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Abstract: We derive an algorithm to recursively determine the lap number (minimal number

of monotonicity segments) of the iterates of twice differentiable l-modal map, enabling to

numerically calculate the topological entropy of these maps. The algorithm is obtained by

the min-max sequences—symbolic sequences that encode qualitative information about all

the local extrema of iterated maps.
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1. Introduction

Entropy is a ubiquitous tool in physics and mathematics. It measures randomness in dynamical

systems, uncertainty in information theory and disorder in statistical mechanics.

Topological entropy was introduced in 1965 by Adler, Konheim and McAndrew [1] as an invariant of

topological conjugacy for maps of the interval. Along with the Lyapunov exponent, topological entropy

is one of the preferred indicators for complexity in topological dynamics. The numerical computation

of topological entropy has been and remains an active topic of research, as witnessed by a number of

relevant publications in the last decades.
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Let I be a compact interval [a, b] ⊂ R and f : I → I be a continuous piecewise monotone map.

Such a map is called l-modal if f has precisely l turning points (i.e., points in (a, b) where f has a local

extremum). Assume that f has local extrema at c1 < ... < cl and that f is strictly monotone in each of

the l + 1 intervals

I1 = [a, c1), I2 = (c1, c2), ..., Il+1 = (cl, b]

To such map one can assign a positive or negative shape which describes whether f is increasing or

decreasing on its first lap I1. In proofs it is occasionally convenient to use the convention c0 ≡ a and

cl+1 ≡ b. Sometimes the additional condition f({a, b}) ⊂ {a, b} is also required (see for instance [2]); in

this case we speak of boundary-anchored maps. We shall also consider boundary-anchored maps below

but only as a special case, since the general algorithm for the topological entropy then simplifies quite

a bit.

The itinerary of x ∈ I under f is the sequence i(x) = (i0(x), i1(x), ..., in(x), ...) defined as follows:

in(x) =

{
Ik if fn(x) ∈ Ik

ck if fn(x) = ck

The itineraries of the critical points,

γi ≡ (γi
n)n∈N = i(ci), 1 ≤ i ≤ l

are called the kneading sequences (or invariants) of f .

Let h(f) denote the topological entropy of an l-modal map f : I → I . Then [3,4],

h(f) = lim
n→∞

1

n
log+ Var(fn) (1)

= lim
n→∞

1

n
log �n (2)

where Var(fn) stands for the variation of fn, and �n is shorthand for the lap number of fn (i.e., the

number of maximal monotonicity segments of fn). There are relations similar to (1) and (2), involving

the number of fixed points of fn (i.e., the number of periodic points of period n), or the length of the

graph of fn.

The methods proposed in the literature to compute h(f), use typically kneading sequences [5–7],

approximating piecewise linear maps [8] and Markov maps [9], the Ruelle–Perron–Frobenius operator

[10], or one of the expressions (1) and (2) [11,12]. Their virtues and shortcomings are also discussed in

the literature. For instance, some are meant only for unimodal maps [5,7] or bimodal maps [6]. Others

apply to not necessarily continuous piecewise monotone maps of the interval, however they are not

efficient nor even accurate [8].

The method proposed here calculates the lap numbers �n, n ≥ 1, and the topological entropy follows

from (2). It applies to multimodal maps with or without boundary conditions. The main ingredient of

this approach are the so-called min-max sequences—symbolic sequences that encode the coarse-grained

information about the extrema of the maps fn, n ≥ 1. It generalizes an approach for unimodal, boundary
anchored maps, introduced in [13,14], further developed in [15], and extended for boundary free maps

in [16].
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The method proposed here is conceptually simple, is direct, is geometrical and is computationally

efficient, calculating the lap numbers in a recursive way. The structure of the algorithm is the same for

all l-modal maps, independently of the value of l. Regarding computing speed, we shall not provide

any sharper bound than the O(1/n) convergence rate derivable on general grounds [12]. Nonetheless,

numerical simulations confirm the excellent performance of the algorithm—except when h(f) � 0, in

which case the convergence is slow.

The rest of the paper is organized as follows. In Section 2 we introduce the min-max sequences of

a map f ∈ Fl, where Fl is the class of twice differentiable l-modal maps. This assumption simplifies

the proofs but the results obtained in this paper apply to the class of continuous piecewise monotonous

maps. In Section 3, we derive a number of technical lemmas, which are needed in the next two sections.

Section 4 is devoted to clarify the connection between the min-max sequences of a map and the structure

of its extrema, exploring the geometrical meaning of the min-max sequences. This connection leads in

Section 5 to the main result of the paper, Theorem 5.3, which provides a recursive scheme for computing

�n (hence h(f)) with arbitrary precision. It turns out that the general scheme of Theorem 5.3 simplifies

in some special cases, notably for boundary-anchored maps and for unimodal maps; these cases are

separately discussed in Section 6. The paper concludes with the logical flow of the algorithm (Section 7),

and a summary of numerical simulations with 2- and 3-modal maps (Section 8).

2. Geometry of the Itineraries: The Min-Max Sequences for l-Modal Maps

Henceforth we consider the class Fl of twice differentiable l-modal maps. Since the results we obtain

in Section 5 for the calculation of lap numbers and topological entropy do not depend on the shape of f ,

we shall assume throughout that the shape of f is positive, that is,

f ′(x) > 0 on Iodd, f ′(x) < 0 on Ieven (3)

where Iodd [resp. Ieven] denotes any Ik with k ∈ {1, ..., l+1} odd [resp. even], and f ′(a), f ′(b) are meant

to be the appropriate one-sided derivatives.

The chain rule for derivation applied to the nth iterate of f , written fn (f 0 is the identity map),

fn+1′(x) = (f ◦ fn)′(x) = f ′(fn(x))fn′(x) (4)

implies trivially

fn′(x) = f ′(fn−1(x))f ′(fn−2(x)) · · · f ′(x) (5)

which shows that c1, ..., cl are critical points of fn for every n ≥ 1. From (5) we conclude also the

following.

Lemma 2.1. If f ∈ Fl, then the critical points of fn, n ≥ 1, are the points x ∈ (a, b) such that
fk(x) = ci for some 0 ≤ k ≤ n− 1 and 1 ≤ i ≤ l.

Therefore, the critical points of fn with n ≥ 1 are the pre-images of the critical points c1,..., cl up to

order n− 1.
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Our next scope is a relation between the kneading sequences of f ∈ Fl and the structure of local

extrema of fn. According to the assumption (3),

f(ci) is a

{
maximum if i is odd

minimum if i is even
(6)

where 1 ≤ i ≤ l.

The next lemma follows readily from (4) and

fn+1′′(x) = f ′′(fn(x))(fn′(x))2 + f ′(fn(x))fn′′(x) (7)

Lemma 2.2. Let f ∈ Fl, and n ≥ 1. Then:

(a) If fn(x) = ci with i odd, then fn+1(x) is a maximum. If fn(x) = ci with i even, then fn+1(x) is a
minimum.

