ø and g(-n2)([image: there is no content]¯2)∩[image: there is no content]¯2≠Ø. Repeating this process recursively, it follows that there exist sequences [image: there is no content] and [image: there is no content], with [image: there is no content] as [image: there is no content], [image: there is no content] as [image: there is no content], and [image: there is no content], i=1,2,…, such that [image: there is no content]i⊃[image: there is no content]i+1, i=1,2,…, and g(-ni)([image: there is no content]i)∩[image: there is no content]i≠Ø, where [image: there is no content]i=Bδi([image: there is no content]) for some [image: there is no content]∈g(-ni-1)([image: there is no content]i-1)∩[image: there is no content]i-1 and where [image: there is no content] and [image: there is no content]0≜[image: there is no content]. Now, since [image: there is no content]i≠Ø, i∈[image: there is no content], it follows from the Cantor intersection theorem ([29], p. 56) that [image: there is no content]≜⋂i=1∞[image: there is no content]¯i≠Ø. Furthermore, since [image: there is no content] as [image: there is no content], it follows that [image: there is no content] is a singleton. Next, let x∈[image: there is no content]={x}, and since for every i∈[image: there is no content], [image: there is no content]¯i+1⊂[image: there is no content]i, it follows that x∈[image: there is no content]i, i∈[image: there is no content]. Now, note that x∈[image: there is no content]i+1⊂g(-ni)([image: there is no content]i)∩[image: there is no content]i for all i∈[image: there is no content], which implies that g(ni)(z)∈[image: there is no content]i, i∈[image: there is no content]. Hence, since [image: there is no content] as [image: there is no content], it follows that [image: there is no content]. ☐



The next theorem strengthens Poincaré’s theorem by showing that for every open neighborhood [image: there is no content] of [image: there is no content]⊂[image: there is no content]q, there exists a subset of [image: there is no content] that is dense [30] in [image: there is no content] so that almost every moving point in [image: there is no content] returns repeatedly to the vicinity of its initial position under a continuous, volume-preserving bijective mapping which maps the bounded region [image: there is no content] onto itself.


Theorem 4.4 
Let [image: there is no content]⊂[image: there is no content]q be an open bounded set, and let g:[image: there is no content]→[image: there is no content] be a continuous, volume-preserving bijective map. Then for every open neighborhood [image: there is no content]⊂[image: there is no content], there exists a dense subset [image: there is no content]⊂[image: there is no content] such that for every point z∈[image: there is no content], [image: there is no content] for some sequence [image: there is no content], with [image: there is no content] as [image: there is no content].




Proof. 
Let [image: there is no content]⊂[image: there is no content] be an open neighborhood and define [image: there is no content]⊂[image: there is no content] by



[image: there is no content]≜{x∈[image: there is no content]:there exists a sequence [image: there is no content],with ni→∞as i→∞,such that lim[image: there is no content]g(ni)(x)=x}



(24)




Now, let x∈[image: there is no content] and let [image: there is no content] be a strictly decreasing positive sequence with [image: there is no content] as [image: there is no content] and Bδ1(x)⊂[image: there is no content]. It follows from Theorem 4.3 that for every i∈[image: there is no content], there exists [image: there is no content]∈Bδi(x) such that lim[image: there is no content]g(nk)([image: there is no content])=[image: there is no content] for some sequence [image: there is no content], with [image: there is no content] as [image: there is no content], which implies that [image: there is no content]∈[image: there is no content], i∈[image: there is no content]. Next, since lim[image: there is no content][image: there is no content]=x, it follows that x∈[image: there is no content]¯, which implies that [image: there is no content]⊆[image: there is no content]⊂[image: there is no content]¯, and hence, [image: there is no content] is a dense subset of [image: there is no content]. ☐


It follows from Theorem 4.4 that almost every point in [image: there is no content]⊂[image: there is no content]q will return infinitely many times to any open neighborhood of itself under a continuous, volume-preserving bijective mapping which maps a bounded region [image: there is no content] of a Euclidean space onto itself. The following theorem provides several equivalent statements for establishing Poincaré recurrence.


Theorem 4.5 
Let [image: there is no content]⊂[image: there is no content]q be an open bounded set, and let g:[image: there is no content]→[image: there is no content] be a continuous, bijective map. Then the following statements are equivalent:


	(i)

	For every open set [image: there is no content]⊂[image: there is no content], there exists a dense subset [image: there is no content]⊂[image: there is no content] such that, for every point z∈[image: there is no content], [image: there is no content] for some sequence [image: there is no content], with [image: there is no content] as [image: there is no content].



	(ii)

	For every open set [image: there is no content]⊂[image: there is no content], there exists a point x∈[image: there is no content] such that [image: there is no content] for some sequence [image: there is no content], with [image: there is no content] as [image: there is no content].



	(iii)

	For every open set [image: there is no content]⊂[image: there is no content], there exists a point x∈[image: there is no content] which returns to [image: there is no content] infinitely often, that is, g(ni)(x)∈[image: there is no content], i∈[image: there is no content], for some sequence [image: there is no content], with [image: there is no content] as [image: there is no content].



	(iv)

	For every open set [image: there is no content]⊂[image: there is no content], there exists a point x∈[image: there is no content] which returns to [image: there is no content], that is, g(n)(x)∈[image: there is no content] for some n∈[image: there is no content].



	(v)

	For every open set [image: there is no content]⊂[image: there is no content], there exists n∈[image: there is no content] such that g(n)([image: there is no content])∩[image: there is no content]≠Ø.








Proof. 
The implication (i) implies (ii) follows trivially and the proof of (ii) implies (i) is identical to that of Theorem 4.4. The implications (ii) implies (iii), (iii) implies (iv), and (iv) implies (v) follow trivially. The proof of (v) implies (ii) is identical to that of Theorem 4.3. ☐



Note that it follows from Theorems 4.2, 4.3, and 4.4 that a continuous, bijective map g:[image: there is no content]→[image: there is no content] exhibits Poincaré recurrence (that is, the statements in Theorem 4.5 hold) if [image: there is no content] is volume preserving. For the remainder of this section we consider the nonlinear dynamical system given by Equation (14) and assume that the solutions to Equation (14) are defined for all t∈[image: there is no content]. Recall that if all solutions to Equation (14) are bounded, then it follows from the Peano–Cauchy theorem ([23], pp. 16–17) that I[image: there is no content]=[image: there is no content]. The following theorem shows that if a dynamical system preserves volume, then almost all trajectories return arbitrarily close to their initial position infinitely often.


Theorem 4.6 
Consider the nonlinear dynamical system given by Equation (14). Assume that the flow [image: there is no content]:[image: there is no content]→[image: there is no content] of Equation (14) is volume preserving and maps an open bounded set [image: there is no content]c⊂[image: there is no content]q onto itself, that is, [image: there is no content]c is an invariant set with respect to Equation (14). Then the nonlinear dynamical system given by Equation (14) exhibits Poincaré recurrence, that is, almost every point x∈[image: there is no content]c returns to every open neighborhood [image: there is no content]⊂[image: there is no content]c of x infinitely many times.




Proof. 
Since f:[image: there is no content]→[image: there is no content]q is locally Lipschitz continuous on [image: there is no content] and [image: there is no content](·) maps an open bounded set [image: there is no content]c⊂[image: there is no content]n onto itself, it follows that the solutions to Equation (14) are bounded and unique for all t∈[image: there is no content] and [image: there is no content]∈[image: there is no content]c. Thus, the mapping [image: there is no content](·) is bijective. Furthermore, since the solutions of Equation (14) are continuously dependent on the system’s initial conditions, it follows that [image: there is no content](·) is continuous. Now, the result follows as a direct consequence of Theorem 4.4 with g(·)=[image: there is no content](·) for every [image: there is no content]. ☐



It follows from Theorem 4.6 that a nonlinear dynamical system exhibits Poincaré recurrence if one of the statements in Theorem 4.5 holds with g(·)=[image: there is no content](·) for every [image: there is no content]. Note that in this case it follows from (ii) of Theorem 4.5 that Poincaré recurrence is equivalent to the existence of a point x∈[image: there is no content]⊂[image: there is no content]c such that x belongs to its positive limit set [image: there is no content], that is, [image: there is no content].

All Hamiltonian dynamical systems of the form given by Equations (17) and (18) exhibit Poincaré recurrence since they possess volume-preserving flows and are conservative in the sense that the Hamiltonian function [image: there is no content] remains constant along system trajectories. To see this, note that with [image: there is no content], Equations (17) and (18) can be rewritten as



x˙(t)=J∂H∂x(x(t))T,x([image: there is no content])=[image: there is no content],t≥[image: there is no content]



(25)




where [image: there is no content]≜[q0T,p0T]T∈[image: there is no content]2n and


[image: there is no content]



(26)




Now, since


H˙(x)=∂H∂x(x)J∂H∂x(x)T=0,x∈[image: there is no content]2n



(27)




the Hamiltonian function [image: there is no content] is conserved along the flow of Equation (25). If [image: there is no content] is bounded from below and is radially unbounded, then every trajectory of the Hamiltonian system given by Equation (25) is bounded. Hence, by choosing the bounded region [image: there is no content]≜{x∈[image: there is no content]2n:H(x)≤η}, where η∈[image: there is no content] and [image: there is no content], it follows that the flow [image: there is no content](·) of Equation (25) maps the bounded region [image: there is no content] onto itself. Since [image: there is no content] is arbitrary, the region [image: there is no content] can be chosen arbitrarily large. Furthermore, since Equation (25) possesses unique solutions over [image: there is no content], it follows that the mapping [image: there is no content](·) is one-to-one and onto. Moreover,


∇·J∂H∂x(x)T=∑i=1n∂2H(q,p)∂qi∂pi-∑i=1n∂2H(q,p)∂pi∂qi=0,x∈[image: there is no content]2n



(28)




which, by Theorem 4.1, shows that the flow [image: there is no content](·) of Equation (25) is volume preserving. Finally, since the flow [image: there is no content](·) of Equation (25) is volume preserving, continuous, and bijective, and [image: there is no content](·) maps a bounded region of a Euclidean space onto itself, it follows from Theorem 4.6 that the Hamiltonian dynamical system given by Equation (25) exhibits Poincaré recurrence. That is, in every open neighborhood [image: there is no content] of every point [image: there is no content]∈[image: there is no content]2n there exists a point y∈[image: there is no content] such that the trajectory s(t,y),t≥[image: there is no content], of Equation (25) will return to [image: there is no content] infinitely many times.
Poincaré recurrence has been the main source for the long and fierce debate between the microscopic and macroscopic points of view of thermodynamics [1]. In thermodynamic models predicated on statistical mechanics, an isolated dynamical system will return arbitrarily close to its initial state of molecular positions and velocities infinitely often. If the system entropy is determined by the state variables, then it must also return arbitrarily close to its original value, and hence, undergo cyclical changes. This apparent contradiction between the behavior of a mechanical system of particles and the second law of thermodynamics remains one of the hardest and most controversial problems in statistical physics. The resolution of this paradox lies in the controversial statement that as system dimensionality increases, the recurrence time increases at an extremely fast rate. Nevertheless, the shortcoming of the mechanistic world view of thermodynamics is the absence of the emergence of damping in lossless mechanical systems. The emergence of damping is, however, ubiquitous in isolated [31] thermodynamic systems. Hence, the development of a viable dynamical system model for thermodynamics must guarantee the absence of Poincaré recurrence. The next set of results presents sufficient conditions for the absence of Poincaré recurrence for the nonlinear dynamical system given by Equation (14). First, however, define the set of equilibria for the nonlinear dynamical system given by Equation (14) in [image: there is no content] by [image: there is no content]e≜{x∈[image: there is no content]:f(x)=0}.


Theorem 4.7 
Consider the nonlinear dynamical system given by Equation (14) and assume that [image: there is no content]∖[image: there is no content]e≠Ø. Assume that there exists a continuous function V:[image: there is no content]→[image: there is no content] such that for every [image: there is no content]∈[image: there is no content]∖[image: there is no content]e, V(s(t,[image: there is no content])), [image: there is no content], is a strictly increasing (respectively, decreasing) function of time. Then the nonlinear dynamical system given by Equation (14) does not exhibit Poincaré recurrence on [image: there is no content]∖[image: there is no content]e. That is, for some x∈[image: there is no content]∖[image: there is no content]e, there exists a neighborhood [image: there is no content]⊂[image: there is no content]∖[image: there is no content]e such that for every y∈[image: there is no content], [image: there is no content].




Proof. 
Suppose, ad absurdum, there exists z∈[image: there is no content]∖[image: there is no content]e such that for every open neighborhood [image: there is no content] containing x, there exists a point y∈[image: there is no content] such that [image: there is no content]. Now, let [image: there is no content] be such that [image: there is no content] as [image: there is no content] and [image: there is no content] as [image: there is no content]. Since [image: there is no content] is continuous, it follows that lim[image: there is no content]V(s(ti,y))=V(y). However, since [image: there is no content] is strictly increasing, it follows that [image: there is no content], i∈[image: there is no content], which is a contradiction. The proof for the case where V(s(t,[image: there is no content])),t≥[image: there is no content] is strictly decreasing is identical. ☐



For the remainder of this section let [image: there is no content]c⊆[image: there is no content] be a closed invariant set with respect to the nonlinear dynamical system given by Equation (14). The following definition for convergence is needed.


Definition 4.3 
The nonlinear dynamical system given by Equation (14) is convergent with respect to [image: there is no content]c if lim[image: there is no content]s(t,x) exists for every x∈[image: there is no content]c.



If the system given by Equation (14) is convergent with respect to [image: there is no content]c, then the ω-limit set [image: there is no content] of Equation (14) for the trajectory [image: there is no content] starting at x∈[image: there is no content]c is a singleton. Furthermore, it follows from continuity of solutions that for every [image: there is no content], sh(ω(x))≜lim[image: there is no content]s(t+h,x)=ω(x). Thus, [image: there is no content] and hence [image: there is no content] is an equilibrium point of Equation (14) for all x∈[image: there is no content]c. The next result relates the continuity of the function [image: there is no content] at a point x to the stability of the equilibrium point [image: there is no content].


Proposition 4.1 
Suppose the nonlinear dynamical system given by Equation (14) is convergent with respect to [image: there is no content]c. If [image: there is no content] is a Lyapunov stable equilibrium point for some x∈[image: there is no content]c, then ω:[image: there is no content]c→[image: there is no content]c is continuous at x.




Proof. 
A proof of this result appears in [32]. For completeness of exposition, we provide an alternative proof here. Suppose [image: there is no content] is Lyapunov stable for some x∈[image: there is no content]c, and let [image: there is no content] be an open neighborhood of [image: there is no content]. Moreover, choose open neighborhoods [image: there is no content] and [image: there is no content] of [image: there is no content] such that [image: there is no content]¯⊂[image: there is no content] and [image: there is no content]([image: there is no content])⊆[image: there is no content] for all [image: there is no content], and let {[image: there is no content]}n=1∞ be a sequence in [image: there is no content]c converging to x. The existence of such neighborhoods follows from the Lyapunov stability of [image: there is no content]. Next, there exists [image: there is no content] such that s(h,x)∈[image: there is no content] and, since the solutions to Equation (14) are continuously dependent on the system initial conditions, it follows that there exists an open neighborhood [image: there is no content]δ^≜Bδ^(x), [image: there is no content] of x such that s(h,y)∈[image: there is no content] for all y∈[image: there is no content]δ^. Furthermore, it follows from the Lyapunov stability of [image: there is no content] that s(t+h,y)∈[image: there is no content], y∈[image: there is no content]δ^, [image: there is no content], and hence, ω(y)∈[image: there is no content]¯⊂[image: there is no content], y∈[image: there is no content]δ^, which proves that ω:[image: there is no content]c→[image: there is no content]c is continuous at x. ☐



The next result gives an alternative sufficient condition for the absence of Poincaré recurrence in a dynamical system.


