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Abstract: Molecular dynamics simulations were used to characterize the structure and 
dynamics for several peptides and the effect of conjugating them to a gold nanoparticle. 
Peptide structure and dynamics were compared for two cases: unbound peptides in water, 
and peptides bound to the gold nanoparticle surface in water. The results show that 
conjugating the peptides to the gold nanoparticle usually decreases conformational entropy, 
but sometimes increases entropy. Conjugating the peptides can also result in more extended 
structures or more compact structures depending on the amino acid sequence of the 
peptide. The results also suggest that if one wishes to use peptide-nanoparticle conjugates 
for drug delivery it is important that the peptides contain secondary structure in solution 
because in our simulations the peptides with little to no secondary structure adsorbed to the 
nanoparticle surface. 
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1. Introduction 

Nanoparticles (NPs) are of interest due to their use in applications such as sensing [1], imaging  
[2–4], drug delivery, novel therapy [5], and control of protein structure and activity [6]. In the 
emerging field of nanomaterial-biomolecule research, gold NPs are ideal drug-delivery agents because 
of their well-known chemical inertness and their minimal toxicity [7,8]. Functionalized gold NPs often 
conjugate with certain proteins, antibodies, or peptides [9,10]. Thus, these conjugates can be designed 
to target specific cells such as cancer cells and then deliver drugs to the targeted cells, which can 
reduce the dose and thus possible side effects. Many technologies based on biomolecule conjugation to 
NP have been developed in the past two decades. For example, aptamer bioconjugated NPs have 
shown a very high specificity for drug delivery in prostate cancer chemotherapy [11,12]. Platinum-based 
anticancer drugs on gold NPs have demonstrated an unusual ability to penetrate the nucleus in lung 
cancer cells [13]. 

Several studies have shown that it is more effective to use gold NPs as drug delivery agents than 
using the drugs via traditional means. Cheng et al. found that use of a drug-gold NP conjugate reduced 
drug delivery times significantly compared to the free drug [14]. Thomas and Klibanov showed that 
conjugating polyethylenimine chains to gold NPs enhanced the ability of polyethylenimine to transfer 
plasmid DNA into mammalian cells [15]. Joshi et al. observed a significant reduction of blood glucose 
levels when insulin was delivered using gold NPs as carriers by the transmucosal route in diabetic 
rats [16]. 

In order to more effectively utilize NPs for drug delivery it is important to understand and visualize 
how biomolecules interact with NPs. It is known that conjugation of proteins to NPs can affect the 
protein structure and function. Aubin-Tam and Hamad-Schifferli have shown that the structure and 
function are influenced by the chemistry of the NP ligand, the NP size, the NP material, the 
stoichiometry of the conjugates, and the labeling site on the protein and the nature of the linkage [17,18]. 
They also showed that surface-coating ligands on the NPs are labile and can adopt multiple 
conformations. Verma et al. have observed that while initial electrostatic complementarity mediates 
binding, further stabilization is achieved through additional favorable interactions on the surface of NP 
and the peptide [19]. It is also known that the ligands can rearrange to optimize the interaction with a 
protein [20]. 

Computer simulation has emerged as a particularly valuable tool for characterizing and visualizing 
biomolecule-NP conjugates due to the difficulty in obtaining actual experimental data for such 
systems [21,22]. Schulten and collaborators used molecular dynamics to predict the structure of an 
engineered polypeptide on a gold surface [23]. Simulations by Hoefling et al. showed that the binding 
affinities are dependent on the chemical character of the amino acids when adsorbed to a gold 
surface [24]. Verde et al. performed simulations to investigate the adsorption and mobility of peptides 
on a gold surface [25]. Duchesne et al. devised a method to estimate the proximity of peptides on a 
gold NP surface. Other researchers have used simulation to investigate DNA conformations while 
bound to a gold surface [26–28]. 

For the current study we hypothesized that conjugating peptides to gold NPs induces changes in 
both the peptide structure and peptide dynamics. We studied six peptides: two sequences that were 
used in a cellular uptake study by Hill and colleagues [29], and the other four sequences which are 
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For the unbound case the peptides were solvated in a 50.0 Å length cubic water box. Each system 
was then ionized with 0.5 mol/L ion concentration using a mixture of Na+ and Cl� ions such that each 
system had zero net charge. 