(b) If fn(x) is a minimum, then

fn+1(x) is a

{
minimum if fn(x) ∈ Iodd

maximum if fn(x) ∈ Ieven

(c) If fn(x) is a maximum, then

fn+1(x) is a

{
maximum if fn(x) ∈ Iodd

minimum if fn(x) ∈ Ieven

For our purposes it will be sufficient to know which element of the partition P =

{I1, c1, I2,..., cl, Il+1} the points fn(a), fn(ci) and fn(b) belong to. This information can be conveniently

codified by assigning to x ∈ [a, b] a signature σ(x) ≡ σ = (σ1, σ2, ..., σl) ∈ {−, 0,+}l defined as

follows: For i = 1, ..., l,

σi(x) =

⎧⎪⎨
⎪⎩

− if x < ci

0 if x = ci

+ if x > ci

(8)

Therefore there are only 2l + 1 signatures, one for each element of P . Note that if x ∈ Ii0 , i0 ≥ 2, then

σ1, ..., σi0−1 = +, and σi0 , ..., σl = − (9)

Otherwise, if x = cj0 , 1 < j0 < l, then

σ1, ..., σj0−1 = +, σj0 = 0, and σj0+1, ..., σl = − (10)

The cases i0 = 1, j0 = 1 or j0 = l need no further comments. Thus, in a signature the +’s appear always

left of the −’s, occasionally separated by a 0.

Two further tools will prove useful later on.

1. We borrow from the real analysis a product ‘·’ among the symbols σi ∈ {−, 0,+}:

− · − = + ·+ = +, − ·+ = + · − = −, − · 0 = 0 · 0 = 0 ·+ = 0
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2. If x < y in [a, b], then σ(x) ≤ σ(y), where here < stands for the lexicographical order of signatures

induced by − < 0 < +.

Suppose that fn, n ≥ 1, has a maximum [resp. minimum] at some point x ∈ I = [a, b]. We say that

fn(x) is a maximum [resp. minimum] with signature σ = (σ1, σ2, ..., σl) if σ = σ(fn(x)). Sometimes

we also say that fn(x) is a σ-maximum [resp. σ-minimum] with the obvious meaning.

To locate the extrema of fn in I up to the precision set by the partition P , we introduce a new alphabet

M = {mσ,Mσ} (11)

where m stands for “minimum”, M stands for “maximum”, and the superscript σ is the pertaining

signature, i.e., if fn(x) is the minimum or maximum considered, then σ = σ(fn(x)). Correspondingly

we say that fn(x) is an extremum of type mσ [resp. Mσ], or just that fn(x) is a σ-minimum

[resp. σ-maximum].

Next we define l sequences ωi = (ωi
n)n≥1 ∈ MN, 1 ≤ i ≤ l, as follows:

ωi
n =

{
mσ if fn(ci) is a minimum of type σ

Mσ if fn(ci) is a maximum of type σ

The sequences ω1, ..., ωl are called the min-max sequences of f ∈ Fl, or MMSs for short. The geometric

meaning of ωi
n is clear: fn(ci) is a maximum (if ωi

n = Mσ) or a minimum (if ωi
n = mσ) with signature

σ ≡ σ(ωi
n).

By particularizing Lemma 2.2 to x = c2k+1, 0 ≤ k ≤ 
(l − 1)/2�, and x = c2k, 1 ≤ k ≤ 
l/2�, we

get the transition rules listed in Table 1.

Table 1. Consecutive symbols in the MMS follow the above transition rules.

ωi
n → ωi

n+1

m(+,...,+,σ2k+1=0,−,...,−),M (+,...,+,σ2k+1=0,−,...,−) → Mσ(γi
n+1)

m(+,...,+,σ2k=0,−,...,−),M (+,...,+,σ2k=0,−,...,−) → mσ(γi
n+1)

m(+,...,+,σ2k+1=−,...,−) → mσ(γi
n+1)

m(+,...,+,σ2k=−,...,−) → Mσ(γi
n+1)

M (+,...,+,σ2k+1=−,...,−) → Mσ(γi
n+1)

M (+,...,+,σ2k=−,...,−) → mσ(γi
n+1)

The signature σ(γi
n+1) appearing on the right column is given as in (8) with x = ci. Thus, once

we know the kneading sequences γi, 1 ≤ i ≤ l, and the initial components of the MMSs, ωi
1, we can

calculate the MMSs ωi of f by means of the transition rules in Table 1.

3. Auxiliary Lemmas

As stated before, the generic structure of a signature is

(+, ...,+,−, ...,−) or (+, ...,+, 0,−, ...,−)
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Therefore, when comparing component-wise two signatures, only three cases can happen: (i) all

components coincide, (ii) they differ in a single component, or (iii) they differ in a number of consecutive
components. Of course, case (ii) can be considered as a “degenerate” subcase of (iii), as we will do in

the sequel.

Let f ∈ Fl and set,

Sn = {x ∈ I : fn′(x) = 0} (12)

In particular, S1 = {c1, ..., cl}. According to Lemma 2.1, Sn contains S1 and its preimages up to order

n− 1. This same lemma implies that if x ∈ (a, b) is a critical point of fn, n ≥ 1, then x is also a critical

point of fk for k > n. Hence, Sn ⊂ Sn+1. It follows from Lemma 2.2 that all these critical points are

local maxima or minima, but not inflexion points.

Furthermore, let ξn [resp. ηn] be the leftmost [resp. rightmost] critical point of fn, i.e.,

ξn = minSn, ηn = maxSn (13)

for n ≥ 1. Observe that ξ1 = c1 and η1 = cl.

Lemma 3.1. Let f ∈ Fl and zn,1 < zn,2, n ≥ 1, be

• two consecutive critical points of fn (n ≥ 2 if l = 1), or

• zn,1 = a and zn,2 = ξn, or

• zn,1 = ηn, and zn,2 = b.

Then,

(a) If σi(f
n(zn,1)) · σi(f

n(zn,2)) < 0 for i0 ≤ i ≤ i0 + j0 − 1 (i0 ∈ {1, ..., l}, j0 ∈ {1, ..., l − i0 + 1})
and σi(f

n(zn,1)) ·σi(f
n(zn,2)) ≥ 0 otherwise, then there exist j0 critical points zn+1,1,..., zn+1,j0 of

fn+1 in (zn,1, zn,2). Furthermore, fn(zn+1,j) = ci0+j−1, 1 ≤ j ≤ j0, and fn+1 has a maximum at
zn+1,j if i0 + j is even (hence fn+1(zn+1,j) is a σ(f(ci0+j−1))-maximum in this case), while fn+1

has a minimum at zn+1,j if i0 + j is odd (hence fn+1(zn+1,j) is a σ(f(ci0+j−1))-minimum in this
case). Moreover, zn+1,1 < ... < zn+1,j0 if fn(zn,1) < fn(zn,2), while zn+1,1 > ... > zn+1,j0 if
fn(zn,1) > fn(zn,2).