Theorem 4.8 
Consider the nonlinear dynamical system given by Equation (14). Assume that [image: there is no content]c∖[image: there is no content]e≠Ø and assume Equation (14) is convergent and semistable in [image: there is no content]c. Then the nonlinear dynamical system given by Equation (14) does not exhibit Poincaré recurrence in [image: there is no content]c∖[image: there is no content]e. That is, for some x∈[image: there is no content]c∖[image: there is no content]e, there exists an open neighborhood [image: there is no content]⊂[image: there is no content]c∖[image: there is no content]e such that for every y∈[image: there is no content] the trajectory [image: there is no content], [image: there is no content], does not return to [image: there is no content] infinitely many times.




Proof. 
Let x∈[image: there is no content]c∖[image: there is no content]e and let ω(x)∈[image: there is no content]e be a limiting point for the trajectory s(t,x),t≥[image: there is no content], so that lim[image: there is no content]s(t,x)=ω(x). Since Equation (14) is convergent and semistable, it follows from Proposition 4.1 that ω(x),x∈[image: there is no content]c∖[image: there is no content]e, is continuous. Hence, for every [image: there is no content] there exists [image: there is no content] such that [image: there is no content] for all [image: there is no content]. Choose [image: there is no content] and [image: there is no content] such that [image: there is no content]. Furthermore, choose [image: there is no content] to be sufficiently small such that



⋃[image: there is no content]Bε^¯(ω(y))∩B¯δ(x)=Ø



(29)




Since the dynamical system given by Equation (14) is convergent in [image: there is no content]c, it follows that for all [image: there is no content] and [image: there is no content], there exists [image: there is no content] such that [image: there is no content] for all [image: there is no content]. Moreover, it follows from Equation (29) that, for all [image: there is no content], [image: there is no content], [image: there is no content], does not return to [image: there is no content] infinitely many times, which proves the result with [image: there is no content]=Bδ(x). ☐




5. Finite-Time Semistability of Nonlinear Dynamical Systems

The notion of semistability addressed in Section 2 implies convergence of the system trajectories to an equilibrium state over the infinite horizon. In physical thermodynamic systems, however, the dynamical system possesses the property that trajectories converge to a Lyapunov stable equilibrium in finite time rather than merely asymptotically. The key in achieving finite-time convergence versus asymptotic convergence of the system trajectories can be traced back to the structure of the thermodynamic system vector field characterizing energy flow between subsystem interconnections.

In particular, if the system vector field is Lipschitz continuous, which implies uniqueness of system solutions in forward and backward times, then convergence to an equilibrium state is achieved over an infinite time interval. Alternatively, in order to achieve convergence in finite time, the system dynamics need to be non-Lipschitzian giving rise to non-uniqueness of solutions in backward time. Uniqueness of solutions in forward time, however, can be preserved in the case of finite-time convergence. Sufficient conditions that ensure uniqueness of solutions in forward time in the absence of Lipschitz continuity are given in [33,34]. In addition, it is shown in ([35], Theorem 4.3, p. 59) that uniqueness of solutions in forward time along with continuity of the system dynamics ensure that the system solutions are continuous functions of the system initial conditions even when the dynamics are not Lipschitz continuous.

In this section, we merge the theories of semistability and finite-time stability developed in [20,21,22] to allow us to develop a rigorous framework for finite-time thermodynamics. First, we present the notions of finite-time convergence and finite-time semistability for nonlinear dynamical systems, and develop several sufficient Lyapunov stability theorems for finite-time semistability. Following [36], we exploit homogeneity as a means for verifying finite-time convergence. Our main result in this direction asserts that a homogeneous system is finite-time semistable if and only if it is semistable and has a negative degree of homogeneity. This main result depends on a converse Lyapunov result for homogeneous semistable systems, which we develop. While our converse result resembles a related result for asymptotically stable systems given in [36,37], the proof of our result is rendered more difficult by the fact that it does not hold under the notions of homogeneity considered in [36,37].

More specifically, while previous treatments of homogeneity involved Euler vector fields representing asymptotically stable dynamics, our results involve homogeneity with respect to a semi-Euler vector field representing a semistable system having the same equilibria as the dynamics of interest. Consequently, our theory precludes the use of dilations commonly used in the literature on homogeneous systems (such as [37]), and requires us to adopt a more geometric description of homogeneity (see [36] and references therein).

In this section, we consider nonlinear dynamical systems of the form



x˙(t)=f(x(t)),x(0)=[image: there is no content],t∈I[image: there is no content]



(30)




where x(t)∈[image: there is no content]⊆[image: there is no content]¯+n, t∈I[image: there is no content], is the system state vector, [image: there is no content] is a relatively open set with respect to [image: there is no content]¯+n, f:[image: there is no content]→[image: there is no content]n is continuous and essentially nonnegative on [image: there is no content], that is, [image: there is no content] for all [image: there is no content] and x∈[image: there is no content]¯+n, such that [image: there is no content]=0, f-1(0)≜{x∈[image: there is no content]:f(x)=0} is nonempty, and I[image: there is no content]=[0,τ[image: there is no content]), 0≤τ[image: there is no content]≤∞, is the maximal interval of existence for the solution [image: there is no content] of Equation (30). The continuity of f implies that, for every [image: there is no content]∈[image: there is no content], there exist [image: there is no content] and a solution [image: there is no content] of Equation (30) defined on [image: there is no content] such that x(0)=[image: there is no content]. A solution x is said to be right maximally defined if x cannot be extended on the right (either uniquely or non-uniquely) to a solution of Equation (30). Here, we assume that for every initial condition [image: there is no content]∈[image: there is no content], Equation (30) has a unique right maximally defined solution, and this unique solution is defined on [image: there is no content].
Under these assumptions, the solutions of Equation (30) define a continuous global semiflow on [image: there is no content], that is, s:[0,∞)×[image: there is no content]→[image: there is no content] is a jointly continuous function satisfying the consistency property [image: there is no content] and the semigroup property [image: there is no content] for every x∈[image: there is no content] and [image: there is no content]. Furthermore, we assume that for every initial condition [image: there is no content]∈[image: there is no content]∖f-1(0), Equation (30) has a local unique solution for negative time. The image of [image: there is no content]⊂[image: there is no content] under the flow [image: there is no content] is defined as [image: there is no content]([image: there is no content])≜{y:y=[image: there is no content]([image: there is no content])for all [image: there is no content]∈[image: there is no content]}. Finally, a set [image: there is no content]⊆[image: there is no content]¯+n is connected if and only if every pair of open sets [image: there is no content]i⊆[image: there is no content]¯+n, [image: there is no content], satisfying [image: there is no content]⊆[image: there is no content]1∪[image: there is no content]2 and [image: there is no content]i∩[image: there is no content]≠Ø, [image: there is no content], has a nonempty intersection. A connected component of the set [image: there is no content]⊆[image: there is no content]¯+n is a connected subset of [image: there is no content] that is not properly contained in any connected subset of [image: there is no content].

Next, we establish the notion of finite-time semistability and develop sufficient Lyapunov stability theorems for finite-time semistability.


Definition 5.1 
An equilibrium point [image: there is no content]∈f-1(0) of Equation (30) is said to be finite-time semistable if there exist a relatively open neighborhood [image: there is no content]⊆[image: there is no content] of [image: there is no content] and a function [image: there is no content], called the settling-time function, such that the following statements hold:


	(i)

	For every [image: there is no content], [image: there is no content] for all [image: there is no content], and [image: there is no content] exists and is contained in [image: there is no content].



	(ii)

	[image: there is no content] is semistable.





An equilibrium point [image: there is no content]∈f-1(0) of Equation (30) is said to be globally finite-time semistable if it is finite-time semistable with [image: there is no content]=[image: there is no content]=[image: there is no content]¯+n. The system given by Equation (30) is said to be finite-time semistable if every equilibrium point in [image: there is no content] is finite-time semistable. Finally, Equation (30) is said to be globally finite-time semistable if every equilibrium point in [image: there is no content] is globally finite-time semistable.


It is easy to see from Definition 5.1 that, for all [image: there is no content],



T(x)=inf{t∈[image: there is no content]¯+:f(s(t,x))=0}



(31)




where [image: there is no content].

Lemma 5.1 
Suppose Equation (30) is finite-time semistable. Let [image: there is no content]∈f-1(0) be an equilibrium point of Equation (30) and let [image: there is no content]⊆[image: there is no content] be as in Definition 5.1. Furthermore, let T:[image: there is no content]→[image: there is no content]¯+ be the settling-time function. Then T is continuous on [image: there is no content] if and only if T is continuous at each ze∈[image: there is no content]∩f-1(0).




Proof. 
Necessity is immediate. To prove sufficiency, suppose that T is continuous at each ze∈[image: there is no content]∩f-1(0). Let z∈[image: there is no content]∖f-1(0) and consider a sequence [image: there is no content] in [image: there is no content] that converges to z. Let [image: there is no content] and [image: there is no content]. Note that both [image: there is no content] and [image: there is no content] are in [image: there is no content]¯+ and



[image: there is no content]≤[image: there is no content]



(32)






Next, let [image: there is no content] be a subsequence of [image: there is no content] such that T(zl+)→[image: there is no content] as [image: there is no content]. The sequence [image: there is no content] converges in [image: there is no content]+×[image: there is no content] to [image: there is no content]. By continuity and



[image: there is no content]



(33)




for all [image: there is no content] and t∈[image: there is no content]+, [image: there is no content] as [image: there is no content], where ze∈[image: there is no content]∩f-1(0). Since T is assumed to be continuous at each ze∈[image: there is no content]∩f-1(0), [image: there is no content] as [image: there is no content]. Note that


[image: there is no content]



(34)




for all [image: there is no content] and t∈[image: there is no content]+. Using Equation (34) with [image: there is no content] and [image: there is no content], we obtain [image: there is no content] as [image: there is no content]. Hence, max{[image: there is no content]-T(z),0}=0, that is,


[image: there is no content]≤T(z)



(35)




Now, let [image: there is no content] be a subsequence of [image: there is no content] such that T(zl-)→[image: there is no content] as [image: there is no content]. It follows from Equations (32) and (35) that [image: there is no content]∈[image: there is no content]+. Therefore, the sequence [image: there is no content] converges in [image: there is no content]+×[image: there is no content] to ([image: there is no content],z). Since s is continuous, it follows that s(T(zl-),zl-)→s([image: there is no content],z) as [image: there is no content]. Equation (33) implies that s(T(zl-),zl-)∈[image: there is no content]∩f-1(0) for each l. Hence, s([image: there is no content],z)=ze, ze∈[image: there is no content]∩f-1(0) and, by Equation (31),



T(z)≤[image: there is no content]



(36)




It follows from Equations (32), (35), and (36) that [image: there is no content]=[image: there is no content]=T(z), and hence, [image: there is no content] as [image: there is no content]. ☐
Next, we introduce a new definition which is weaker than finite-time semistability and is needed for the next result.


Definition 5.2 
The system given by Equation (30) is said to be finite-time convergent to [image: there is no content]⊆f-1(0) for [image: there is no content]0⊆[image: there is no content] if, for every [image: there is no content]∈[image: there is no content]0, there exists a finite-time T=T([image: there is no content])>0 such that x(t)∈[image: there is no content] for all [image: there is no content].



The next result gives a sufficient condition for characterizing finite-time convergence. For the statement of this result, define



[image: there is no content](x)≜limh→0+1hV(s(h,x))-V(x),x∈[image: there is no content]



(37)




for a given continuous function V:[image: there is no content]→ and for every x∈[image: there is no content] such that the limit in Equation (37) exists.

Proposition 5.1 
Let [image: there is no content]0⊆[image: there is no content] be positively invariant and [image: there is no content]⊆f-1(0). Assume that there exists a continuous function V:[image: there is no content]0→[image: there is no content] such that [image: there is no content] is defined everywhere on [image: there is no content]0, [image: there is no content] if and only if x∈[image: there is no content]⊂[image: there is no content]0, and



-[image: there is no content]|V(x)|α≤[image: there is no content](x)≤-[image: there is no content]|V(x)|α,x∈[image: there is no content]0∖[image: there is no content]



(38)




where [image: there is no content] and [image: there is no content]. Then Equation (30) is finite-time convergent to [image: there is no content] for {x∈[image: there is no content]0:V(x)≥0}. Alternatively, if V is nonnegative and


[image: there is no content](x)≤-c3(V(x))α,x∈[image: there is no content]0∖[image: there is no content]



(39)




where [image: there is no content], then Equation (30) is finite-time convergent to [image: there is no content] for [image: there is no content]0.



Proof. 
Note that Equation (38) is also true for x∈[image: there is no content]. Application of the comparison lemma (Theorems 4.1 and 4.2 of [34]) to Equation (38) yields [image: there is no content], x∈{z∈[image: there is no content]0:V(z)≥0}, where μ is given by



μ(t,z,c)≜(|z|1-α-c(1-α)t)11-α,0≤t<|z|1-αc(1-α),α<10,t≥|z|1-αc(1-α),α<1



(40)




Hence, [image: there is no content] for [image: there is no content], which implies that s(t,x)∈[image: there is no content] for [image: there is no content]. The assertion follows. The second part of the assertion can be proved similarly. ☐


The next result establishes a relationship between finite-time convergence and finite-time semistability.


Theorem 5.1 
Assume that there exists a continuous nonnegative function V:[image: there is no content]→[image: there is no content]¯+ such that [image: there is no content] is defined everywhere on [image: there is no content], [image: there is no content], and there exists a relatively open neighborhood [image: there is no content]⊆[image: there is no content] such that [image: there is no content] is nonempty and



[image: there is no content](x)≤w(V(x)),x∈[image: there is no content]∖f-1(0)



(41)




where w:[image: there is no content]¯+→[image: there is no content] is continuous, [image: there is no content], and


z˙(t)=w(z(t)),z(0)=z0∈[image: there is no content]¯+,t≥0



(42)




has a unique solution in forward time. If Equation (41) is finite-time convergent to the origin for [image: there is no content]¯+ and every point in [image: there is no content] is a Lyapunov stable equilibrium point of Equation (30), then every point in [image: there is no content] is finite-time semistable. Moreover, the settling-time function of Equation (30) is continuous on a relatively open neighborhood of [image: there is no content]. Finally, if [image: there is no content]=[image: there is no content], then Equation (30) is finite-time semistable.



Proof. 
Consider [image: there is no content]∈[image: there is no content]∩f-1(0). Since x(t)≡[image: there is no content] is Lyapunov stable, it follows that there exists a relatively open positively invariant set [image: there is no content]⊆[image: there is no content] containing [image: there is no content]. Next, it follows from Equation (41) that



[image: there is no content](s(t,x))≤w(V(s(t,x))),x∈[image: there is no content],t≥0



(43)




Now, application of the comparison lemma (Theorem 4.1 of [34]) to the inequality Equation (43) with the comparison system given by Equation (42) yields


V(s(t,x))≤ψ(t,V(x)),t≥0,x∈[image: there is no content]



(44)




where ψ:[0,∞)×[image: there is no content]→[image: there is no content] is the global semiflow of Equation (42). Since Equation (42) is finite-time convergent to the origin for [image: there is no content]¯+, it follows from Equation (44) and the nonnegativity of [image: there is no content] that


V(s(t,x))=0,t≥T^(V(x)),x∈[image: there is no content]



(45)




where [image: there is no content] denotes the settling-time function of Equation (42).