For the case of the peptide bound to the gold NP the peptide was first placed in water such that the 
sulfur atom in the cysteine was 3.0 Å away from the surface of a 5.0 nm diameter gold NP. The 
coordinates for the gold atoms were obtained by trimming a (111) symmetry crystal structure to form 
a 5.0 nm diameter sphere. The distance of 3.0 Å was chosen so that the system energy could be 
minimized effectively since Jiang et al. showed that the S-Au covalent bond length is around 2.8 Å 
(Figure 1b) [32]. To reduce computational cost most of the gold atoms that could not interact with the 
peptide atoms were not included in the simulation. The system was then solvated in a rectangular water 
box and ionized with 0.5 mol/L ion concentration using a mixture of Na+ and Cl� ions such that each 
system had zero net charge. The box size was chosen such that the distance between the edge of the 
box and the nearest gold or peptide atoms was at least 24.0 Å (twice the interaction cutoff distance). 

All the molecular dynamics simulations were performed using NAMD 2.7b1 [33] with the TIP3P 
water model [34] and CHARMM force field [35,36]. There are several forcefields for peptide-gold 
interactions that have been reported in the literature (e.g., [37,38]). We used parameters describing the 
interactions for Au-Au and S-Au from Vila Verde et al. and Miao and Seminario [25,36]. Assigning 
these forcefield parameters neglects possible confinement effects on NP electronic structure that could 
change NP reactivity. These parameters also ignore possible interactions between the peptide and NP 
features such as edges and vertexes. For our simulations partial charges for the gold atoms were set to 
zero and the atoms were forced to remain in fixed positions during the simulation. For each of the two 
cases (unbound and conjugated) minimization was performed for 1,000 steps, followed by 20.0 ns of 
equilibrium, and 20.0 ns of production simulation. For equilibration and production Langevin 
dynamics [39] was used with a constant temperature of 300 K and the pressure was maintained at 
1.0 atm [40,41]. The SHAKE algorithm was implemented to allow a 2.0 fs timestep [42]. Particle mesh 
Ewald was utilized for electrostatics with a real-space cutoff of 12 Å [43]. Van der Waals interactions 
were cut off at 12 Å with a switching function between 10 and 12 Å. 

In order to compare structures and dynamics between the unbound and conjugated cases for each 
peptide we used the trajectory produced during the 20 ns production simulation to analyze the solvent 
accessible surface area (SASA), root-mean-square fluctuation (RMSF) and conformational entropy, 
and performed clustering for the production simulations. The SASA and RMSF were measured by 
analyzing the molecular dynamics trajectories obtained from the production simulations using 
VMD [44]. SASA is the solvent accessible surface area of the peptide and the RMSF of the C� 
quantifies the peptide dynamics. Before performing the RMSF analysis all the trajectory frames were 
aligned to the last frame of the trajectory. Clustering of the trajectory structures was performed by first 
generating the RMSD matrix, and then using the cutree function in the software package R [45]. The 
number of clusters used for our analysis was chosen such that any increase in the number of clusters 
did not change the largest cluster. For each peptide, the structure in the largest cluster with a SASA 
value closest to the average SASA was then chosen to represent the most commonly seen type of 
structure in the simulations. To estimate the uncertainty of SASA and conformational entropy, the 
production simulation trajectory was divided into 20 equal size pieces, and the standard deviation of 
those pieces was calculated and used as an estimate of the uncertainty for each measure. The 
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could reduce or eliminate specific desired interactions between the peptides and the cellular media. 
Thus, we suggest that when developing such nanoparticle conjugates the peptides should be designed 
to contain significant secondary structure in solution. 

We note that since the current study uses a single peptide the results should be considered most 
relevant to NP conjugates with a low density of peptides. If the conjugate has a high density of 
peptides on the surface then peptide-peptide interactions could be important for determining peptide 
structure and dynamics.  

4. Conclusions 

We performed molecular dynamics simulation of six peptides to study the effect of gold NP 
conjugation on peptide structure and dynamics. For each peptide we tested two cases: a single unbound 
peptide in water, and a single peptide conjugated to a gold NP in water. Results show that, consistent 
with our hypothesis, the presence of gold NP does alter both the peptide structures and dynamics, and 
that the magnitude of the effect depends on the peptide sequence. Conjugated peptides typically have 
decreased conformational flexibility, and the amount of decrease depends on the amino acid sequence. 
However, it is possible for conjugation to increase the flexibility, as was the case with one of the 
peptides in this study. Conjugating the peptides to a gold NP can also result in more extended 
structures or more compact structures, depending on the amino acid sequence of the peptide. 

Finally, we suggest that if one wishes to design peptides for nanoparticle conjugates for drug 
delivery the peptides should contain significant secondary structure in solution. This is because our 
results show that peptides with little to no secondary structure in solution tend to adsorb to the 
nanoparticle surface, potentially losing their ability specifically interact with cellular media. 
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