(b) Otherwise (i.e., σi(f
n(zn,1)) · σi(f

n(zn,2)) ≥ 0 for 1 ≤ i ≤ l), there exist no critical points of fn+1

in (zn,1, zn,2).

The geometrical interpretation of this lemma in the Cartesian plane (x, y) is clear. If j0 = 1 in (a),

then the curve y = fn(x), zn,1 ≤ x ≤ zn,2, crosses transversally the “ith critical line” y = ci , and

none of the other critical lines (if any) y = ck, k �= i. If j0 > 1, then this curve crosses transversally j0

successive critical lines, namely, y = ci0 up to y = ci0+j0−1, and none of the remaining ones (if any). In

(b) both fn(zn,1)) and fn(zn,2)) belong to the same interval Ii ∈ P , so y = fn(x) does not cross any

critical line when x ∈ (zn,1, zn,2).
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Proof. (a) Suppose ci0−1 < fn(zn,1) < ci0 < ... < ci0+j0−1 < fn(zn,2) < ci0+j0 (the case ci0−1 <

fn(zn,2) < ci0 < ... < ci0+j0−1 < fn(zn,1) < ci0+j0 follows analogously). By the monotonicity of fn

in [zn,1, zn,2] and the Mean Value Theorem, there exist exactly j0 different points zn+1,1, ..., zn+1,j0 ∈
(zn,1, zn,2) such that fn(zn+1,j) = ci0+j−1 for 1 ≤ j ≤ j0. Then

fn+1′(zn+1,j) = f ′(ci0+j−1)f
n′(zn+1,j) = 0

and

fn+1′′(zn+1,j) = f ′′(ci0+j−1)(f
n′(zn+1,j))

2

Therefore,

fn+1′′(zn+1,j)

{
< 0 if i0 + j − 1 is odd

> 0 if i0 + j − 1 is even

because according to (6), f(ci0+j−1) is a maximum in the first case, and a minimum in the second.

The statement about the relative positions of zn+1,j , 1 ≤ j ≤ j0 is obvious from the geometrical

interpretation.

(b) This assertion is straightforward. �

Setting zn,1 = a, zn,2 = ξn in Lemma 3.1, we conclude the following results.

Lemma 3.2. Let f ∈ Fl and n ≥ 1.

(a) If σi(f
n(a)) · σi(f

n(ξn)) < 0 for i0 ≤ i ≤ i0 + j0 − 1 (i0 ∈ {1, ..., l}, j0 ∈ {1, ..., l − i0 + 1})
and σi(f

n(a)) · σi(f
n(ξn)) ≥ 0 otherwise, then ξn+1 < ξn. Furthermore, if fn(a) < fn(ξn), then

fn(ξn+1) = ci0 , and fn+1(ξn+1) is a σ(f(ci0))-maximum if i0 is odd or a σ(f(ci0))-minimum if i0 is
even. If fn(a) > fn(ξn), then fn(ξn+1) = ci0+j0−1, and fn+1(ξn+1) is a σ(f(ci0+j0−1))-maximum
if i0 + j0 is even or a σ(f(ci0+j0−1))-minimum if i0 + j0 is odd.

(b) Otherwise (i.e., σi(f
n(a)) · σi(f

n(ξn)) ≥ 0 for 1 ≤ i ≤ l), ξn+1 = ξn holds. Furthermore,

(b1) fn+1(ξn+1) is a maximum if (i) fn(ξn) is a maximum and fn(ξn) ∈ Iodd, or (ii) fn(ξn) is a
minimum and fn(ξn) ∈ Ieven;

(b2) fn+1(ξn+1) is a minimum if (i) fn(ξn) is a maximum and fn(ξn) ∈ Ieven, or (ii) fn(ξn) is a
minimum and fn(ξn) ∈ Iodd.

Proof. (a) is a corollary of Lemma 3.1 (a). The first statement of (b) is a corollary of Lemma 3.1 (b).

As for (b1) and (b2),

fn+1′(ξn+1) = f ′(fn(ξn))f
n′(ξn) = 0

because ξn is a critical point of fn. Moreover,

fn+1′′(ξn+1) = f ′(fn(ξn))f
n′′(ξn)

Thus, fn+1′′(ξn+1) and fn′′(ξn) have the same sign if and only if fn(ξn) ∈ Iodd (so as f ′(fn(ξn)) > 0,

see (3)). �

And setting zn,1 = ηn, zn,2 = b in Lemma 3.1, we derive the following results in a way similar to

Lemma 3.2.
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Lemma 3.3. Let f ∈ Fl and n ≥ 1.

(a) If σi(f
n(ηn)) · σi(f

n(b)) < 0 for i0 ≤ i ≤ i0 + j0 − 1 (i0 ∈ {1, ..., l − 1}, j0 ∈ {2, ..., l − i0 + 1})
and σi(f

n(ηn)) · σi(f
n(b)) ≥ 0 otherwise, then ηn+1 > ηn. Furthermore, if fn(ηn) < fn(b),

then fn(ηn+1) = ci0+j0−1, and fn+1(ηn+1) is a σ(f(ci0+j0−1))-maximum if i0 + j0 is even or a
σ(f(ci0+j0−1))-minimum if i0+ j0 is odd. If fn(ηn) > fn(b), then fn(ηn+1) = ci0 , and fn+1(ηn+1)

is a σ(f(ci0))-maximum if i0 is odd or a σ(f(ci0))-minimum if i0 is even.

(b) Otherwise (i.e., σi(f
n(ηn)) · σi(f

n(b)) ≥ 0 for 1 ≤ i ≤ l), ηn+1 = ηn holds. Furthermore,

(b1) fn+1(ηn+1) is a maximum if (i) fn(ηn) is a maximum and fn(ηn) ∈ Iodd, or (ii) fn(ηn) is a
minimum and fn(ηn) ∈ Ieven;

(b2) fn+1(ηn+1) is a minimum if (i) fn(ηn) is a maximum and fn(ηn) ∈ Ieven, or (ii) fn(ηn) is a
minimum and fn(ηn) ∈ Iodd.

The results for boundary-anchored maps are simpler. Since we are assuming that f ∈ Fl has a

positive shape, the boundary conditions of such a map read: f(a) = a for any l, and f(b) = a for l odd,

or f(b) = b for l even. It follows fn(a) = a, and fn(b) = a or fn(b) = b, respectively, for any n ≥ 1.

To prove the next two lemmas, the following weaker boundary conditions are sufficient, though:

(BC1) fn(a) < c1, and

(BC2) fn(b) < c1 if l is odd, or fn(b) > cl if l is even,

for n ≥ 1. Maps satisfying the confinement conditions (BC1) and (BC2) at the boundary, will be called

quasi boundary-anchored maps for obvious reasons.