Next, since [image: there is no content], [image: there is no content] is jointly continuous, and [image: there is no content] is equivalent to [image: there is no content] on [image: there is no content], it follows that inf{t∈[image: there is no content]¯+:f(s(t,x))=0}>0 for x∈[image: there is no content]∖f-1(0). Furthermore, it follows from Equation (45) that inf{t∈[image: there is no content]¯+:f(s(t,x))=0}<∞ for x∈[image: there is no content]. Define T:[image: there is no content]∖f-1(0)→[image: there is no content]¯+ by T(x)=inf{t∈[image: there is no content]¯+:f(s(t,x))=0}. Then it follows that every point in [image: there is no content]∩f-1(0) is finite-time semistable and T is the settling-time function on [image: there is no content]. Furthermore, it follows from Equation (45) that [image: there is no content], x∈[image: there is no content]. Since the settling-time function of a one-dimensional finite-time stable system is continuous at the equilibrium, it follows that T is continuous at each point in [image: there is no content]∩f-1(0). Since [image: there is no content]∈[image: there is no content]∩f-1(0) was chosen arbitrarily, it follows that every point in [image: there is no content] is finite-time semistable, while Lemma 5.1 implies that T is continuous on a relatively open neighborhood of [image: there is no content].

The last statement follows by noting that, if [image: there is no content]=[image: there is no content], then [image: there is no content] is positively invariant by our assumptions on Equation (30), and hence, the preceding arguments hold with [image: there is no content]=[image: there is no content]. ☐


Theorem 5.2 
Assume that there exists a continuous nonnegative function V:[image: there is no content]→[image: there is no content]¯+ such that [image: there is no content] is defined everywhere on [image: there is no content], [image: there is no content], and there exists a relatively open neighborhood [image: there is no content]⊆[image: there is no content] such that [image: there is no content] is nonempty and Equation (39) holds for all [image: there is no content]. Furthermore, assume that there exists a continuous nonnegative function W:[image: there is no content]→[image: there is no content]¯+ such that [image: there is no content] is defined everywhere on [image: there is no content], W-1(0)=[image: there is no content]∩f-1(0), and



∥f(x)∥≤-c0W˙(x),x∈[image: there is no content]∖f-1(0)



(46)




where [image: there is no content]. Then every point in [image: there is no content] is finite-time semistable.



Proof. 
For any [image: there is no content]∈[image: there is no content]∩f-1(0), since W(x)≥0=W([image: there is no content]) for all [image: there is no content], it follows from (i) of Theorem 5.2 of [20] that [image: there is no content] is a Lyapunov stable equilibrium and, hence, every point in [image: there is no content] is Lyapunov stable. Now, it follows from the second assertion of Proposition 5.1 and Theorem 5.1, with [image: there is no content], that every point in [image: there is no content] is finite-time semistable. ☐





6. Homogeneity and Finite-Time Semistability

In this section, we develop necessary and sufficient conditions for finite-time semistability of homogeneous dynamical systems. In the sequel, we will need to consider a complete vector field ν on [image: there is no content]¯+n such that the solutions of the differential equation [image: there is no content] define a continuous global flow ψ:[image: there is no content]×[image: there is no content]¯+n→[image: there is no content]¯+n on [image: there is no content]¯+n, where [image: there is no content]. For each τ∈[image: there is no content], the map [image: there is no content] is a homeomorphism and [image: there is no content]. We define a function V:[image: there is no content]¯+n→[image: there is no content] to be homogeneous of degree l∈[image: there is no content] with respect to ν if and only if [image: there is no content], τ∈[image: there is no content], x∈[image: there is no content]¯+n. Our assumptions imply that every connected component of [image: there is no content]¯+n∖f-1(0) is invariant under ν. The Lie derivative of a continuous function V:[image: there is no content]¯+n→[image: there is no content] with respect to ν is given by [image: there is no content], whenever the limit on the right-hand side exists. If V is a continuous homogeneous function of degree [image: there is no content], then [image: there is no content] is defined everywhere and satisfies [image: there is no content]. We assume that the vector field ν is a semi-Euler vector field, that is, the dynamical system



y˙(t)=-ν(y(t)),y(0)=y0,t≥0



(47)




is globally semistable with respect to [image: there is no content]¯+n. Thus, for each x∈[image: there is no content]¯+n, [image: there is no content], and for each [image: there is no content]∈ν-1(0), there exists z∈[image: there is no content]¯+n such that [image: there is no content]=limτ→∞ψ(-τ,z). Finally, we say that the vector field f is homogeneous of degree k∈[image: there is no content] with respect to ν if and only if [image: there is no content] and, for every t∈[image: there is no content]¯+ and τ∈[image: there is no content],


[image: there is no content]∘ψτ=ψτ∘sekτt



(48)




Note that if V:[image: there is no content]¯+n→[image: there is no content] is a homogeneous function of degree l such that [image: there is no content] is defined everywhere, then [image: there is no content] is a homogeneous function of degree [image: there is no content] [37,38]. Finally, note that if ν and f are continuously differentiable in a neighborhood of x∈[image: there is no content]¯+n, then Equation (48) holds at x for sufficiently small t and τ if and only if [image: there is no content] in a neighborhood of x∈[image: there is no content]¯+n, where the Lie bracket [image: there is no content] of ν and f can be computed by using [image: there is no content]=∂f∂xν-∂ν∂xf.
The following lemmas are needed for the main results of this section.


Lemma 6.1 
Consider the dynamical system given by Equation (47). Let [image: there is no content]c⊂[image: there is no content]¯+n be a relatively compact set satisfying [image: there is no content]c∩ν-1(0)=Ø. Then for every relatively open set [image: there is no content] satisfying ν-1(0)⊂[image: there is no content], there exist [image: there is no content] such that ψ-t([image: there is no content]c)⊂[image: there is no content] for all [image: there is no content] and ψτ([image: there is no content]c)∩[image: there is no content]=Ø for all [image: there is no content].




Proof. 
Let [image: there is no content] be a relatively open neighborhood of [image: there is no content] with respect to [image: there is no content]¯+n. Since every [image: there is no content] is Lyapunov stable under ν, it follows that there exists a relatively open neighborhood [image: there is no content]z containing z such that ψ-t([image: there is no content]z)⊆[image: there is no content] for all [image: there is no content]. Hence, [image: there is no content]≜⋃[image: there is no content][image: there is no content]z is relatively open and ψ-t([image: there is no content])⊆[image: there is no content] for all [image: there is no content]. Next, consider the collection of nested sets {[image: there is no content]t}[image: there is no content], where [image: there is no content]t={x∈[image: there is no content]c:ψh(x)∉[image: there is no content],h∈[-t,0]}=[image: there is no content]c∩([image: there is no content]¯+n∖(⋃h∈[-t,0]ψh-1([image: there is no content]))), [image: there is no content]. For each [image: there is no content], [image: there is no content]t is a relatively compact set. Therefore, if [image: there is no content]t is nonempty for each [image: there is no content], then there exists x∈⋂[image: there is no content][image: there is no content]t, that is, there exists x∈[image: there is no content]c such that ψ-t(x)∉[image: there is no content] for all [image: there is no content], which contradicts the fact that the domain of semistability [39] of Equation (47) is [image: there is no content]¯+n. Hence, there exists [image: there is no content] such that [image: there is no content]τ=Ø, that is, [image: there is no content]c⊂⋃h∈[-τ,0]ψh-1([image: there is no content]). Therefore, for every [image: there is no content], ψ-t([image: there is no content]c)⊂⋃h∈[-τ,0]ψ-t(ψh-1([image: there is no content]))=⋃h∈[-τ,0]ψ-t-h([image: there is no content])⊆[image: there is no content]. The second conclusion follows using similar arguments as above. ☐




Lemma 6.2 
Suppose f:[image: there is no content]¯+n→[image: there is no content]n is homogeneous of degree k∈[image: there is no content] with respect to ν and Equation (30) is (locally) semistable. Then the domain of semistability of Equation (30) is [image: there is no content]¯+n.




Proof. 
Let [image: there is no content]⊆[image: there is no content]¯+n be the domain of semistability [39] and x∈[image: there is no content]¯+n. Note that [image: there is no content] is a relatively open neighborhood of [image: there is no content] with respect to [image: there is no content]¯+n. Since every point in [image: there is no content] is a globally semistable equilibrium under [image: there is no content] with respect to [image: there is no content]¯+n, there exists [image: there is no content] such that z=ψ-τ(x)∈[image: there is no content]. Then it follows from Equation (48) that [image: there is no content]. Since lim[image: there is no content]s(t,z)=x*∈f-1(0), it follows that lim[image: there is no content]s(t,x)=lim[image: there is no content]ψτ(s(ekτt,z))=ψτ(lim[image: there is no content]s(ekτt,z))=ψτ(x*)=x*, which implies that x∈[image: there is no content]. Since x∈[image: there is no content]¯+n is arbitrary, [image: there is no content]=[image: there is no content]¯+n. ☐



The following theorem presents a converse Lyapunov result for homogenous semistable systems.


Theorem 6.1 
Suppose f:[image: there is no content]¯+n→[image: there is no content]n is homogeneous of degree k∈[image: there is no content] with respect to ν and Equation (30) is semistable. Then for every [image: there is no content], there exists a continuous nonnegative function V:[image: there is no content]¯+n→[image: there is no content]¯+ that is homogeneous of degree l with respect to ν, continuously differentiable on [image: there is no content]¯+n∖f-1(0), and satisfies [image: there is no content], [image: there is no content], x∈[image: there is no content]¯+n∖f-1(0), and for each [image: there is no content]∈f-1(0) and each bounded, relatively open neighborhood [image: there is no content]0 containing [image: there is no content] with respect to [image: there is no content]¯+n, there exist [image: there is no content]=[image: there is no content]([image: there is no content]0)≥[image: there is no content]=[image: there is no content]([image: there is no content]0)>0 such that



-[image: there is no content][V(x)][image: there is no content]l≤V′(x)f(x)≤-[image: there is no content][V(x)][image: there is no content]l,x∈[image: there is no content]0



(49)







Proof. 
Choose [image: there is no content]. First, we prove that there exists a continuous Lyapunov function V on [image: there is no content]¯+n that is homogeneous of degree l with respect to ν, continuously differentiable on [image: there is no content]¯+n∖f-1(0), and [image: there is no content] for x∈[image: there is no content]¯+n∖f-1(0). Choose any nondecreasing smooth function g:[image: there is no content]¯+→[0,1] such that [image: there is no content] for [image: there is no content], [image: there is no content] for [image: there is no content], and [image: there is no content] on [image: there is no content], where [image: there is no content] are constants. It follows from Theorem 4.21 of [40] and Lemma 6.2 that there exists a continuously differentiable Lyapunov function [image: there is no content] on [image: there is no content]¯+n satisfying all of the properties in Theorem 4.21 of [40].



Next, define



V(x)≜∫-∞+∞e-lτg(U(ψ(τ,x)))dτ,x∈[image: there is no content]¯+n



(50)




Let [image: there is no content] be a bounded, relatively open set satisfying [image: there is no content]¯∩f-1(0)=Ø. Since every point in [image: there is no content] is a globally semistable equilibrium point under [image: there is no content] with respect to [image: there is no content]¯+n, it follows that for each x∈[image: there is no content]¯, [image: there is no content] and [image: there is no content]. Now, it follows from Lemma Section 6 that there exist time instants [image: there is no content] such that for each x∈[image: there is no content]¯, [image: there is no content] for all [image: there is no content] and [image: there is no content] for all [image: there is no content]. Hence,


V(x)=∫τ1τ2e-lτg(U(ψ(τ,x)))dτ+e-lτ2l,x∈[image: there is no content]



(51)




which implies that V is well defined, positive, and continuously differentiable on [image: there is no content].
Next, since [image: there is no content] satisfies (i) and (ii) of Theorem 4.21 of [40] it follows from Equations (50) and (51) that [image: there is no content]. Since for any σ∈[image: there is no content] and x∈[image: there is no content]¯+n,



[image: there is no content]



(52)




by definition, V is homogeneous of degree l. In addition, it follows from Equations (48) and (51) that


V′(x)f(x)=∫τ1τ2e-lτg′(U(ψ(τ,x)))d[image: there is no content]U(s(e-kτt,ψ(τ,x)))|t=0dτ=∫τ1τ2e-(l+k)τg′(U(ψ(τ,x)))U′(ψ(τ,x))f(ψ(τ,x))dτ<0,x∈[image: there is no content]



(53)




which implies that [image: there is no content] is negative and continuous on [image: there is no content]. Now, since [image: there is no content] is arbitrary, it follows that V is well defined and continuously differentiable, and [image: there is no content] is negative and continuous on [image: there is no content]¯+n∖f-1(0).
Next, to show continuity at points in [image: there is no content], we define T:[image: there is no content]¯+n∖f-1(0)→[image: there is no content] by T(x)=sup{t∈[image: there is no content]:U(ψ(τ,x))≤aforallτ≤t}, and note that the continuity of U implies that [image: there is no content] for all x∈[image: there is no content]¯+n∖f-1(0). Let [image: there is no content]∈f-1(0), and consider a sequence [image: there is no content] in [image: there is no content]¯+n∖f-1(0) converging to [image: there is no content]. We claim that the sequence [image: there is no content] has no bounded subsequence so that lim[image: there is no content]T(xk)=∞. To prove our claim by contradiction, suppose, ad absurdum, that [image: there is no content] is a bounded subsequence. Without loss of generality, we may assume that the sequence [image: there is no content] converges to h∈[image: there is no content]. Then, by joint continuity of ψ, lim[image: there is no content]ψ(T(xki),xki)=ψ(h,[image: there is no content])=[image: there is no content], so that lim[image: there is no content]U(ψ(T(xki),xki))=U([image: there is no content])=0. However, this contradicts our observation above that [image: there is no content] for all x∈[image: there is no content]¯+n∖f-1(0). The contradiction leads us to conclude that lim[image: there is no content]T(xk)=∞. Now, for each [image: there is no content] it follows that



[image: there is no content]








so that lim[image: there is no content]V(xk)=0=V([image: there is no content]). Since [image: there is no content] was chosen arbitrarily, it follows that V is continuous at every [image: there is no content]∈f-1(0).
To show that V possesses the last property, let [image: there is no content]∈f-1(0), and choose a bounded, relatively open neighborhood [image: there is no content]0 of [image: there is no content] with respect to [image: there is no content]¯+n. Let W=ψ([image: there is no content]+×[image: there is no content]0). For every [image: there is no content], denote [image: there is no content]. For every [image: there is no content], define the continuous map τε:[image: there is no content]¯+n∖f-1(0)→[image: there is no content] by [image: there is no content], and note that, for every x∈[image: there is no content]¯+n∖f-1(0), [image: there is no content] if and only if [image: there is no content]. Next, define [image: there is no content]:[image: there is no content]¯+n∖f-1(0)→[image: there is no content]¯+n by [image: there is no content]. Note that, for every [image: there is no content], [image: there is no content] is continuous, and [image: there is no content](x)∈V-1(ε) for every x∈[image: there is no content]¯+n∖f-1(0).

Consider [image: there is no content]. [image: there is no content] is the union of the images of connected components of [image: there is no content]0∖f-1(0) under the continuous map [image: there is no content]. Since every connected component of [image: there is no content]¯+n∖f-1(0) is invariant under ν, it follows that the image of each connected component [image: there is no content] of [image: there is no content]¯+n∖f-1(0) under [image: there is no content] is contained in [image: there is no content] itself. In particular, the images of connected components of [image: there is no content]0∖f-1(0) under [image: there is no content] are all disjoint. Thus, each connected component of [image: there is no content] is the image of exactly one connected component of [image: there is no content]0∖f-1(0) under [image: there is no content]. Finally, if ε is small enough so that V-1(ε)∩[image: there is no content]0 is nonempty, then V-1(ε)∩[image: there is no content]0⊆[image: there is no content], and hence, every connected component of [image: there is no content] has a nonempty intersection with [image: there is no content]0∖f-1(0).