Lemma 3.4. Let f ∈ Fl be a quasi boundary-anchored map such that

(H1) f(c1) > cl, and

(H2) f(cl) > cl (l odd) or f(cl) < c1 (l even).

Then, for all n ≥ 1,

(a) ξn < ξn−1, fn(ξn) > cl, and fn(ξn) is a maximum.

(b) (l odd) ηn > ηn−1, fn(ηn) > cl, and fn(ηn) is a maximum.

(c) (l even) ηn > ηn−1, fn(ηn) < c1, and fn(ηn) is a minimum.

Proof. (a) Suppose fn(a) < c1 for all n ≥ 1 (BC1), and f(c1) > cl (H1). Then σi(f(a)) · σi(f(ξ1)) ≡
σi(f(a)) · σi(f(c1)) < 0 for 1 ≤ i ≤ l. According to Lemma 3.2 (a) with i0 = 1, j0 = l, and

f(a) < c1 < f(c1) ≡ f(ξ1), we have ξ2 < ξ1 ≡ c1 and f 2(ξ2) = f(c1) > cl is a maximum. By

induction it follows that ξn < ξn−1 and fn(ξn) > cl is a maximum for n ≥ 1.

(b) Suppose l odd, fn(b) < c1 for all n ≥ 1 (BC2), and f(cl) > cl (H2). Then σi(f(η1)) · σi(f(b)) ≡
σi(f(cl)) · σi(f(b) < 0 for 1 ≤ i ≤ l. According to Lemma 3.3 (a) with i0 = 1, j0 = l, and f(η1) ≡
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f(cl) > cl > c1 > f(b), we have η2 > η1 ≡ cl and f 2(η2) = f(c1) > cl (by H1) is a maximum. By

induction it follows that ηn > ηn−1 and fn(ηn) > cl is a maximum for n ≥ 1.

(c) Suppose l even, fn(b) > cl for all n ≥ 1 (BC2), and f(cl) < c1 (H2). Then σi(f(η1)) · σi(f(b)) ≡
σi(f(cl)) · σi(f(b) < 0 for 1 ≤ i ≤ l. According to Lemma 3.3 (a) with i0 = 1, j0 = l, and f(η1) ≡
f(cl) < c1 < cl < f(b), we have η2 > η1 ≡ cl and f 2(η2) = f(cl) < c1 is a minimum. By induction it

follows that ηn > ηn−1 and fn(ηn) < c1 is a minimum for n ≥ 1. �

Lastly, the next lemma is a kind of complementary result to Lemma 3.4.

Lemma 3.5. Let f ∈ Fl be a quasi boundary-anchored map such that

(H1) f(c1) < c1, and

(H2) f(cl) < c1 (l odd) or f(cl) > cl (l even).

Then, for all n ≥ 1,

(a) ξn = c1, fn(ξn) < c1, and fn(ξn) is a maximum.

(b) (l odd) ηn = cl, fn(ηn) < c1, and fn(ηn) is a maximum.

(c) (l even) ηn = cl, fn(ηn) > cl, and fn(ηn) is a minimum.

Proof. (a) Suppose fn(a) < c1 for all n ≥ 1 (BC1), and f(c1) < c1 (H1). Then fn(c1) < c1

(i.e., fn(c1) ∈ I1 ≡ [a, b)) for all n ≥ 1, because f is assumed to be strictly increasing in I1

[Equation (3)]. Therefore, σi(f(a)) · σi(f(ξ1)) ≡ σi(f(a)) · σi(f(c1)) ≥ 0 for 1 ≤ i ≤ l. According to

Lemma 3.2 (b) with n = 1, we have ξ2 = ξ1 ≡ c1, and f 2(ξ2) = f 2(c1) < c1 is a maximum because

f(ξ1) ≡ f(c1) is a maximum [Equation (6)] and f(c1) ∈ I1. By induction it follows that ξn = c1 and

fn(ξn) = fn(c1) < c1 is a maximum for n ≥ 1.

(b) Suppose l odd, fn(b) < c1 for all n ≥ 1 (BC2), and f(cl) < c1 (H2). Then fn(cl) < c1 for any

n ≥ 1, because f is assumed to be strictly increasing in I1 = [a, c1) and f(c1) < c1 (H1). Therefore,

σi(f(η1)) · σi(f(b)) ≡ σi(f(cl)) · σi(f(b)) ≥ 0 for 1 ≤ i ≤ l. According to Lemma 3.3 (b) with n = 1,

we have η2 = η1 ≡ cl, and f 2(η2) = f 2(cl) < c1 is a maximum because f(η1) ≡ f(cl) is a maximum

[Equation (6) with l odd] and f(cl) ∈ I1. By induction it follows that ηn = cl and fn(ηn) = fn(cl) < c1

is a maximum for n ≥ 1.

(c) Suppose l even, fn(b) > cl for all n ≥ 1 (BC2), and f(cl) > cl (H2). Then fn(cl) > cl for any

n ≥ 1, because f is assumed to be strictly increasing in Il+1 = (cl, b]. Therefore, σi(f(η1)) · σi(f(b)) ≡
σi(f(cl)) · σi(f(b)) ≥ 0 for 1 ≤ i ≤ l. According to Lemma 3.3 (b) with n = 1, we have η2 = η1 ≡ cl,

and f 2(η2) = f 2(cl) > cl is a minimum because f(η1) ≡ f(cl) is a minimum [Equation (6) with l even]

and f(cl) ∈ Il+1 (l+1 odd). By induction it follows that ηn = cl and fn(ηn) = fn(cl) > cl is a minimum

for n ≥ 1. �

4. Counting Laps

Given the kneading sequences of a map f ∈ Fl, it is possible to draw qualitatively the graph of fn for

any n ≥ 1. The procedure to be explained shortly is based on the geometrical meaning of the MMSs,

Lemma 2.1, and the auxiliary lemmas 3.1–3.3; see Example 4.2 below for an illustration.
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(A) Fix n ≥ 1 and using the transition rules in Table 1, determine the first n terms of the min-max

sequences ωi, 1 ≤ i ≤ l, from the seeds ωi
1 = Mσ(γi

1), if i is odd, and ωi
1 = mσ(γi

1), if i is even.

For the exposition it is convenient to introduce the notation

ω0 = (f ν(a))∞ν=1, ωl+1 = (f ν(b))∞ν=1 (14)

Actually, from ω0
ν = f ν(a) and ωl+1

ν = f ν(b) we shall only need their signatures. Remember that

c0 ≡ a and cl+1 ≡ b.

(B) Draw two perpendicular axes and divide the vertical axis into n rows corresponding, top to bottom,

to the iterates f ν , 1 ≤ ν ≤ n. The horizontal axis represents the interval [a, b]. Enter along

this axis the labels a, c1, ..., cl and b, and write column-wise below them, top to bottom, the

sequences (σ(ω0
ν))

n
ν=1, (ω1

ν)
n
ν=1..., (ωl

ν)
n
ν=1, and (σ(ωl+1

ν )nν=1, respectively (see Tables 2 and 3).

These columns will be called the c0-, ..., cl+1-column, respectively. Leave ample space between

these columns to insert further columns as we proceed with the present construction.

(C) Proceed now row-wise, say left to right, starting with the ν = 1 row. We are going to compare

pair-wise the signatures of neighboring symbols.

(C1) Consider first the unimodal case (σ ≡ σ1). If σ(ω0
1) · σ(ω1

1) < 0, then insert (ω1
ν)

n−1
ν=1 between

the c0- and the c1-column, shifted one row downward (i.e., ω1
ν is on the (ν + 1)-th row). If

σ(ω1
1) · σ(ω2

1) < 0, then insert (ω1
ν)

n−1
ν=1 between the c1- and the c2-column, shifted again one

row downward. Otherwise, no action is taken.

(C2) Consider now the multimodal case (l ≥ 2). If σi(ω
0
1) · σi(ω

1
1) < 0 for i0 ≤ i ≤ i0 + j0 − 1

(i0 ∈ {1, ..., l}, j0 ∈ {1, ..., l − i0 + 1}) and σi(ω
0
1) · σi(ω

1
1) > 0 otherwise, then insert the

MMSs (ωi0
ν )

n−1
ν=1 , ..., (ωi0+j0−1

ν )n−1
ν=1 between the c0- and the c1-column, shifted one row downward.

Otherwise, no action is taken. Furthermore, if σ(ω0
1) < σ(ω1

1) (i.e., f(x) is increasing in the lap

(c0, c1)), then the MMSs ωi0 , ..., ωi0+j0−1 are inserted in exactly that order. If σ(ω0
1) > σ(ω1

1)

(i.e., f(x) is decreasing in the lap (c0, c1)), then the MMSs ωi0 , ..., ωi0+j0−1 are inserted in the

reversed order: ωi0+j0−1, ..., ωi0 . Repeat this procedure with all remaining pairs of neighboring

symbols on row ν = 1.

(D) Apply the procedure explained in (C) to the rows ν = 2, ..., n. At the end, row n exhibits the

extrema of fn in [a, b].

Remark 4.1. With regard to (C2) and (D), the order of σ(ωk
ν ) and σ(ωk+1

ν ) coincides with the order of
σi(ω

k
ν ) and σi(ω

k+1
ν ) for any i ∈ {i0, ..., i0 + j0 − 1}. In the case k = 0 and ν = 1, σ(ω0

1) < σ(ω1
1)

holds because we are assuming that f has a positive shape. Nonetheless we consider also the possibility
σ(ω0

1) > σ(ω1
1) in (C2) to explain the general procedure in further steps.

In order to bring clarity into the notation, we stick in the sequel to the above usage: n and the

Greek letters ν, μ, κ, τ (mostly as subindices, and belonging to N or N0) will refer to map iterations,

while the Latin letters i, j, k, p, q (mostly as upper indices, and belonging to {1, ..., l}) will refer to the

critical points.
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Example 4.2. The cubic polynomial

f(x) = 9.375x3 − 15.4688x2 + 6.75x+ 0.1, (15)

defines on I = [0, 1] a bimodal map with a local maximum at c1 = 0.3 (f(c1) = 0.985938) and a local
minimum at c2 = 0.8 (f(c2) = 0.4). Figure 1 shows that

ω1 = (M++,M+−,m+−,M++, ...)

ω2 = (m+−,M++,M+−,m+−, ...)

Figure 1. Graphs of f , f 2, f 3, and f 4 for the bimodal map (15).
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The first four components of both MMSs have been written on the corresponding column of Table 2
(for 0 ≤ x ≤ c1) and Table 3 (for c1 ≤ x ≤ 1), respectively. The data σ(ω0

ν) and σ(ω3
ν), 1 ≤ ν ≤ 4,

appear on the c0- and c3-column, respectively. The additional labels xr,s stand for the critical points
of f r. The distribution of the critical points and values of fn, 1 ≤ n ≤ 4, will emerge as we apply
the procedure (A)–(D) to this particular map. The information about the critical points comprises their
number and relative position (or ordering) in the interval [a, b]; the corresponding critical values are
located up to the precision set by the partition P = {I1, c1, I2,..., cl, Il+1}. The details are as follows.

1. Since σ1(ω
0
1) · σ1(ω

1
1) < 0, σ2(ω

0
1) · σ2(ω

1
1) < 0, and σ(ω0

1) = (−,−) < (+,+) = σ(ω1
1),

we insert ω1 and ω2, beginning on row ν = 2, in the given order: ω1 at x2,1, ω2 at x2,2, with
c0 < x2,1 < x2,2 < c1 (Rule C2). There is only place for the first three components.

2. Since σ1(ω
1
1) · σ1(ω

2
1) > 0, and σ2(ω

1
1) · σ2(ω

2
1) < 0, we insert and shift ω2 at x2,3, c1 < x2,3 < c2.

3. To complete the first row, we observe that σ1(ω
2
1) · σ1(ω

3
1) > 0 and σ2(ω

2
1) · σ2(ω

3
1) > 0, so no

action is taken. This means that no column right of the c2-column will start on row ν = 2. Note
that the leftmost critical point of f 2 is ξ2 = x2,1, f 2(ξ2) being a (+,+)-maximum, and that the
rightmost critical point of f 2 is η2 = c2, f 2(η2) being also a (+,+)-maximum.

4. The construction proceeds further along these simple lines. Once the νth row has been completely
worked out, the qualitative structure of maxima and minima of f ν+1 emerges on the next row;
compare Tables 2 and 3 with Figure 1. Note that ξ3 = ξ4 = x3,1, and η3 = x3,4, η4 = x4,5. We
conclude that

�1 = 3, �2 = 6, �3 = 10, �4 = 15

where �n is the lap number of fn.



Entropy 2012, 14 753

Table 2. Extrema of f ν , 1 ≤ ν ≤ 4, for the map (15), in the interval [a, c1].

ν c0 x3,1 x2,1 x3,2 x4,1 x2,2 x4,2 c1

1 −− M++

2 +− M++ m+− M+−

3 +− m+− M+− m+− M++ m+−

4 +− M++ m+− M++ m+− M+− m+− M++

Table 3. Extrema of f ν , 1 ≤ ν ≤ 4, for the map (15), in the interval [c1, b].

ν c1 x4,3 x2,3 x4,4 x3,3 c2 x3,4 x4,5 c3

1 M++ m+− +−
2 M+− m+− M++ +−
3 m+− M++ m+− M+− m+− ++

4 M++ m+− M+− m+− M++ m+− M++ m+− +−

We call the MM-table of f a table constructed following the rules (A)–(D), as exemplified in

Tables 2 and 3. This construction provides the basic tools to derive our algorithm for the lap number

�n (Theorem 5.3 below).