We claim that [image: there is no content] is bounded for every [image: there is no content]. It is easy to verify that, for every [image: there is no content], [image: there is no content] with [image: there is no content]. Hence, it suffices to prove that there exists [image: there is no content] such that [image: there is no content] is bounded. To arrive at a contradiction, suppose, ad absurdum, that [image: there is no content] is unbounded for every [image: there is no content]. Choose a bounded relatively open neighborhood [image: there is no content] of [image: there is no content]¯0 and a sequence [image: there is no content] in [image: there is no content] converging to 0. By our assumption, for every i=1,2,…, at least one connected component of [image: there is no content] must contain a point in [image: there is no content]¯+n∖[image: there is no content]. On the other hand, for i sufficiently large, every connected component of [image: there is no content] has a nonempty intersection with [image: there is no content]0⊂[image: there is no content]. It follows that [image: there is no content] has a nonempty intersection with the boundary of [image: there is no content] for every i sufficiently large. Hence, there exists a sequence {[image: there is no content]}i=1∞ in [image: there is no content]0, and a sequence [image: there is no content] in [image: there is no content] such that yi≜ψti([image: there is no content])∈V-1(εi)∩∂[image: there is no content] for every i=1,2,…. Since [image: there is no content] is bounded, we can assume that the sequence [image: there is no content] converges to y∈∂[image: there is no content]. Continuity implies that V(y)=lim[image: there is no content]V(yi)=lim[image: there is no content]εi=0. Since [image: there is no content], it follows that y is Lyapunov stable under [image: there is no content]. Since y∉[image: there is no content]¯0, there exists a relatively open neighborhood [image: there is no content] of y such that [image: there is no content]∩[image: there is no content]0=Ø. The sequence [image: there is no content] converges to y while ψ-ti(yi)=[image: there is no content]∈[image: there is no content]0⊂[image: there is no content]¯+n∖[image: there is no content], which contradicts Lyapunov stability. This contradiction implies that there exists [image: there is no content] such that [image: there is no content] is bounded. It now follows that [image: there is no content] is bounded for every [image: there is no content].

Finally, consider x∈[image: there is no content]0∖f-1(0). Choose [image: there is no content] and note that ψτε(x)(x)∈[image: there is no content]. Furthermore, note that [image: there is no content] for all x∈[image: there is no content]¯+n∖f-1(0), [image: there is no content] is continuous on [image: there is no content]¯+n∖f-1(0), and [image: there is no content]. Then, by homogeneity, [image: there is no content], and hence,



[image: there is no content]



(54)




Since [image: there is no content] is homogeneous of degree [image: there is no content], it follows that


V′(ψτε(x)(x))f(ψτε(x)(x))=e(l+k)τε(x)V′(x)f(x)=ε[image: there is no content]lV(x)-[image: there is no content]lV′(x)f(x)








Let [image: there is no content]≜-ε-[image: there is no content]lminz∈[image: there is no content]V′(z)f(z) and [image: there is no content]≜-ε-[image: there is no content]lmaxz∈[image: there is no content]V′(z)f(z). Note that [image: there is no content] and [image: there is no content] are positive and well defined since [image: there is no content] is compact. Hence, the theorem is proved. ☐
The following result represents the main application of homogeneity [36] to finite-time semistability.


Theorem 6.2 
Suppose f is homogeneous of degree k∈[image: there is no content] with respect to ν. Then Equation (30) is finite-time semistable if and only if Equation (30) is semistable and [image: there is no content]. In addition, if Equation (30) is finite-time semistable, then the settling-time function [image: there is no content] is homogeneous of degree [image: there is no content] with respect to ν and [image: there is no content] is continuous on [image: there is no content]¯+n.




Proof. 
Since finite-time semistability implies semistability, it suffices to prove that if Equation (30) is semistable, then Equation (30) is finite-time semistable if and only if [image: there is no content]. Suppose Equation (30) is finite-time semistable and let [image: there is no content]. Then for each [image: there is no content]∈f-1(0), it follows from Theorem 6.1 that there exist a bounded, relatively open, and positively invariant set [image: there is no content] containing [image: there is no content], and a continuous nonnegative function V:[image: there is no content]→[image: there is no content]¯+ that is homogeneous of degree [image: there is no content] and is such that [image: there is no content] is continuous, negative on [image: there is no content]∖f-1(0), homogeneous of degree [image: there is no content], and Equation (49) holds. Now, ad absurdum, if [image: there is no content] and x∈[image: there is no content]∖f-1(0), then application of the comparison lemma (Theorem 4.2 in [34]) to the first inequality in Equation (49) yields [image: there is no content], where π is given by



π(t,x)=sgn(x)1|x|α-1+[image: there is no content](α-1)t-1α-1,α>1e-[image: there is no content]tx,α=1



(55)




and where sgn(x)≜x/|x|, [image: there is no content], and sgn(0)≜0, with [image: there is no content]. Since, in this case, [image: there is no content] for all [image: there is no content], we have s(t,x)∉[image: there is no content]∩f-1(0) for every [image: there is no content]; that is, [image: there is no content] is not a finite-time semistable equilibrium under f, which is a contradiction. Hence, [image: there is no content].


Conversely, if [image: there is no content], choose [image: there is no content]∈f-1(0) and choose a relatively open neighborhood [image: there is no content]0 of [image: there is no content] such that Equation (50) holds. Next, [image: there is no content][image: there is no content] is chosen to be a bounded, positively invariant neighborhood of [image: there is no content] contained in [image: there is no content]0. Then it follows from Theorem 6.1 that there exists a continuous nonnegative function [image: there is no content] such that Equation (49) holds on [image: there is no content][image: there is no content]. Now, with c=[image: there is no content]>0, [image: there is no content], [image: there is no content]0=[image: there is no content][image: there is no content], and [image: there is no content], it follows from Proposition 5.1 and Theorem 5.1 that [image: there is no content] is finite-time semistable on [image: there is no content][image: there is no content]. Define [image: there is no content]≜⋃[image: there is no content]∈f-1(0)[image: there is no content][image: there is no content]. Then [image: there is no content] is a relatively open neighborhood of [image: there is no content] such that every solution in [image: there is no content] converges in finite time to a Lyapunov stable equilibrium. Hence, Equation (30) is finite-time semistable. Lemma 6.2 then implies that Equation (30) is globally finite-time semistable, and [image: there is no content] is defined on [image: there is no content]¯+n. By Proposition 5.1 with [image: there is no content]0=[image: there is no content][image: there is no content], and Theorem 5.1, it follows that [image: there is no content] is continuous on [image: there is no content][image: there is no content]. Next, since [image: there is no content]∈f-1(0) was chosen arbitrarily, it follows from Lemma 5.1 that [image: there is no content] is continuous on [image: there is no content]¯+n.

Finally, let x∈[image: there is no content]¯+n and note that, since every point in [image: there is no content] is a globally semistable equilibrium under [image: there is no content] with respect to [image: there is no content]¯+n, there exists [image: there is no content] such that z≜ψ-τ(x)∈[image: there is no content]. Then it follows from Equation (48) that [image: there is no content], and hence, [image: there is no content] if and only if [image: there is no content]. Now, it follows that for x∈[image: there is no content], [image: there is no content]. By definition, it follows that [image: there is no content] is homogeneous of degree [image: there is no content] with respect to ν. ☐

In order to use Theorem 6.2 to prove finite-time semistability of a homogeneous system, a priori information of semistability for the system is needed, which is not easy to obtain. To overcome this, we need to develop some sufficient conditions to establish finite-time semistability. Recall that a function V:[image: there is no content]¯+n→[image: there is no content] is said to be weakly proper if and only if for every c∈[image: there is no content], every connected component of the set {x∈[image: there is no content]¯+n:V(x)≤c}=V-1((-∞,c]) is compact [21]. Furthermore, the following lemma giving a sufficient condition for a trajectory of Equation (30) to converge to a limit is needed.


Lemma 6.3 
Consider the nonlinear dynamical system given by Equation (30) where f is essentially nonnegative and let [image: there is no content]. If the positive limit set [image: there is no content] of Equation (30) contains a Lyapunov stable (with respect to [image: there is no content]+n) equilibrium point y, then y=lim[image: there is no content]s(t,x), that is, [image: there is no content].




Proof. 
Suppose [image: there is no content] is Lyapunov stable with respect to [image: there is no content]+n and let [image: there is no content]⊆+n be a relatively open neighborhood of y. Since y is Lyapunov stable with respect to [image: there is no content]+n, there exists a relatively open neighborhood [image: there is no content]⊂+n of y such that [image: there is no content]([image: there is no content])⊆[image: there is no content] for every [image: there is no content]. Now, since [image: there is no content], it follows that there exists [image: there is no content] such that s(τ,x)∈[image: there is no content]. Hence, s(t+τ,x)=[image: there is no content](s(τ,x))∈[image: there is no content]([image: there is no content])⊆[image: there is no content] for every [image: there is no content]. Since [image: there is no content]⊆+n is arbitrary, it follows that y=lim[image: there is no content]s(t,x). Thus, [image: there is no content] for every sequence [image: there is no content], and hence, [image: there is no content]. ☐




Proposition 6.1 
Assume f is homogeneous of degree [image: there is no content] with respect to ν. Furthermore, assume that there exists a weakly proper, continuous function V:[image: there is no content]¯+n→[image: there is no content] such that [image: there is no content] is defined on [image: there is no content]¯+n and satisfies [image: there is no content](x)≤0 for all x∈[image: there is no content]¯+n. If every point in the largest invariant subset [image: there is no content] of [image: there is no content]-1(0) is a Lyapunov stable equilibrium point of Equation (30), then Equation (30) is finite-time semistable.




Proof. 
Since [image: there is no content] is weakly proper, it follows from Proposition 3.1 of [21] that the positive orbit sx([image: there is no content]) of x∈[image: there is no content]¯+n is bounded in [image: there is no content]¯+n. Since every solution is bounded, it follows from the hypotheses on [image: there is no content] that for every x∈[image: there is no content]¯+n, the omega limit set [image: there is no content] is nonempty and contained in the largest invariant subset [image: there is no content] of [image: there is no content]-1(0). Since every point in [image: there is no content] is a Lyapunov stable equilibrium point, it follows from Lemma 6.3 that the omega limit set [image: there is no content] contains a single point for every x∈[image: there is no content]¯+n. And since lim[image: there is no content]s(t,x)∈[image: there is no content] is Lyapunov stable for every x∈[image: there is no content]¯+n, by definition, the system given by Equation (30) is semistable. Hence, it follows from Theorem 6.2 that Equation (30) is finite-time semistable. ☐





7. A State Space Formalism for Thermodynamics

The fundamental and unifying concept in the analysis of thermodynamic systems is the concept of energy. The energy of a state of a dynamical system is the measure of its ability to produce changes (motion) in its own system state as well as changes in the system states of its surroundings. These changes occur as a direct consequence of the energy flow between different subsystems within the dynamical system. Heat (energy) is a fundamental concept of thermodynamics involving the capacity of hot bodies (more energetic subsystems) to produce work. As in thermodynamic systems, dynamical systems can exhibit energy (due to friction) that becomes unavailable to do useful work. This in turn contributes to an increase in system entropy, a measure of the tendency of a system to lose the ability to do useful work. In this section, we use the state space formalism to construct a mathematical model of a thermodynamic system that is consistent with basic thermodynamic principles.

Specifically, we consider a large-scale system model with a combination of subsystems (compartments or parts) that is perceived as a single entity. For each subsystem (compartment) making up the system, we postulate the existence of an energy state variable such that the knowledge of these subsystem state variables at any given time [image: there is no content], together with the knowledge of any inputs (heat fluxes) to each of the subsystems for time [image: there is no content], completely determines the behavior of the system for any given time [image: there is no content]. Hence, the (energy) state of our dynamical system at time t is uniquely determined by the state at time [image: there is no content] and any external inputs for time [image: there is no content] and is independent of the state and inputs before time [image: there is no content].

More precisely, we consider a large-scale dynamical system composed of a large number of units with aggregated (or lumped) energy variables representing homogenous groups of these units. If all the units comprising the system are identical (that is, the system is perfectly homogeneous), then the behavior of the dynamical system can be captured by that of a single plenipotentiary unit. Alternatively, if every interacting system unit is distinct, then the resulting model constitutes a microscopic system. To develop a middle-ground thermodynamic model placed between complete aggregation (classical thermodynamics) and complete disaggregation (statistical thermodynamics), we subdivide the large-scale dynamical system into a finite number of compartments, each formed by a large number of homogeneous units. Each compartment represents the energy content of the different parts of the dynamical system, and different compartments interact by exchanging heat. Thus, our compartmental thermodynamic model utilizes subsystems or compartments to describe the energy distribution among distinct regions in space with intercompartmental flows representing the heat transfer between these regions. Decreasing the number of compartments results in a more aggregated or homogeneous model, whereas increasing the number of compartments leads to a higher degree of disaggregation resulting in a heterogeneous model.

To formulate our state space thermodynamic model, consider the large-scale dynamical system [image: there is no content] shown in Figure 1 involving energy exchange between q interconnected subsystems. Let [image: there is no content]:[image: there is no content]→[image: there is no content]¯+ denote the energy (and hence a nonnegative quantity) of the ith subsystem, let ui:[image: there is no content]→[image: there is no content] denote the external power (heat flux) supplied to (or extracted from) the ith subsystem, let σij:[image: there is no content]¯+q→[image: there is no content]¯+, i≠j,i,j=1,…,q, denote the instantaneous rate of energy (heat) flow from the jth subsystem to the ith subsystem, and let σii:[image: there is no content]¯+q→[image: there is no content]¯+,i=1,…,q, denote the instantaneous rate of energy (heat) dissipation from the ith subsystem to the environment. In this and the next two sections, we assume that σij:[image: there is no content]¯+q→[image: there is no content]¯+,i,j=1,…,q, are locally Lipschitz continuous on [image: there is no content]¯+q and ui:[image: there is no content]→[image: there is no content],i=1,…,q are bounded piecewise continuous functions of time.

Figure 1. Large-scale dynamical system [image: there is no content].



[image: Entropy 14 00407 g001 1024]







An energy balance for the ith subsystem yields



[image: there is no content](T)=[image: there is no content]([image: there is no content])+∑j=1,j≠iq∫[image: there is no content]T[σij(x(t))-σji(x(t))]dt-∫[image: there is no content]Tσii(x(t))dt+∫[image: there is no content]Tui(t)dt,T≥[image: there is no content]



(56)




or, equivalently, in vector form,


x(T)=x([image: there is no content])+∫[image: there is no content]Tf(x(t))dt-∫[image: there is no content]Td(x(t))dt+∫[image: there is no content]Tu(t)dt,T≥[image: there is no content]



(57)




where [image: there is no content], [image: there is no content], u(t)≜[[image: there is no content](t),…,uq(t)]T, [image: there is no content], and f=[f1,…,fq]T:[image: there is no content]¯+q→[image: there is no content]q is such that


fi(x)=∑j=1,j≠iq[σij(x)-σji(x)],x∈[image: there is no content]¯+q



(58)




It is important to note that the exchange of energy between subsystems in Equation (56) is assumed to be a nonlinear function of all the subsystems, that is, σij=σij(x),x∈[image: there is no content]¯+q,i≠j,i,j=1,…,q. This assumption is made for generality and would depend on the complexity of the diffusion process. For example, thermal processes may include evaporative and radiative heat transfer as well as thermal conduction giving rise to complex heat transport mechanisms. However, for simple diffusion processes it suffices to assume that [image: there is no content], wherein the energy flow from the jth subsystem to the ith subsystem is only dependent (possibly nonlinearly) on the energy in the jth subsystem, resulting in a donor-controlled compartmental model. Similar comments apply to system dissipation.
Note that Equation (56) yields a conservation of energy equation and implies that the energy stored in the ith subsystem is equal to the external energy supplied to (or extracted from) the ith subsystem plus the energy gained by the ith subsystem from all other subsystems due to subsystem coupling minus the energy dissipated from the ith subsystem to the environment. Equivalently, Equation (56) can be rewritten as



x˙i(t)=∑j=1,j≠iq[σij(x(t))-σji(x(t))]-σii(x(t))+ui(t),[image: there is no content]([image: there is no content])=xi0,t≥[image: there is no content]



(59)




or, in vector form,


x˙(t)=f(x(t))-d(x(t))+u(t),x([image: there is no content])=[image: there is no content],t≥[image: there is no content]



(60)




where [image: there is no content]≜[x10,…,xq0]T, yielding a power balance equation that characterizes energy flow between subsystems of the large-scale dynamical system [image: there is no content]. Equation (59) shows that the rate of change of energy, or power, in the ith subsystem is equal to the power input (heat flux) to the ith subsystem plus the energy (heat) flow to the ith subsystem from all other subsystems minus the power dissipated from the ith subsystem to the environment. Furthermore, since [image: there is no content] is locally Lipschitz continuous on [image: there is no content]¯+q and [image: there is no content] is a bounded piecewise continuous function of time, it follows that Equation (60) has a unique solution over the finite time interval [[image: there is no content],τ[image: there is no content]). If, in addition, the power balance Equation (60) is input-to-state stable [40], then τ[image: there is no content]=∞.
Equation (57) or, equivalently, Equation (60) is a statement of the first law of thermodynamics as applied to isochoric transformations (i.e., constant subsystem volume transformations) for each of the subsystems [image: there is no content]i,i=1,…,q, with [image: there is no content](·), [image: there is no content], σij(·),i≠j, and σii(·),i,j=1,…,q, playing the role of the ith subsystem internal energy, rate of heat supplied to (or extracted from) the ith subsystem, heat flow between subsystems due to coupling, and the rate of energy (heat) dissipated to the environment, respectively. To further elucidate that Equation (57) is essentially the statement of the principle of the conservation of energy, let the total energy in the large-scale dynamical system [image: there is no content] be given by [image: there is no content], where [image: there is no content] and x∈[image: there is no content]¯+q, and let the net energy received by the large-scale dynamical system [image: there is no content] over the time interval [[image: there is no content],t2] be given by



Q≜∫[image: there is no content]t2[image: there is no content][u(t)-d(x(t))]dt



(61)




where x(t),t≥[image: there is no content], is the solution to Equation (60). Then, premultiplying Equation (57) by [image: there is no content] and using the fact that [image: there is no content]f(x)≡0, it follows that


[image: there is no content]



(62)




where ΔU≜U(t2)-U([image: there is no content]) denotes the variation in the total energy of the large-scale dynamical system [image: there is no content] over the time interval [[image: there is no content],t2]. This is a statement of the first law of thermodynamics for isochoric transformations of the large-scale dynamical system [image: there is no content] and gives a precise formulation of the equivalence between the variation in system internal energy and heat.
It is important to note that the large-scale dynamical system model given by Equation (60) does not consider work done by the system on the environment nor work done by the environment on the system. Hence, Q can be physically interpreted as the net amount of energy that is received by the system in forms other than work. The extension of addressing work performed by and on the system can be easily addressed by including an additional state equation, coupled to the power balance Equation (60), involving volume (deformation) states for each subsystem. Since this extension does not alter any of the conceptual results of this paper, it is not considered here for simplicity of exposition. Work performed by the system on the environment and work done by the environment on the system is addressed in [1,41].

For our large-scale dynamical system model [image: there is no content], we assume that σij(x)=0,x∈[image: there is no content]¯+q, wheneverxj=0,i,j=1,…,q. In this case, f(x)-d(x),x∈[image: there is no content]¯+q, is essentially nonnegative, that is, [image: there is no content] for all [image: there is no content] and x∈[image: there is no content]¯+q such that [image: there is no content]=0. The above constraint implies that if the energy of the jth subsystem of [image: there is no content] is zero, then this subsystem cannot supply any energy to its surroundings nor dissipate energy to the environment. Moreover, we assume that [image: there is no content] whenever [image: there is no content](t)=0, [image: there is no content], [image: there is no content], which implies that when the energy of the ith subsystem is zero, then no energy can be extracted from this subsystem. Under these assumptions, it can be shown (see [1] for details) that the solution [image: there is no content], [image: there is no content], to Equation (60) is nonnegative for all nonnegative initial conditions [image: there is no content]∈[image: there is no content]¯+q.



8. Entropy and Irreversibility

The nonlinear power balance Equation (60) can exhibit a full range of nonlinear behavior, including bifurcations, limit cycles, and even chaos. However, a thermodynamically consistent energy flow model should ensure that the evolution of the system energy is diffusive (parabolic) in character with convergent subsystem energies. As established in Section 4, such a system model would guarantee the absence of Poincaré recurrence. Otherwise, the thermodynamic model would violate the second law of thermodynamics, since subsystem energies (temperatures) would be allowed to return to their starting state and thereby subverting the diffusive character of the dynamical system. Hence, to ensure a thermodynamically consistent energy flow model, we require the following axioms. For the statement of these axioms [42], we first recall the following graph-theoretic notions.


Definition 8.1 
([43]) A directed graph [image: there is no content]associated with the connectivity matrix [image: there is no content]∈[image: there is no content][image: there is no content]has vertices [image: there is no content]and an arc from vertex i to vertex j, [image: there is no content], if and only if [image: there is no content]. A graph [image: there is no content]associated with the connectivity matrix [image: there is no content]∈[image: there is no content][image: there is no content] is a directed graph for which the arc set is symmetric, that is, [image: there is no content]. We say that [image: there is no content] is strongly connected if for any ordered pair of vertices [image: there is no content], [image: there is no content], there exists a path (i.e., a sequence of arcs) leading from i to j.



Recall that the connectivity matrix [image: there is no content]∈[image: there is no content][image: there is no content] is irreducible, that is, there does not exist a permutation matrix such that [image: there is no content] is cogradient to a lower-block triangular matrix, if and only if [image: there is no content] is strongly connected (see Theorem 2.7 of [43]). Let ϕij(x)≜σij(x)-σji(x),x∈[image: there is no content]¯+q, denote the net energy flow from the jth subsystem [image: there is no content]j to the ith subsystem [image: there is no content]i of the large-scale dynamical system [image: there is no content].

Axiom (i) The connectivity matrix [image: there is no content]∈[image: there is no content][image: there is no content] associated with the large-scale dynamical system [image: there is no content] is defined by



[image: there is no content][image: there is no content]≜0,ifϕij(x)≡0,1,otherwise,i≠j,i,j=1,…,q



(63)




and


[image: there is no content](i,i)≜-∑k=1,k≠iq[image: there is no content](k,i),i=1,…,q



(64)




and satisfies rank [image: there is no content]=q-1. Moreover, for every [image: there is no content] such that [image: there is no content][image: there is no content]=1, [image: there is no content] if and only if [image: there is no content]=xj.
Axiom (ii) For [image: there is no content], ([image: there is no content]-xj)ϕij(x)≤0, x∈[image: there is no content]¯+q.

The fact that [image: there is no content] if and only if [image: there is no content]=xj,i≠j, implies that subsystems [image: there is no content]i and [image: there is no content]j of [image: there is no content] are connected; alternatively, [image: there is no content] implies that [image: there is no content]i and [image: there is no content]j are disconnected. Axiom (i) implies that if the energies in the connected subsystems [image: there is no content]i and [image: there is no content]j are equal, then energy exchange between these subsystems is not possible. This statement is consistent with the zeroth law of thermodynamics, which postulates that temperature equality is a necessary and sufficient condition for thermal equilibrium. Furthermore, it follows from the fact that [image: there is no content] and rank[image: there is no content]=q-1 that the connectivity matrix [image: there is no content] is irreducible, which implies that for every pair of subsystems [image: there is no content]i and [image: there is no content]j, [image: there is no content], of [image: there is no content] there exists a sequence of connectors (arcs) of [image: there is no content] that connect [image: there is no content]i and [image: there is no content]j. Axiom (ii) implies that energy flows from more energetic subsystems to less energetic subsystems and is consistent with the second law of thermodynamics, which states that heat (energy) must flow in the direction of lower temperatures [44]. Furthermore, note that [image: there is no content], x∈[image: there is no content]¯+q,i≠j,i,j=1,…,q, which implies conservation of energy between lossless subsystems. With [image: there is no content], Axioms (i) and (ii) along with the fact that [image: there is no content], x∈[image: there is no content]¯+q,i≠j,i,j=1,…,q, imply that at a given instant of time, energy can only be transported, stored, or dissipated but not created, and the maximum amount of energy that can be transported and/or dissipated from a subsystem cannot exceed the energy in the subsystem.

Next, we show that the classical Clausius equality and inequality for reversible and irreversible thermodynamics over cyclic motions are satisfied for our thermodynamically consistent energy flow model. For this result ∮ denotes a cyclic integral evaluated along an arbitrary closed path of Equation (60) in [image: there is no content]¯+q; that is, ∮≜∫[image: there is no content]tf with tf≥[image: there is no content] and u(·)∈[image: there is no content] such that x(tf)=x([image: there is no content])=[image: there is no content]∈[image: there is no content]¯+q.


Proposition 8.1 
Consider the large-scale dynamical system [image: there is no content] with power balance Equation (60), and assume that Axioms (i) and (ii) hold. Then, for all [image: there is no content]∈[image: there is no content]¯+q, tf≥[image: there is no content], and u(·)∈[image: there is no content] such that x(tf)=x([image: there is no content])=[image: there is no content],



∫[image: there is no content]tf∑i=1qui(t)-σii(x(t))c+[image: there is no content](t)dt=∮∑i=1qdQi(t)c+[image: there is no content](t)≤0



(65)




where [image: there is no content], [image: there is no content], [image: there is no content], is the amount of net energy (heat) received or dissipated by the ith subsystem over the infinitesimal time interval [image: there is no content], and [image: there is no content], [image: there is no content], is the solution to Equation (60) with initial condition x([image: there is no content])=[image: there is no content]. Furthermore,


∮∑i=1qdQi(t)c+[image: there is no content](t)=0



(66)




if and only if there exists a continuous function α:[[image: there is no content],tf]→[image: there is no content]¯+ such that [image: there is no content], t∈[[image: there is no content],tf].



Proof. 
Since x(t)≥≥0,t≥[image: there is no content], and ϕij(x)=-ϕji(x),x∈[image: there is no content]¯+q, i≠j,i,j=1,…,q, it follows from Equation (60) and Axiom (ii) that



∮∑i=1qdQi(t)c+[image: there is no content](t)=∫[image: there is no content]tf∑i=1qx˙i(t)-∑j=1,j≠iqϕij(x(t))c+[image: there is no content](t)dt=∑i=1qlogec+[image: there is no content](tf)c+[image: there is no content]([image: there is no content])-∫[image: there is no content]tf∑i=1q∑j=1,j≠iqϕij(x(t))c+[image: there is no content](t)dt=-∫[image: there is no content]tf∑i=1q-1∑j=i+1qϕij(x(t))c+[image: there is no content](t)-ϕij(x(t))c+xj(t)dt=-∫[image: there is no content]tf∑i=1q-1∑j=i+1qϕij(x(t))(xj(t)-[image: there is no content](t))(c+[image: there is no content](t))(c+xj(t))dt≤0



(67)




which proves Equation (65).
To show Equation (66), note that it follows from Equation (67), Axiom (i), and Axiom (ii) that Equation (66) holds if and only if [image: there is no content](t)=xj(t),t∈[[image: there is no content],tf], i≠j,i,j=1,…,q, or, equivalently, there exists a continuous function α:[[image: there is no content],tf]→[image: there is no content]¯+ such that x(t)=α(t)e,t∈[[image: there is no content],tf]. ☐



The inequality given by Equation (65) is a generalization of Clausius’ inequality for reversible and irreversible thermodynamics as applied to large-scale dynamical systems and restricts the manner in which the system dissipates (scaled) heat over cyclic motions. It follows from Axiom (i) and Equation (60) that for the adiabatically isolated large-scale dynamical system [image: there is no content] (that is, [image: there is no content] and [image: there is no content]), the energy states given by [image: there is no content]=αe,α≥0, correspond to the equilibrium energy states of [image: there is no content]. Thus, as in classical thermodynamics, we can define an equilibrium process as a process in which the trajectory of the large-scale dynamical system [image: there is no content] moves along the equilibrium manifold [image: there is no content]e≜{x∈[image: there is no content]¯+q:E=αe,α≥0} corresponding to the set of equilibria of the isolated [45] system [image: there is no content]. The power input that can generate such a trajectory can be given by u(t)=d(x(t))+u^(t),t≥[image: there is no content], where u^(·)∈[image: there is no content] is such that u^i(t)≡u^j(t),i≠j,i,j=1,…,q. Our definition of an equilibrium transformation involves a continuous succession of intermediate states that differ by infinitesimals from equilibrium system states and thus can only connect initial and final states, which are states of equilibrium. This process need not be slowly varying, and hence, equilibrium and quasistatic processes are not synonymous in this paper. Alternatively, a nonequilibrium process is a process that does not lie on the equilibrium manifold [image: there is no content]e. Hence, it follows from Axiom (i) that for an equilibrium process ϕij(x(t))=0,t≥[image: there is no content], i≠j,i,j=1,…,q, and thus, by Proposition 8.1, the inequality given by Equation (65) is satisfied as an equality. Alternatively, for a nonequilibrium process it follows from Axioms (i) and (ii) that Equation (65) is satisfied as a strict inequality.

Next, we give a deterministic definition of entropy for the large-scale dynamical system [image: there is no content] that is consistent with the classical thermodynamic definition of entropy.


Definition 8.2 
For the large-scale dynamical system [image: there is no content] with power balance Equation (60), a function [image: there is no content]:[image: there is no content]¯+q→[image: there is no content] satisfying



[image: there is no content](x(t2))≥[image: there is no content](x([image: there is no content]))+∫[image: there is no content]t2∑i=1qui(t)-σii(x(t))c+[image: there is no content](t)dt



(68)




for every t2≥[image: there is no content]≥[image: there is no content] and u(·)∈[image: there is no content] is called the entropy function of [image: there is no content].


Next, we establish the existence of a unique, continuously differentiable entropy function for [image: there is no content] for equilibrium and nonequilibrium processes. This result answers the long-standing question of how the entropy of a nonequilibrium state of a dynamical process should be defined [46,47], and establishes its global existence and uniqueness.


Theorem 8.1 
Consider the large-scale dynamical system [image: there is no content] with power balance Equation (60), and assume that Axioms (i) and (ii) hold. Then the function [image: there is no content]:[image: there is no content]¯+q→[image: there is no content]¯+q given by



[image: there is no content](x)=eTloge(ce+x)-qlogec,x∈[image: there is no content]¯+q



(69)




where [image: there is no content] and [image: there is no content], is a unique (modulo a constant of integration), continuously differentiable entropy function of [image: there is no content]. Furthermore, for [image: there is no content][image: there is no content]e, [image: there is no content], where [image: there is no content], [image: there is no content], denotes the solution to Equation (60) and [image: there is no content]e={x∈[image: there is no content]¯+q:x=αe,α≥0}, Equation (69) satisfies


[image: there is no content](x(t2))>[image: there is no content](x([image: there is no content]))+∫[image: there is no content]t2∑i=1qui(t)-σii(x(t))c+[image: there is no content](t)dt



(70)




for every t2≥[image: there is no content]≥[image: there is no content] and u(·)∈[image: there is no content].



Proof. 
Since x(t)≥≥0,t≥[image: there is no content], and ϕij(x)=-ϕji(x),x∈[image: there is no content]¯+q, i≠j,i,j=1,…,q, it follows that



[image: there is no content]˙(x(t))=∑i=1qx˙i(t)c+[image: there is no content](t)=∑i=1qui(t)-σii(x(t))c+[image: there is no content](t)+∑j=1,j≠iqϕij(x(t))c+[image: there is no content](t)=∑i=1qui(t)-σii(x(t))c+[image: there is no content](t)+∑i=1q-1∑j=i+1qϕij(x(t))c+[image: there is no content](t)-ϕij(x(t))c+xj(t)=∑i=1qui(t)-σii(x(t))c+[image: there is no content](t)+∑i=1q-1∑j=i+1qϕij(x(t))(xj(t)-[image: there is no content](t))(c+[image: there is no content](t))(c+xj(t))≥∑i=1qui(t)-σii(x(t))c+[image: there is no content](t),t≥[image: there is no content]



(71)




Now, integrating Equation (71) over [[image: there is no content],t2] yields Equation (68). Furthermore, in the case where x(t)∉[image: there is no content]e,t≥[image: there is no content], it follows from Axiom (i), Axiom (ii), and Equation (71) that Equation (70) holds.