5. The Main Result

Given f ∈ Fl, let �ν denote the lap number of f ν , and eν the number of local extrema (or critical

points) of f ν , with ν ≥ 1. Since f ν is continuous and piecewise monotone, the laps are separated by

critical points, hence the relation,

�ν = eν + 1 (16)

holds. In particular,

e0 = 0, and �0 = 1 (17)

since f 0, the identity, is monotonically strictly increasing, and

e1 = l, and �1 = l + 1 (18)

Furthermore, let siν , 1 ≤ i ≤ l, stand for the number of interior simple zeros of f ν(x) − ci, ν ≥ 0,

i.e., solutions of x − ci = 0 (ν = 0), or (ii) solutions of f ν(x) = ci, with x ∈ (a, b), with fμ(x) �= ci

for 0 ≤ μ ≤ ν − 1, and f ν′(x) �= 0 (ν ≥ 1). Geometrically siν is the number of transversal intersections

in the Cartesian plane (x, y) of the curve y = f ν(x) and the straight line y = ci, over the interval (a, b).

Note that

si0 = 1, and 0 ≤ si1 ≤ l + 1 ≡ si1,max (19)

for all i.
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To streamline the notation in the forthcoming results, set

sν =
l∑

i=1

siν (20)

for ν ≥ 0. In particular,

s0 =
l∑

i=1

si0 = l (21)

Lemma 5.1. Let f ∈ Fl. Then, for ν ≥ 1,

eν = eν−1 + sν−1 (22)

Proof. For ν = 1, Equation (22) spells out e1 = e0 + s0 = l on account of (17) and (21), which holds

true [see (18)].

For ν ≥ 2, use the fact that eν equals the number of sign changes of f ν′. Then, Equation (22) follows

from the relation f ν′(x) = f ′(f ν−1(x))f ν−1′(x). Note that the x’s with f ν−1(x) = ci and f ν−1′(x) = 0

are counted only once (by eν−1), since they are not simple zeros of f ν−1(x)− ci = 0. �

From (16) and (22) we get

�ν − �ν−1 = eν − eν−1 = sν−1 (23)

Addition of eν − eν−1 = sν−1 for ν = 1, ..., n (e0 = 0) leads to

en =
n−1∑
ν=0

sν (24)

where n ≥ 1.

Consider fixed but otherwise arbitrary indices i ∈ {1, ..., l} and ν ≥ 1. The following two

observations are trivial: (i) the upper bound siν,max ≡ eν + 1 of siν corresponds to the case in which

the graph of f ν crosses the ith critical line y = ci on every lap; (ii) the row ν of the MM-table of

f ∈ Fl contains alternating maxima and minima, i.e., alternating symbols mσ and Mσ′
corresponding

to the graph points, say, (xr,s, f
ν(xr,s)) and (xr′,s′ , f

ν(xr′,s′)), respectively. If σi · σ′
i < 0, then the curve

y = f ν(x) joining the corresponding extrema crosses the critical line y = ci. If, otherwise, σi · σ′
i ≥ 0,

then one of the two symbols involved is necessarily a “bad” symbol, to wit: (i) mσ with σi ∈ {0,+},

so as the curve y = f ν(x) does not cross the ith critical line on the lap (xr,s, xr′,s′), or (ii) Mσ′
with

σ′
i ∈ {−, 0}, so as the curve y = f ν(x) does not cross either the ith critical line on the same lap. Call

Bi = {M (...,σi=−,...),M (...,σi=0,...),m(...,σi=0,...),m(...,σi=+,...)} (25)

the set of bad symbols or types with respect to the ith critical line. Moreover note that if a bad symbol

appears on a column other than the ξν- or ην-column, then the same conclusion concerning the zeros of

f ν(x)− ci applies to the two laps of y = f ν(x) left and right of corresponding extremum. And if a bad

symbol appears on the ξν- and/or ην-column, then there is no zero of f ν(x)− ci in (a, ξν) and/or (ην , b).

Figure 2 illustrates the geometrical meaning of a bad symbol ωi
ν ∈ Bi: The branches of the parabolic

approximation to a local extrema f ν(x) whose type is a bad symbol point away from the critical line

y = ci. It is easy to check that ∣∣Bi
∣∣ = 2l + 2



Entropy 2012, 14 755

For example, for l = 2

B1 = {M (−,−),M (0,−),m(0,−),m(+,−),m(+,0),m(+,+)}
B2 = {M (−,−),M (0,−),M (+,−),M (+,0),m(+,0),m(+,+)}

If ωi
ν /∈ Bi we say that ωi

ν is a good symbol with respect to the ith critical line. Since there are 2l + 1

symbols mσ and 2l + 1 symbols Mσ, the number of good symbols with respect to the ith critical line is

(4l + 2)− (2l + 2) = 2l.

Figure 2. Geometrical meaning of the bad symbols (25).
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Therefore, the equality siν = eν + 1 ≡ siν,max is only possible if the row ν in the MM-table of f ∈ Fl

contains only good symbols with respect to the critical line y = ci. Indeed, we have just seen that each

bad symbol on row ν subtracts two simple zeros (solutions of f ν(x) − ci = 0, f ν′(x) �= 0) from siν,max.

But that condition is not sufficient. It could also happen that the leftmost extremum f ν(ξν) is of good

type, but f ν(x)− ci has no zero in the interval (a, ξν) because σi(f
ν(a)) · σi(f

ν(ξν)) ≥ 0, i.e., the graph

points (ξν , f
ν(ξν)) and (a, f ν(a)) are both above or both below the critical line y = ci. Of course, a

similar consideration holds for the rightmost extremum f ν(ην) and f ν(b) too.

All these facts can be encapsulated in the relation

siν = eν + 1− 2biν − αi
ν − βi

ν (26)

where biν is the number of symbols from the bad set Bi and

αi
ν =

{
1 if f ν(ξν) /∈ Bi but σi(f

ν(a)) · σi(f
ν(ξν)) ≥ 0

0 otherwise

βi
ν =

{
1 if f ν(ην) /∈ Bi but σi(f

ν(b)) · σi(f
ν(ην)) ≥ 0

0 otherwise

(27)

Before using the previous results to formulate a recursive procedure to calculate the lap number �n,

we need to relate the symbols ωi
n on the ξν- and ην-columns to the critical values f ν(ξν) and f ν(ην).