To show that Equation (69) is a unique, continuously differentiable entropy function of [image: there is no content], let [image: there is no content](x) be a continuously differentiable entropy function of [image: there is no content] so that [image: there is no content](x) satisfies Equation (68) or, equivalently,



[image: there is no content]˙(x(t))≥μT(x(t))[u(t)-d(x(t))],t≥[image: there is no content]



(72)




where μT(x)=[1c+x1,…,1c+xq],x∈[image: there is no content]¯+q, x(t),t≥[image: there is no content], denotes the solution to the power balance Equation (60), and [image: there is no content]˙(x(t)) denotes the time derivative of [image: there is no content](x) along the solution x(t),t≥[image: there is no content]. Hence, it follows from Equation (72) that


[image: there is no content]′(x)[f(x)-d(x)+u]≥μT(x)[u-d(x)],x∈[image: there is no content]¯+q,u∈[image: there is no content]q



(73)




which implies that there exist continuous functions ℓ:[image: there is no content]¯+q→[image: there is no content]p and W:[image: there is no content]¯+q→[image: there is no content]p×q such that


0=[image: there is no content]′(x)[f(x)-d(x)+u]-μT(x)[u-d(x)]-[ℓ(x)+W(x)u]T[ℓ(x)+W(x)u],x∈[image: there is no content]¯+q,u∈[image: there is no content]q



(74)




Now, equating coefficients of equal powers (of u), it follows that [image: there is no content][image: there is no content], [image: there is no content]′(x)=μT(x),x∈[image: there is no content]¯+q, and


0=[image: there is no content]′(x)f(x)-ℓT(x)ℓ(x),x∈[image: there is no content]¯+q



(75)




Hence, [image: there is no content](x)=eTloge(ce+x)-qlogec,x∈[image: there is no content]¯+q, and


0=μT(x)f(x)-ℓT(x)ℓ(x),x∈[image: there is no content]¯+q



(76)




Thus, Equation (69) is a unique, continuously differentiable entropy function for [image: there is no content]. ☐
Note that it follows from Axiom (i), Axiom (ii), and the last equality in Equation (71) that the entropy function given by Equation (69) satisfies Equation (68) as an equality for an equilibrium process and as a strict inequality for a nonequilibrium process. Hence, it follows from Theorem 4.7 that the isolated (i.e., [image: there is no content] and [image: there is no content]) large-scale dynamical system [image: there is no content] does not exhibit Poincaré recurrence in [image: there is no content]¯+q∖[image: there is no content]e. Furthermore, for any entropy function of [image: there is no content], it follows from Proposition 8.1 that if Equation (68) holds as an equality for some transformation starting and ending at equilibrium points of the isolated system [image: there is no content], then this transformation must lie on the equilibrium manifold [image: there is no content]e. However, Equation (68) may hold as an equality for nonequilibrium processes starting and ending at nonequilibrium states. The entropy expression given by Equation (69) is identical in form to the Boltzmann entropy for statistical thermodynamics. Due to the fact that the entropy given by Equation (69) is indeterminate to the extent of an additive constant, we can set the constant of integration [image: there is no content] to zero by taking [image: there is no content]. Since [image: there is no content](x) given by Equation (69) achieves a maximum when all the subsystem energies [image: there is no content],i=1,…,q, are equal [1], the entropy of [image: there is no content] can be thought of as a measure of the tendency of a system to lose the ability to do useful work, lose order, and settle to a more homogenous state.

Recalling that dQi(t)=[ui(t)-σii(x(t))]dt,i=1,…,q, is the infinitesimal amount of the net heat received or dissipated by the ith subsystem of [image: there is no content] over the infinitesimal time interval [image: there is no content], it follows from Equation (68) that



d[image: there is no content](x(t))≥∑i=1qdQi(t)c+[image: there is no content](t),t≥[image: there is no content]



(77)




The inequality given by Equation (77) is analogous to the classical thermodynamic inequality for the variation of entropy during an infinitesimal irreversible transformation with the shifted subsystem energies c+[image: there is no content] playing the role of the ith subsystem thermodynamic (absolute) temperatures. Specifically, note that since d[image: there is no content]id[image: there is no content]=1c+[image: there is no content], where [image: there is no content]i=loge(c+[image: there is no content])-logec denotes the unique continuously differentiable ith subsystem entropy, it follows that d[image: there is no content]id[image: there is no content],i=1,…,q, defines the reciprocal of the subsystem thermodynamic temperatures. That is,


1Ti≜d[image: there is no content]id[image: there is no content]



(78)




and [image: there is no content], [image: there is no content]. Hence, in our formulation, temperature is a function derived from entropy and does not involve the primitive subjective notions of hotness and coldness.
Finally, using the system entropy function given by Equation (69) we show that our large-scale dynamical system [image: there is no content] with power balance Equation (60) is state irreversible for every nontrivial (nonequilibrium) trajectory of [image: there is no content]. For this result, let W[[image: there is no content],[image: there is no content]] denote the set of all possible energy trajectories of [image: there is no content] over the time interval [[image: there is no content],[image: there is no content]] given by



W[[image: there is no content],[image: there is no content]]≜{sx:[[image: there is no content],[image: there is no content]]×[image: there is no content]→[image: there is no content]¯+q:sx(·,u(·))satisfies Equation(60)}



(79)




and let [image: there is no content]e⊂[image: there is no content]¯+q denote the set of equilibria of the isolated system [image: there is no content] given by [image: there is no content]e={x∈[image: there is no content]¯+q:αe,α≥0}.

Theorem 8.2 
Consider the large-scale dynamical system [image: there is no content] with power balance Equation (60), and assume Axioms (i) and (ii) hold. Furthermore, let sx(·,u(·))∈W[[image: there is no content],[image: there is no content]], where u(·)∈[image: there is no content]. Then [image: there is no content] is an [image: there is no content]-reversible trajectory of [image: there is no content] if and only if sx(t,u(t))∈[image: there is no content]e, t∈[[image: there is no content],[image: there is no content]].




Proof. 
First, note that it follows from Theorem 8.1 that if [image: there is no content]∉[image: there is no content]e,t≥[image: there is no content], then there exists an entropy function [image: there is no content](x),x∈[image: there is no content]¯+q, for [image: there is no content] such that Equation (70) holds. Now, sufficiency follows as a direct consequence of Theorem 3.1 with R=[image: there is no content], V(x)=[image: there is no content](x), and r[image: there is no content]=r(u,d(x))=∑i=1qui-σii(x)c+[image: there is no content]. To show necessity, assume that sx(t,u(t))∈[image: there is no content]e,t∈[[image: there is no content],[image: there is no content]]. In this case, it can be shown thatu(t)=d(x(t))+u^(t),t≥[image: there is no content], where u^(·)∈[image: there is no content] is such that u^i(t)≡u^j(t),i≠j,i,j=1,…,q. Now, with u-(t)=d(x(t))+u^-(t),t≥[image: there is no content], where u^-(t)=-u^([image: there is no content]+[image: there is no content]-t),t∈[[image: there is no content],[image: there is no content]], it follows that [image: there is no content] is an [image: there is no content]-reversible trajectory of [image: there is no content]. ☐



Theorem 8.2 establishes an equivalence between (non)equilibrium and state (ir)reversible thermodynamic systems. Furthermore, Theorem 8.2 shows that for every [image: there is no content]∉[image: there is no content]e, the large-scale dynamical system [image: there is no content] is state irreversible. In addition, since state irrecoverability implies state irreversibility and, by Theorem 8.2, state irreversibility is equivalent to x(t)∉[image: there is no content]e,t≥[image: there is no content], it follows from Theorem 3.2 that state (ir)reversibility and state (ir)recoverability are equivalent for our thermodynamically consistent large-scale dynamical system [image: there is no content]. Hence, in the remainder of the paper we use the notions of (non)equilibrium, state (ir)reversible, and state (ir)recoverable dynamical processes interchangeably.



9. Semistability and the Entropic Arrow of Time

For the isolated large-scale dynamical system [image: there is no content], Equation (71) yields the fundamental inequality



[image: there is no content](x(t2))≥[image: there is no content](x([image: there is no content])),t2≥[image: there is no content]



(80)




The inequality given by Equation (80) implies that, for any dynamical change in an isolated large-scale dynamical system [image: there is no content], the entropy of the final state can never be less than the entropy of the initial state. Equation (80) is often identified with the second law of thermodynamics as a statement about entropy increase. Furthermore, it follows from Equation (70) that for an isolated large-scale dynamical system [image: there is no content] the entropy function Equation (69) is a strictly increasing function of time along the trajectories of Equation (60) with initial conditions in [image: there is no content]¯+q∖[image: there is no content]e. Hence, it follows from Theorem 4.7 that the isolated large-scale dynamical system [image: there is no content] does not exhibit Poincaré recurrence in [image: there is no content]¯+q∖[image: there is no content]e. This result can also be arrived at using the fact that our thermodynamically consistent large-scale dynamical system [image: there is no content] is semistable.
Since our thermodynamic compartmental model involves intercompartmental flows representing energy transfer between compartments, we can use graph-theoretic notions with undirected graph topologies (i.e., bidirectional energy flows) to capture the compartmental system interconnections. Graph theory [48,49] can be useful in the analysis of the connectivity properties of compartmental systems. In particular, a directed graph can be constructed to capture a compartmental model in which the compartments are represented by nodes and the flows are represented by edges or arcs. In this case, the environment must also be considered as an additional node. Specifically, let [image: there is no content] be a directed graph (or digraph) denoting the compartmental network with the set of nodes (or compartments) [image: there is no content] involving a finite nonempty set denoting the compartments, the set of edges [image: there is no content] involving a set of ordered pairs denoting the direction of energy flow, and an adjacency matrix ∈[image: there is no content][image: there is no content] such that [image: there is no content][image: there is no content]=1, [image: there is no content], if [image: there is no content], while [image: there is no content][image: there is no content]=0 if (j,i)∉[image: there is no content]. The edge (j,i)∈[image: there is no content] denotes that compartment j can obtain energy from compartment i, but not necessarily vice versa. Moreover, we assume [image: there is no content](i,i)=0 for all i∈[image: there is no content]. A graph or undirected graph [image: there is no content] associated with the adjacency matrix [image: there is no content]∈[image: there is no content][image: there is no content] is a directed graph for which the arc set is symmetric, that is, [image: there is no content]=[image: there is no content]T. Weighted graphs can also be considered here; however, since this extension does not alter any of the conceptual results in this paper we do not consider this extension for simplicity of exposition. Finally, we denote the energy of the compartment [image: there is no content] at time t by [image: there is no content](t)∈[image: there is no content]¯+.


Proposition 9.1 
Consider the large-scale dynamical system [image: there is no content] with power balance Equation (60) with [image: there is no content] and [image: there is no content], and assume Axioms (i) and (ii) hold. Then [image: there is no content] for all [image: there is no content] if and only if [image: there is no content]. Furthermore, [image: there is no content], [image: there is no content], is an equilibrium state of Equation (60).




Proof. 
If [image: there is no content]=xj for all (i,j)∈[image: there is no content], then [image: there is no content] for all [image: there is no content] is immediate from Axiom (i). Next, we show that [image: there is no content] for all [image: there is no content] implies that [image: there is no content]. If [image: there is no content] for all [image: there is no content], then it follows from Axiom (ii) that



0=∑i=1q[image: there is no content]fi(x)=∑i=1q∑j=1q[image: there is no content]ϕij(x)=∑i=1q-1∑j=i+1q([image: there is no content]-xj)ϕij(x)≤0








where we have used the fact that [image: there is no content] for all [image: there is no content]. Hence, ([image: there is no content]-xj)ϕij(x)=0 for all [image: there is no content]. Now, the result follows from Axiom (i).


Alternatively, the proof can also be shown using graph-theoretic concepts. Specifically, if [image: there is no content]=xj for all (i,j)∈[image: there is no content], then [image: there is no content] for all [image: there is no content] is immediate from Axiom (i). Next, we show that [image: there is no content] for all [image: there is no content] implies that [image: there is no content]. If the values of all nodes are equal, then the result is immediate. Hence, assume there exists a node [image: there is no content] such that x[image: there is no content]≥xj for all j≠[image: there is no content], [image: there is no content]. If (i,j)∈[image: there is no content], then we define a neighbor of node i to be node j, and vice versa.

Define the initial node set J(0)≜{[image: there is no content]} and denote the indices of all the first neighbors of node [image: there is no content] by J(1)=[image: there is no content][image: there is no content]. Then, f[image: there is no content](x)=0 implies that ∑j∈[image: there is no content][image: there is no content]ϕ[image: there is no content]j(x[image: there is no content],xj)=0. Since xj≤x[image: there is no content] for all j∈[image: there is no content][image: there is no content] and, by Axiom (ii), [image: there is no content] for all [image: there is no content], it follows that x[image: there is no content]=xj for all the first neighbors [image: there is no content]. Next, we define the kth neighbor of node [image: there is no content] and show that the value of node [image: there is no content] is equal to the values of all kth neighbors of node [image: there is no content] for [image: there is no content]. The set of kth neighbors of node [image: there is no content] is defined by



[image: there is no content]≜J(k-1)∪[image: there is no content]J(k-1),k≥1,J(0)={[image: there is no content]}



(81)




where [image: there is no content]J denotes the set of neighbors of the node set J⊆[image: there is no content]. By definition, {[image: there is no content]}⊂[image: there is no content]⊆[image: there is no content] for all [image: there is no content] and [image: there is no content] is a monotonically increasing sequence of node sets in the sense of set inclusions.
Next, we show that J(q-1)=[image: there is no content]. Suppose, ad absurdum, [image: there is no content]∖J(q-1)≠Ø. Then, by definition, there exists one node [image: there is no content], disconnected from all the other nodes. Hence, [image: there is no content](m,i)=[image: there is no content](i,m)=0, [image: there is no content], which implies that the connectivity matrix [image: there is no content] has a row and a column of zeros. Without loss of generality, assume that [image: there is no content] has the form



[image: there is no content]=[image: there is no content]s0(q-1)×101×(q-1)0








where [image: there is no content]s∈[image: there is no content](q-1)×(q-1) denotes the connectivity matrix for the new undirected graph [image: there is no content] which excludes node m from the undirected graph [image: there is no content]. In this case, since rank[image: there is no content]s≤q-2, it follows that rank[image: there is no content]<q-1, which contradicts Axiom (i).
Using mathematical induction, we show that the values of all the nodes in [image: there is no content] are equal for [image: there is no content]. This statement holds for [image: there is no content]. Assuming that the values of all the nodes in [image: there is no content] are equal to the value of node [image: there is no content], we show that the values of all the nodes in [image: there is no content] are equal to the value of node [image: there is no content] as well. Note that since [image: there is no content] is strongly connected, [image: there is no content]i≠Ø for all i∈[image: there is no content]. If [image: there is no content]i∩([image: there is no content]∖[image: there is no content])=Ø for all i, then it follows that [image: there is no content]=[image: there is no content], and hence, the statement holds. Thus, it suffices to show that [image: there is no content]=x[image: there is no content] for an arbitrary node i∈[image: there is no content] with [image: there is no content]i∩([image: there is no content]∖[image: there is no content])≠Ø. For node i, note that ∑j∈[image: there is no content]iϕij([image: there is no content],xj)=0. Furthermore, note that [image: there is no content]i=([image: there is no content]i∩[image: there is no content])∪([image: there is no content]i∩([image: there is no content]∖[image: there is no content])), [image: there is no content]∖[image: there is no content]=[image: there is no content]∖[image: there is no content]∪([image: there is no content]∖[image: there is no content]), [image: there is no content]⊆[image: there is no content] for all k, and [image: there is no content] contains the set of first neighbors of node i, or [image: there is no content]i⊆[image: there is no content]. Then it follows that [image: there is no content]i∩([image: there is no content]∖[image: there is no content])=[image: there is no content]i∩([image: there is no content]∖[image: there is no content]) and



∑j∈[image: there is no content]i∩[image: there is no content]ϕij([image: there is no content],xj)+∑j∈[image: there is no content]i∩([image: there is no content]∖[image: there is no content])ϕij([image: there is no content],xj)=0



(82)




Since xj=[image: there is no content] for all nodes j∈[image: there is no content]i∩[image: there is no content]⊆[image: there is no content], it follows that ∑j∈[image: there is no content]i∩[image: there is no content]ϕij([image: there is no content],xj)=0, and hence, ∑j∈[image: there is no content]i∩([image: there is no content]∖[image: there is no content])ϕij([image: there is no content],xj)=0. However, since x[image: there is no content]=[image: there is no content]≥xj for all i∈[image: there is no content] and j∈[image: there is no content]∖[image: there is no content], it follows that the values of all nodes in [image: there is no content]i∩([image: there is no content]∖[image: there is no content]) are equal to x[image: there is no content]. Hence, the values of all nodes i in the node set ⋃i∈[image: there is no content][image: there is no content]i∩([image: there is no content]∖[image: there is no content])=[image: there is no content]∩([image: there is no content]∖[image: there is no content])=[image: there is no content]∖[image: there is no content] are equal to x[image: there is no content], that is, the values of all the nodes in [image: there is no content] are equal. Combining this result with the fact that J(q-1)=[image: there is no content], it follows that the values of all the nodes in [image: there is no content] are equal.
The second assertion is a direct consequence of the first assertion.☐


Theorem 9.1 
Consider the large-scale dynamical system [image: there is no content] with power balance Equation (60) with [image: there is no content] and [image: there is no content], and assume that Axioms (i) and (ii) hold. Then for every [image: there is no content], [image: there is no content] is a semistable equilibrium state of Equation (60). Furthermore, x(t)→1qeeTx([image: there is no content]) as [image: there is no content] and 1qeeTx([image: there is no content]) is a semistable equilibrium state.




Proof. 
It follows from Proposition 9.1 that αe∈[image: there is no content]¯+q,α≥0, is an equilibrium state of Equation (60). To show Lyapunov stability of the equilibrium state [image: there is no content], consider the function [image: there is no content] as a Lyapunov function candidate. Now, since ϕij(x)=-ϕji(x),x∈[image: there is no content]¯+q, i≠j,i,j=1,…,q, and [image: there is no content]f(x)=0,x∈[image: there is no content]¯+q, it follows from Axiom (ii) that



[image: there is no content](x)=(x-αe)Tx˙=(x-αe)Tf(x)=xTf(x)=∑i=1q[image: there is no content]∑j=1,j≠iqϕij(x)=∑i=1q-1∑j=i+1q([image: there is no content]-xj)ϕij(x)=∑i=1q∑j∈Ki([image: there is no content]-xj)ϕij(x)










≤0,x∈[image: there is no content]¯+q








where Ki≜[image: there is no content]i∖∪l=1i-1{l} and [image: there is no content]i≜{j∈{1,…,q}:ϕij(x)=0ifandonlyif[image: there is no content]=xj}, [image: there is no content], which establishes Lyapunov stability of the equilibrium state [image: there is no content].


To show that [image: there is no content] is semistable, let [image: there is no content]≜{x∈[image: there is no content]¯+q:[image: there is no content](x)=0}={x∈[image: there is no content]¯+q:([image: there is no content]-xj)ϕij(x)=0,i=1,…,q,j∈Ki}. Now, by Axiom (i) the directed graph associated with the connectivity matrix [image: there is no content] for the large-scale dynamical system [image: there is no content] is strongly connected, which implies that [image: there is no content]={x∈[image: there is no content]¯+q:x1=···=xq}. Since the set [image: there is no content] consists of the equilibrium states of Equation (60), it follows that the largest invariant set [image: there is no content] contained in [image: there is no content] is given by [image: there is no content]=[image: there is no content]. Hence, it follows from the Krasovskii–LaSalle theorem [40] that for every initial condition x([image: there is no content])∈[image: there is no content]¯+q, x(t)→[image: there is no content] as [image: there is no content], and hence, [image: there is no content] is a semistable equilibrium state of Equation (60). Next, note that since [image: there is no content]x(t)=[image: there is no content]x([image: there is no content]) and x(t)→[image: there is no content] as [image: there is no content], it follows that x(t)→1qe[image: there is no content]x([image: there is no content]) as [image: there is no content]. Hence, with α=1q[image: there is no content]x([image: there is no content]), αe=1qe[image: there is no content]x([image: there is no content]) is a semistable equilibrium state of Equation (60). ☐

Theorem 9.1 shows that the isolated (i.e., [image: there is no content] and [image: there is no content]) large-scale dynamical system [image: there is no content] is semistable. Hence, it follows from Theorem 4.8 that the isolated large-scale dynamical system [image: there is no content] does not exhibit Poincaré recurrence in [image: there is no content]¯+q∖[image: there is no content]e. Next, using the system entropy function given by Equation (69), we show that our large-scale isolated dynamical system [image: there is no content] with power balance Equation (60) is state irreversible for all nonequilibrium trajectories of [image: there is no content] establishing a clear connection between our thermodynamic model and the arrow of time.


Theorem 9.2 
Consider the large-scale dynamical system [image: there is no content] with power balance Equation (60) with [image: there is no content] and [image: there is no content], and assume Axioms (i) and (ii) hold. Furthermore, let sx(·,0)∈W[[image: there is no content],[image: there is no content]]. Then for every [image: there is no content]∉[image: there is no content]e, there exists a continuously differentiable function [image: there is no content]:[image: there is no content]¯+q→[image: there is no content] such that [image: there is no content](sx(t,0)) is a strictly increasing function of time. Furthermore, [image: there is no content] is an [image: there is no content]-reversible trajectory of [image: there is no content] if and only if sx(t,0)∈[image: there is no content]e, t∈[[image: there is no content],[image: there is no content]].




Proof. 
The existence of a continuously differentiable function [image: there is no content]:[image: there is no content]¯+q→[image: there is no content], which strictly increases on all nonequilibrium trajectories of [image: there is no content], is a restatement of Theorem 8.1 with [image: there is no content] and [image: there is no content]. Now, necessity is immediate, while sufficiency is a direct consequence of Corollary 3.1 with R=[image: there is no content] and V(x)=[image: there is no content](x). ☐



Theorem 9.2 shows that for every [image: there is no content]∉[image: there is no content]e, the isolated dynamical system [image: there is no content] is state irreversible. This gives a clear connection between our thermodynamic model and the arrow of time. In particular, it follows from Corollary 3.1 and Theorem 9.2 that there exists a function of the system state that strictly increases in time on every nonequilibrium trajectory of [image: there is no content] if and only if there does not exist a nonequilibrium reversible trajectory of [image: there is no content]. Thus, the existence of the continuously differentiable entropy function given by Equation (69) for [image: there is no content] establishes the existence of a completely ordered time set having a topological structure involving a closed set homeomorphic to the real line. This fact follows from the inverse function theorem of mathematical analysis and the fact that a continuous strictly monotonic function is a topological mapping (i.e., a homeomorphism), and conversely every topological mapping of a strictly monotonic function’s domain onto its codomain must be strictly monotonic. This topological property gives a clear time-reversal asymmetry characterization of our thermodynamic model establishing an emergence of the direction of time flow.



10. Monotonicity of System Energies in Thermodynamic Processes

Even though Theorem 9.1 gives sufficient conditions under which the subsystem energies in the large-scale dynamical system [image: there is no content] converge, these subsystem energies may exhibit an oscillatory (hyperbolic) or nonmonotonic behavior prior to convergence. For certain thermodynamical processes, it is desirable to identify system models that guarantee monotonicity of the system energy flows. It is important to note that monotonicity of solutions does not necessarily imply Axiom (ii), nor does Axiom (ii) imply monotonicity of solutions. These are two disjoint notions. In this section, we give necessary and sufficient conditions under which the solutions to Equation (60) are monotonic.

To develop necessary and sufficient conditions for monotonicity of solutions, note that the power balance Equation (60) for the large-scale dynamical system [image: there is no content] can be written as



x˙(t)=[J(x(t))-[image: there is no content](x(t))]∂H∂x(x(t))T+Gu(t),x([image: there is no content])=[image: there is no content],t≥[image: there is no content]



(83)




where x(t)∈[image: there is no content]¯+q, H(x)=[image: there is no content]x, u(t)=[[image: there is no content](t),…,uq(t)]T,t≥[image: there is no content], [image: there is no content] is a skew-symmetric matrix function with [image: there is no content] and J[image: there is no content](x)=σij(x)-σji(x),i≠j,i,j=1,…,q, [image: there is no content](x)=[σ11(x),[image: there is no content], and G∈[image: there is no content][image: there is no content] is a diagonal input matrix that has been included for generality and contains zeros and ones as its entries. Hence, the power balance equation of the large-scale dynamical system [image: there is no content] has a port-controlled Hamiltonian structure [50] with a Hamiltonian function H(x)=[image: there is no content]x=∑i=1q[image: there is no content] representing the sum of all subsystem energies, [image: there is no content](x) representing power dissipation in the subsystems, [image: there is no content] representing energy-conserving subsystem coupling, and u(t),t≥[image: there is no content], representing supplied system power. As noted in Section 8, the nonlinear power balance Equation (83) can exhibit a full range of nonlinear behavior, including bifurcations, limit cycles, and even chaos. However, a thermodynamically consistent energy flow model ensures that the evolution of the system energy is diffusive in character with convergent subsystem energies. As shown in Section 8, Axioms (i) and (ii) guarantee a thermodynamically consistent energy flow model.
In order to guarantee a thermodynamically consistent energy flow model, we assume Axiom (ii) holds and seek solutions to Equation (83) that exhibit a monotonic behavior of the subsystem energies. This would physically imply that the energy of a subsystem whose initial energy is greater than the average system energy will decrease, while the energy of a subsystem whose initial energy is less than the average system energy will increase. This of course is consistent with the second law of thermodynamics with the additional constraint of monotonic heat flows. The following definition is needed.


Theorem 10.1 
Consider the large-scale dynamical system [image: there is no content] with power balance Equation (83). The subsystem energies [image: there is no content], [image: there is no content], of [image: there is no content] are monotonic for all [image: there is no content]∈[image: there is no content]c⊆[image: there is no content]¯+q, where [image: there is no content]c is a positively invariant set with respect to Equation (83), if there exists a weighting matrix R∈[image: there is no content][image: there is no content] such that [image: there is no content], [image: there is no content], [image: there is no content], and, for every [image: there is no content]∈[image: there is no content]c⊆[image: there is no content]¯+q, Rx(t2)≤≤Rx([image: there is no content]), [image: there is no content]≤[image: there is no content]≤t2.



The following result presents necessary and sufficient conditions that guarantee that the subsystem energies of the large-scale dynamical system [image: there is no content] are monotonic. It is important to note that this result holds whether or not Axiom (ii) holds.


Theorem 10.1 
Consider the large-scale dynamical system [image: there is no content] with power balance Equation (83). Then the following statements hold:


	(i)

	If [image: there is no content], [image: there is no content], and there exists a matrix R∈[image: there is no content][image: there is no content] such that [image: there is no content], [image: there is no content], [image: there is no content], R[J(x)-[image: there is no content](x)](∂H∂x(x))T≤≤0, x∈[image: there is no content]¯+q, and [image: there is no content], then the subsystem energies [image: there is no content], [image: there is no content], of [image: there is no content] are monotonic for all [image: there is no content]∈[image: there is no content]¯+q.



	(ii)

	Let [image: there is no content] and let [image: there is no content]c⊆[image: there is no content]¯+q be a positively invariant set with respect to Equation (83). Then the subsystem energies [image: there is no content], [image: there is no content], of [image: there is no content] are monotonic for all [image: there is no content]∈[image: there is no content]c⊆[image: there is no content]¯+q if and only if there exists a matrix R∈[image: there is no content][image: there is no content] such that [image: there is no content], [image: there is no content], [image: there is no content], and R[J(x)-[image: there is no content](x)](∂H∂x(x))T≤≤0, x∈[image: there is no content]c⊆[image: there is no content]¯+q.








Proof. 
(i) Let u(t)≥≥0,t≥[image: there is no content], and assume there exists [image: there is no content][image: there is no content], [image: there is no content], [image: there is no content], such that R[J(x)-[image: there is no content](x)][image: there is no content], x∈[image: there is no content]¯+q. Now, it follows from Equation (83) that



Rx˙(t)=R[J(x(t))-[image: there is no content](x(t))]∂H∂x(x(t))T+RGu(t),x([image: there is no content])=[image: there is no content],t≥[image: there is no content]



(84)




which further implies that


Rx(t2)=Rx([image: there is no content])+∫[image: there is no content]t2R[J(x(t))-[image: there is no content](x(t))]∂H∂x(x(t))Tdt+∫[image: there is no content]t2RGu(t)dt



(85)




Next, since [J(x)-[image: there is no content](x)](∂H∂x(x))T is essentially nonnegative and u(t)≥≥0,t≥[image: there is no content], it follows from Proposition 4.3 of [51] that [image: there is no content], [image: there is no content], for all [image: there is no content]∈[image: there is no content]¯+q. Hence, since R[J(x)-[image: there is no content](x)](∂H∂x(x))T≤≤0, x∈[image: there is no content]¯+q, and [image: there is no content], it follows that


R[J(x(t))-[image: there is no content](x(t))]∂H∂x(x(t))T+RGu(t)≤≤0,t≥[image: there is no content]



(86)




which implies that, for every [image: there is no content]∈[image: there is no content]¯+q, [image: there is no content]≤≤Rx([image: there is no content]), [image: there is no content]≤[image: there is no content]≤t2.
(ii) To show sufficiency, note that since by assumption [image: there is no content]c is positively invariant, then R[J(x(t))-[image: there is no content](x(t))](∂H∂x(x(t)))T≤≤0,t≥[image: there is no content], for all [image: there is no content]∈[image: there is no content]c⊆[image: there is no content]¯+q. Now, the result follows by using identical arguments as in (i) with [image: there is no content] and [image: there is no content]∈[image: there is no content]c⊆[image: there is no content]¯+q. To show necessity, assume that Equation (83) with [image: there is no content] is monotonic for all [image: there is no content]∈[image: there is no content]c⊆[image: there is no content]¯+q. In this case, Equation (84) implies that for every τ>[image: there is no content],



Rx(τ)=R[image: there is no content]+∫[image: there is no content]τR[J(x(t))-[image: there is no content](x(t))]∂H∂x(x(t))Tdt



(87)




Now, suppose, ad absurdum, there exist [image: there is no content] and [image: there is no content]∈[image: there is no content]c⊆[image: there is no content]¯+q such that [R[J([image: there is no content])-[image: there is no content]([image: there is no content])](∂H∂x([image: there is no content]))T]J>0. Since the mapping R[J(·)-[image: there is no content](·)](∂H∂x(·))T and the solution [image: there is no content], [image: there is no content], to Equation (83) are continuous, it follows that there exists τ>[image: there is no content] such that


R[J(x(t))-[image: there is no content](x(t))]∂H∂x(x(t))TJ>0,[image: there is no content]≤t≤τ



(88)




which implies that [Rx(τ)]J>[R[image: there is no content]]J, leading to a contradiction. Hence, R[J(x)-[image: there is no content](x)](∂H∂x(x))T≤≤0, x∈[image: there is no content]c⊆[image: there is no content]¯+q.☐


It follows from (i) of Theorem 10.1 that if G=[image: there is no content] (that is, external power (heat flux) can be injected to all subsystems), then R=-[image: there is no content], and hence, [J(x)-[image: there is no content](x)](∂H∂x(x))T≥≥0,x∈[image: there is no content]¯+q. This case would correspond to a power balance equation whose states are all increasing and can only be achieved if [image: there is no content](x)=0,x∈[image: there is no content]¯+q. This, of course, implies that the dynamical system [image: there is no content] cannot dissipate energy, and hence, the transfer of energy (heat) from a lower energy (temperature) level (source) to a higher energy (temperature) level (sink) requires the input of additional heat or energy. This is consistent with Clausius’ statement of the second law of thermodynamics.