Remember that in the construction of the MM-table of f , we may encounter two situations in the

intervals (a, ξν) (a similar discussion holds for the intervals (ην , b)).
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(S1) If ν ≥ 2, σi(f
ν−1(a)) · σi(f

ν−1(ξν−1)) < 0 for i0 ≤ i ≤ i0 + j0 − 1, and σi(f
ν−1(a)) ·

σi(f
ν−1(ξν−1) ≥ 0 otherwise, then ξν < ξν−1 [Lemma 3.2 (a)], and we write down ωi0 (if

σi0(f
ν−1(a)) < σi0(f

ν−1(ξν−1)) or ωi0+j0−1 (if σi0(f
ν−1(a)) > σi0(f

ν−1(ξν−1)) on the ξν-column,

beginning at row ν. To address both possibilities in the present discussion, denote by ωp(ν) the

sequence on the ξν-column (note p(ν) = i0 = i0 + j0 − 1 if j0 = 1).

(S2) On the other hand, suppose σi(f
ν−1(a)) · σi(f

ν−1(ξν−1)) ≥ 0 for all i = 1, ..., l, and ξν−1 < ξν−2

(or ξν−1 = c1 if ν = 2). In this case ξν = ξν−1 [Lemma 3.2 (b)]. If again σi(f
ν(a))·σi(f

ν(ξν)) ≥ 0

for all i, then ξν+1 = ξν . In general, if this happens τ consecutive times (i.e., for f ν−1, ..., f ν+τ−2),

then (i) ξν−1 = ξν = ... = ξν+τ−1, and (ii) the leftmost extrema f ν(ξν), ..., f
ν+τ−1(ξν+τ−1) are of

type ω
p(ν−1)
2 , ..., ω

p(ν−1)
τ+1 , respectively (see Table 2).

In order to accommodate all these possibilities in the notation, ω
p(ν)
λ(ν) will denote the (ν, ξν)-entry in

the MM-table of f , i.e., the symbol on the row ν of the ξν-column. Analogously, ω
q(ν)
ρ(ν) will designate the

(ν, ην)-entry in the MM-table of f . From (27), (S1) and (S2), it follows

αi
ν =

{
1 if σi(f

ν(a)) · σi(ω
p(ν)
λ(ν)) ≥ 0 and ω

p(ν)
λ(ν) �∈ Bi

0 otherwise

βi
ν =

{
1 if σi(f

ν(b)) · σi(ω
q(ν)
ρ(ν)) ≥ 0 and ω

q(ν)
ρ(ν) �∈ Bi

0 otherwise

(28)

where p(1) = 1, q(1) = l, and for ν ≥ 2,

p(ν) =

⎧⎪⎨
⎪⎩

p1 if σi(f
ν−1(a)) · σi(ω

p(ν−1)
λ(ν−1)) < 0 for p1 ≤ i ≤ p2, and ω

p(ν−1)
λ(ν−1) = M∗

p2 if σi(f
ν−1(a)) · σi(ω

p(ν−1)
λ(ν−1)) < 0 for p1 ≤ i ≤ p2, and ω

p(ν−1)
λ(ν−1) = m∗

p(ν − 1) otherwise

q(ν) =

⎧⎪⎨
⎪⎩

q1 if σi(f
ν−1(b)) · σi(ω

q(ν−1)
ρ(ν−1)) < 0 for q1 ≤ i ≤ q2, and ω

q(ν−1)
ρ(ν−1) = M∗

q2 if σi(f
ν−1(b)) · σi(ω

q(ν−1)
ρ(ν−1)) < 0 for q1 ≤ i ≤ q2, and ω

q(ν−1)
ρ(ν−1) = m∗

q(ν − 1) otherwise

(29)

with 1 ≤ p1 ≤ p2 ≤ l, and 1 ≤ q1 ≤ q2 ≤ l. Here p1, q1 [resp. p2, q2] are meant to be the smallest [resp.

greatest] values of the index i for which the corresponding inequalities hold, and M∗ [resp. m∗] stands

for a maximum [resp. minimum] of any signature. The functions λ(ν), ρ(ν) are recursively calculated

as follows: λ(1) = ρ(1) = 1, and for ν ≥ 2,

λ(ν) =

{
1 if σi(f

ν−1(a)) · σi(ω
p(ν−1)
λ(ν−1)) < 0 for some i

λ(ν − 1) + 1 if σi(f
ν−1(a)) · σi(ω

p(ν−1)
λ(ν−1)) ≥ 0 for all i

ρ(ν) =

{
1 if σi(f

ν−1(b)) · σi(ω
q(ν−1)
ρ(ν−1)) < 0 for some i

ρ(ν − 1) + 1 if σi(f
ν−1(b)) · σi(ω

q(ν−1)
ρ(ν−1)) ≥ 0 for all i

(30)

In the unimodal case (l = 1), Equations (28)–(30) simplify to (37)–(38), Section 6.
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Example 5.2. (Cont’d) Let us illustrate the above formulas with the bimodal map (15) considered in
Example 4.2. The following values in Table 4 can be calculated with data from Table 2 and 3.

Table 4. Values of αi
ν and βi

ν for the bimodal map (15).

ν p(ν) λ(ν) α1
ν α2

ν q(ν) ρ(ν) β1
ν β2

ν

1 1 1 0 0 2 1 0 1

2 1 1 1 0 2 2 1 0

3 2 1 0 1 2 1 0 0

4 2 2 1 0 2 1 0 1

Let us understand the geometrical meaning of the values of, say, row ν = 3 in view of the MM-table
of f , Tables 2 and 3.

• p(3) = 2 and λ(3) = 1 because the leftmost column beginning at or intersecting the row ν = 3

(the x3,1-column) has the symbol m+− = ω2
1 ≡ ω

p(3)
λ(3) on row ν = 3.

• α1
3 = 0 because ω

p(3)
λ(3) = m+− ∈ B1, i.e., it is a bad symbol with respect to the critical line y = c1

(so the lack of a zero of f 3(x) − c1 in the interval (a, ξ3) is already accounted for in the term 2b13
of Equation (26)). On the other hand, α2

3 = 1 because ωp(3)
λ(3) = m+− /∈ B2, i.e., it is a good symbol

with respect to the critical line y = c2 but f 3(a) < c2 (see the second sign on row ν = 3 of the
c0-column), so f 3(x)− c2 has no zero in the interval (a, ξ3).

• q(3) = 2 and ρ(3) = 1 because the rightmost column beginning at or intersecting the row ν = 3

(i.e., the x3,4-column) has the symbol m+− = ω2
1 ≡ ω

q(3)
ρ(3) on row ν = 3.

• β1
3 = 0 because ω

q(3)
ρ(3) = m+− ∈ B1. On the other hand, β2

3 = 0 because ω
q(3)
ρ(3) = m+− is a good

symbol with respect to the critical line y = c2 and, furthermore, f 3(b) > c2 (see the second sign
on row ν = 3 of c3-column), so f 3(x)− c2 has one zero in the interval (η3, b).

We can now derive the main result of this paper.