The following result is a direct consequence of Theorem 10.1 and provides sufficient conditions for convergence of the subsystem energies of the isolated large-scale dynamical system [image: there is no content]. Once again, this result holds whether or not Axiom (ii) holds.


Theorem 10.2 
Consider the large-scale dynamical system [image: there is no content] with power balance Equation (83) and [image: there is no content]. Let [image: there is no content]c⊆[image: there is no content]¯+q be a positively invariant set. If there exists a matrix R∈[image: there is no content][image: there is no content] such that [image: there is no content], [image: there is no content], [image: there is no content], and R[J(x)-[image: there is no content](x)](∂H∂x(x))T[image: there is no content], x∈[image: there is no content]c⊆[image: there is no content]¯+q, then, for every [image: there is no content]∈[image: there is no content]c⊆[image: there is no content]¯+q, lim[image: there is no content]x(t) exists.




Proof. 
Since H(x)=[image: there is no content]x, x∈[image: there is no content]¯+q, it follows that



H˙(x)=∂H∂xx˙=∂H∂x[J(x)-[image: there is no content](x)]∂H∂xT=-∂H∂x[image: there is no content](x)∂H∂xT≤0,x∈+q



(89)




and hence, [image: there is no content], [image: there is no content], where [image: there is no content], [image: there is no content], denotes the solution of Equation (83). This implies that H(x(t))≤H([image: there is no content])=[image: there is no content][image: there is no content], [image: there is no content], and hence, for every [image: there is no content]∈[image: there is no content]¯+q, the solution [image: there is no content], [image: there is no content], of Equation (83) is bounded. Hence, for every [image: there is no content], [image: there is no content](t), [image: there is no content], is bounded. Furthermore, it follows from Theorem 10.1 that [image: there is no content](t), [image: there is no content], is monotonic for all [image: there is no content]∈[image: there is no content]c⊆[image: there is no content]¯+q. Now, since [image: there is no content](·), [image: there is no content], is continuous and every bounded nonincreasing or nondecreasing scalar sequence converges to a finite real number, it follows from the monotone convergence theorem ([40], p. 37) that lim[image: there is no content][image: there is no content](t), [image: there is no content], exists. Hence, lim[image: there is no content]x(t) exists for all [image: there is no content]∈[image: there is no content]c⊆[image: there is no content]¯+q.☐




11. Finite-Time Thermodynamics

As discussed in the Introduction, thermodynamic systems achieve energy and temperature equipartition in finite time rather than merely asymptotically. In this section, we use the results of Section 5 and Section 6 to develop continuous non-Lipschitzian intercompartmental flow laws that guarantee finite-time semistability and energy equipartition for the thermodynamically consistent dynamical system model developed in Section 7. Specifically, consider the dynamical system [image: there is no content] given by



x˙i(t)=∑j=1,j≠iqϕij([image: there is no content](t),xj(t)),[image: there is no content]([image: there is no content])=xi0,t≥[image: there is no content],i=1,…,q



(90)




where [image: there is no content], x∈[image: there is no content]¯+q, denotes the net energy flow from the jth compartment to the ith compartment defined in Section 7. In vector form, Equation (90) becomes


x˙(t)=f(x(t)),x([image: there is no content])=[image: there is no content],t≥[image: there is no content]



(91)




where x(t)≜[x1(t),…,xq(t)]T∈[image: there is no content]¯+q, [image: there is no content], and f=[f1,…,fq]T:[image: there is no content]¯+q→[image: there is no content]q is such thatfi(x)=∑j=1,j≠iqϕij([image: there is no content],xj).

Theorem 11.1 
Consider the dynamical system given by Equation (91) and assume that Axioms (i) and (ii) hold. Furthermore, assume that ϕij([image: there is no content],xj)=-ϕji(xj,[image: there is no content]) for all [image: there is no content], [image: there is no content]. Then for every α∈[image: there is no content]¯+, [image: there is no content] is a semistable equilibrium state of Equation (91). Furthermore, x(t)→1qeeTx([image: there is no content]) as [image: there is no content] and 1qeeTx([image: there is no content]) is a semistable equilibrium state.




Proof. 
The result is a direct consequence of Proposition 9.1 and Theorem 9.1. ☐



Theorem 11.1 implies that the steady-state values of the state in each compartment [image: there is no content]i of the dynamical system [image: there is no content] are equal, that is, the steady-state value of the dynamical system [image: there is no content] given by



x∞=1qe[image: there is no content]x([image: there is no content])=1q∑i=1q[image: there is no content]([image: there is no content])e








is uniformly distributed over all compartments of [image: there is no content].
Next, we use the results of Section 6 to develop a compartmental model for finite-time thermodynamics. Specifically, consider the dynamical system given by



x˙i(t)=∑j=1,j≠iqϕij([image: there is no content](t),xj(t)),[image: there is no content](0)=xi0,t≥0



(92)




where for each [image: there is no content], [image: there is no content](t)∈[image: there is no content]¯+ denotes an energy state for all [image: there is no content], [image: there is no content] satisfies Axioms (i) and (ii), and ϕij([image: there is no content],xj)=-ϕji(xj,[image: there is no content]) for all [image: there is no content], [image: there is no content]. Furthermore, we assume [image: there is no content] for all [image: there is no content], are continuous and not Lipschitz continuous.

Theorem 11.2 
Consider the dynamical system [image: there is no content] given by Equation (92). Assume that Axioms (i) and (ii) hold, and ϕij([image: there is no content],xj)=-ϕji(xj,[image: there is no content]) for all [image: there is no content], [image: there is no content]. Furthermore, assume that the vector field f of the dynamical system given by Equation (92) is homogeneous of degree k∈[image: there is no content] with respect to [52]ν(x)=-∑i=1q∑j=1,j≠iqμij([image: there is no content],xj)∂∂[image: there is no content], where x≜[x1,…,xq]T∈[image: there is no content]¯+q and [image: there is no content] satisfies Axiom (ii), μij([image: there is no content],xj)=-μji(xj,[image: there is no content]), and μij([image: there is no content],xj)=0 if and only if [image: there is no content]=xj for all [image: there is no content], [image: there is no content]. Then, for every [image: there is no content]∈[image: there is no content]¯+, [image: there is no content]e is a finite-time semistable equilibrium state of [image: there is no content] if and only if [image: there is no content]. Furthermore, if [image: there is no content], then [image: there is no content] for all [image: there is no content] and [image: there is no content] is a finite-time semistable equilibrium state, where [image: there is no content].




Proof. 
Suppose [image: there is no content]. It follows from Theorem 11.1 that [image: there is no content]e∈[image: there is no content]¯+q, [image: there is no content]∈[image: there is no content]¯+, is a semistable equilibrium state of the homogeneous system given by Equation (92). Furthermore, [image: there is no content] as [image: there is no content] and [image: there is no content] is a semistable equilibrium state. Next, it can be shown using similar arguments as in the proof of Theorem 11.1 that Equation (47) is globally semistable with ν(x)=-∑i=1q∑j=1,j≠iqμij([image: there is no content],xj)∂∂[image: there is no content]. Now, it follows from Theorem 6.2 that [image: there is no content]e is a finite-time semistable equilibrium state by noting that the vector field ∑j=1,j≠iqϕij([image: there is no content],xj) is homogeneous of degree [image: there is no content] with respect to the semi-Euler vector field ν(x)=-∑i=1q∑j=1,j≠iqμij([image: there is no content],xj)∂∂[image: there is no content]. Hence, with [image: there is no content]=1q[image: there is no content]x(0), [image: there is no content]e=1qeeTx(0) is a finite-time semistable equilibrium state. The converse follows as a direct consequence of Theorem 6.2. ☐



The following corollary to Theorem 11.2 gives a concrete form for the energy flow function ϕij([image: there is no content],xj), [image: there is no content], [image: there is no content].


Corollary 11.1 
Consider the dynamical system [image: there is no content] given by Equation (92) with energy flow function



ϕij([image: there is no content],xj)=[image: there is no content][image: there is no content]sgn(xj-[image: there is no content])|xj-[image: there is no content]|α



(93)




where [image: there is no content] and [image: there is no content][image: there is no content] is as in Equation (63) with [image: there is no content]. Assume that Axioms (i) and (ii) hold. Then for every [image: there is no content]∈[image: there is no content]¯+, [image: there is no content]e is a finite-time semistable equilibrium state of [image: there is no content] if and only if [image: there is no content]. Furthermore, if [image: there is no content], then [image: there is no content] for all [image: there is no content] and [image: there is no content] is a finite-time semistable equilibrium state, where [image: there is no content].



Proof. 
First, note that the vector field f of [image: there is no content] is essentially nonnegative. Next, the Lie bracket of ν(x)=-∑i=1q∑j=1,j≠iq(xj-[image: there is no content])∂∂[image: there is no content] and the vector field f of the dynamical system given by Equation (92) with ϕij([image: there is no content],xj) given by Equation (93) is given by [image: there is no content]=∑i=1q∂f1∂[image: there is no content]νi-∂ν1∂[image: there is no content]fi,…,∑i=1q∂fq∂[image: there is no content]νi-∂νq∂[image: there is no content]fiT. Since for each [image: there is no content],



∂fj∂[image: there is no content]νi-∂νj∂[image: there is no content]fi=[image: there is no content](j,i)α|[image: there is no content]-xj|α-1∑s=1,s≠iq([image: there is no content]-xs)+∑k=1,k≠iq[image: there is no content](i,k)sgn(xk-[image: there is no content])|xk-[image: there is no content]|α,[image: there is no content]∑k=1,k≠jq[image: there is no content](j,k)α|xk-xj|α-1∑s=1,s≠jq(xs-xj)-(q-1)∑k=1,k≠jq[image: there is no content](j,k)sgn(xk-xj)|xk-xj|α,i=j



(94)




and noting that [image: there is no content][image: there is no content]=[image: there is no content](j,i), [image: there is no content], [image: there is no content], it follows that for each [image: there is no content],


∑i=1q∂fj∂[image: there is no content]νi-∂νj∂[image: there is no content]fi=∂fj∂xjνj-∂νj∂xjfj+∑i=1,i≠jq∂fj∂[image: there is no content]νi-∂νj∂[image: there is no content]fi=∑k=1,k≠jq[image: there is no content](j,k)α|xk-xj|α-1∑s=1,s≠jq(xs-xj)-(q-1)∑k=1,k≠jq[image: there is no content](j,k)sgn(xk-xj)|xk-xj|α+∑i=1,i≠jq[image: there is no content](j,i)α|[image: there is no content]-xj|α-1∑s=1,s≠iq([image: there is no content]-xs)+∑i=1,i≠jq∑k=1,k≠iq[image: there is no content](i,k)sgn(xk-[image: there is no content])|xk-[image: there is no content]|α=α∑k=1,k≠jq[image: there is no content](j,k)sgn(xk-xj)|xk-xj|α+∑k=1,k≠jq∑s=1,s≠j,kq[image: there is no content](j,k)α|xk-xj|α-1(xs-xj)-(q-1)∑k=1,k≠jq[image: there is no content](j,k)sgn(xk-xj)|xk-xj|α+α∑i=1,i≠jq[image: there is no content](j,i)sgn([image: there is no content]-xj)|[image: there is no content]-xj|α










+∑i=1,i≠jq∑s=1,s≠i,jq[image: there is no content](j,i)α|[image: there is no content]-xj|α-1([image: there is no content]-xs)+∑i=1q∑k=1,k≠iq[image: there is no content](i,k)sgn(xk-[image: there is no content])|xk-[image: there is no content]|α-∑k=1,k≠jq[image: there is no content](j,k)sgn(xk-xj)|xk-xj|α=2α∑i=1,i≠jq[image: there is no content](j,i)sgn([image: there is no content]-xj)|[image: there is no content]-xj|α+α∑i=1,i≠jq∑s=1,s≠i,jq[image: there is no content](j,i)sgn([image: there is no content]-xj)|[image: there is no content]-xj|α-q∑k=1,k≠jq[image: there is no content](j,k)sgn(xk-xj)|xk-xj|α=q(α-1)∑i=1,i≠jq[image: there is no content](j,i)sgn([image: there is no content]-xj)|[image: there is no content]-xj|α=q(α-1)fj








which implies that the vector field f is homogeneous of degree [image: there is no content] with respect to the semi-Euler vector field


ν(x)=-∑i=1q∑j=1,j≠iq(xj-[image: there is no content])∂∂[image: there is no content]








Now, the result is a direct consequence of Theorem 11.2. ☐




12. Conclusions

In contrast to mechanics, which is based on a dynamical system theory, (classical) thermodynamics is a physical theory concerned with systems in equilibrium and does not possess equations of motion, leaving these two classical disciplines of physics to stand in sharp contrast to one another in the one and the half centuries of their coexistence. This has made any connections between the thermodynamic arrow of time and the mechanistic course of time over the centuries translucent at best. Over the past several decades, numerous subjective papers plagued with philosophical arguments and void of any rigorous mathematics have unsuccessfully attempted to establish such connections. In order to make clear and rigorous connections between the arrow of time, the course of time, irreversibility, and the second law of thermodynamics, a dynamical systems framework for thermodynamics is needed rather than the classical (thermostatic) theory of thermodynamics.

In this paper, we combined the two universalisms of thermodynamics and dynamical systems theory under a single umbrella, with the second providing the ideal language for the first, to establish rigorous connections between causality, the arrow of time, the course of time, irreversibility, and the second law of thermodynamics. Specifically, we show a state irrecoverability, and hence, a state irreversibility nature of thermodynamics. State irreversibility reflects time-reversal non-invariance, wherein time-reversal is not meant literally; that is, we develop a dynamical system thermodynamic model whose trajectory reversal is or is not allowed and not a reversal of time itself. Next, we show that for every nonequilibrium system state and corresponding system trajectory of our thermodynamically consistent dynamical system, there does not exists a state such that the corresponding system trajectory completely recovers the initial system state of the dynamical system and at the same time restores the energy supplied by the environment back to its original condition. This, along with the existence of a global strictly increasing entropy function on every nontrivial system trajectory, establishes the existence of a completely ordered time set that has a topological structure involving a closed set homeomorphic to the real line, which gives a clear time-reversal asymmetry characterization of thermodynamics and establishes an emergence of the direction of time flow.

Classical thermodynamics as well as the dynamical system approach to thermodynamics presented in this paper are developed for systems that are assumed to be at rest with respect to a local observer and in the absence of strong gravitational fields. To effectively address the universality of thermodynamics and the arrow of time to cosmology, the dynamical system framework of thermodynamics presented in this paper needs to be extended to thermodynamic systems which are moving relative to a local observer moving with the system and a fixed observer with respect to which the system is in motion. In addition, the thermodynamic effects of gravity need to also be considered. In this case, Einstein’s theory of relativity shows that time and space are intricately coupled, and hence, one cannot curve space without involving time as well. This is essentially the time dilation equivalence principle of general relativity, which states that the combined speed of any object’s motion through the space-time continuum is always equal to the speed of light. Given the topological isomorphism between entropy and time established in this paper and Einstein’s time dilation assertion that increasing an object’s speed through space results in decreasing the object’s speed through time, we conjecture that a generalization of the present framework of thermodynamics that includes relativistic effects would lead to an entropy contraction principle wherein the change in entropy of a system would decrease as the system’s speed increases through space. This is the subject of current research.
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