Theorem 5.3. Let ωi = (ωi
ν)ν≥1, 1 ≤ i ≤ l, be the MMSs of f ∈ Fl, and (αi

ν)ν≥1, (βi
ν)ν≥1 the 0-1

sequences obtained from (28)–(30). Set

Ki
ν = {(k, κ), 1 ≤ k ≤ l, 1 ≤ κ ≤ ν : ωk

κ ∈ Bi}

Then the lap number of fn, n ≥ 1, is given by

�n = 1 +
n−1∑
ν=0

sν (31)

where sν =
∑l

i=1 s
i
ν (20), si0 = 1 (19), and for ν ≥ 1,

siν = 1 +
ν−1∑
μ=0

sμ − 2
∑

(k,κ)∈Ki
ν

skν−κ − αi
ν − βi

ν (32)
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Proof. Addition of �ν − �ν−1 = sν−1 (23) for ν = 1, ..., n [�0 = 1 (17)], yields the expression (31).

Let N i
ν be the number of ωi sequences that begin at row ν on the MM-table of f , and, as before, let

biν be the number of symbols of Bi on row ν. Then,

biν =
∑

(k,κ)∈Ki
ν

Nk
ν−κ+1 (33)

By Lemma 3.1, N i
ν = siν−1 for ν ≥ 2. Since N i

1 = 1 and si0 = 1 (19), 1 ≤ i ≤ l, we conclude that

N i
ν = siν−1 for ν ≥ 1 as well. Upon substitution of this equality and Equation (26) into Equation (33),

we obtain

siν = eν + 1− 2
∑

(k,κ)∈Ki
ν

skν−κ − αi
ν − βi

ν (34)

Finally, use (24) to derive the expression (32). �

In view of (31), Equation (32) can be shortened to

siν = �ν − 2
∑

(k,κ)∈Ki
ν

skν−κ − αi
ν − βi

ν (35)

In particular, �1 = l + 1, and Ki
1 = {(k, 1), 1 ≤ k ≤ l : ωk

1 ∈ Bi}, hence
∑

(k,1)∈Ki
1
sk1−κ =∑

(k,1)∈Ki
1
sk0 = |Ki

1| since sk0 = 1 for every k (19). Therefore

si1 = l + 1− 2
∣∣Ki

1

∣∣− αi
1 − βi

1

Example 5.4. (Cont’d) Once again let f be the cubic map (15) restricted to the interval [0, 1]. With the
information provided in Example 5.2 and the formulas of Theorem 5.3, we get the following results in
Table 5.

Table 5. Lap numbers of the first four iterates of the map (15).

ν K1
ν K2

ν s1ν s2ν sν �ν

1 {(2, 1)} ∅ 1 2 3 3

2 {(2, 1)} {(1, 2)} 0 4 4 6

3 {(2, 1), (1, 3)} {(1, 2), (2, 3)} 0 5 5 10

4 {(2, 1), (1, 3), (2, 4)} {(1, 2), (2, 3)} 0 10 10 15

For instance,

s13 = l + 1 + s1 + s2 − 2(s22 + s10)− α1
3 − β1

3

= 2 + 1 + 3 + 4− 2(4 + 1)− 0− 0 = 0

s23 = l + 1 + s1 + s2 − 2(s11 + s20)− α2
3 − β2

3

= 2 + 1 + 3 + 4− 2(1 + 1)− 1− 0 = 5

hence, s3 = s13 + s23 = 5. Finally, Equation (31),

�4 = 1 + s0 + s1 + s2 + s3 = 1 + 2 + 3 + 4 + 5 = 15

All these numerical results can be checked at Figure 1.



Entropy 2012, 14 759

Two comments are in order at this point.

First, the computation scheme (31) and (32) for the lap number �n only involves two ingredients: The

first n symbols of the l MMSs of f , and the first n signatures of the itineraries of both endpoints.

Secondly, the number of summations in (31) and (32) for the computation of �n is O(n2). Moreover,

this scheme is almost recursive. Indeed the value of siν is determined by the values of si1, s
i
2, ..., siν−1

along with the values of αi
ν , β

i
ν ∈ {0, 1}, which have to be calculated anew for each ν. Thus, in the

particular case αi
ν = βi

ν = 0 for all i = 1, ..., l and ν ≥ 1, the algorithm is not only much simpler but

fully recursive.

6. Special Cases

The next two lemmas provide sufficient conditions for all αi
ν’s and βi

ν’s in (32) to vanish.

Remember that a map is called quasi boundary-anchored if it satisfies the boundary conditions (BC1)

and (BC2) of Section 3. The most prominent instance of quasi boundary-anchored maps are the

boundary-anchored ones.

Lemma 6.1. Let f ∈ Fl be a quasi boundary-anchored map such that

(H1) f(c1) > cl, and

(H2) f(cl) > cl (l odd) or f(cl) < c1 (l even).

Then p(ν) = 1, q(ν) = l, λ(ν) = 1, ρ(ν) = 1, and

αi
ν = βi

ν = 0 (36)

for all ν ≥ 1, 1 ≤ i ≤ l.

Proof. From Lemma 3.4 (a)–(c) and their corresponding proofs, we conclude the following results.

(a) σi(f
ν(a)) · σi(f

ν(ξν)) < 0, ξν < ξν−1, and

ω
p(ν)
λ(ν) = ω1

1 = M (+,...,+) /∈ Bi

[see (25)] for all ν ≥ 1, 1 ≤ i ≤ l.

(b) σi(f
ν(b)) · σi(f

ν(ην)) < 0, ην > ην−1, and

ω
q(ν)
ρ(ν) = ωl

1 = M (+,...,+) /∈ Bi

for all ν ≥ 1, 1 ≤ i ≤ l, l odd.

(c) σi(f
ν(b)) · σi(f

ν(ην)) < 0, ην > ην−1, and

ω
q(ν)
ρ(ν) = ωl

1 = m(−,...,−) /∈ Bi

for all ν ≥ 1, 1 ≤ i ≤ l, l even.

In sum, {
ω
p(ν)
λ(ν) = ω1

1 /∈ Bi, ω
q(ν)
ρ(ν) = ωl

1 /∈ Bi

σi(f
ν(a)) · σi(f

ν(ξν)) < 0, and σi(f
ν(ην)) · σi(f

ν(b)) < 0

for all ν ≥ 1, and i ∈ {1, ..., l}. From the definition (28) it follows that all the αi
ν’s and βi

ν’s vanish. �

Lemma 3.5 provides a second scenario for the vanishing of all αi
ν’s and βi

ν’s.
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Lemma 6.2. Let f ∈ Fl be a quasi boundary-anchored map such that

(H1) f(c1) < c1, and

(H2) f(cl) < c1 (l odd) or f(cl) > cl (l even).

Then p(ν) = 1, q(ν) = l, λ(ν) = ν, ρ(ν) = ν, and

αi
ν = βi

ν = 0

for all ν ≥ 1, 1 ≤ i ≤ l.

Proof. From Lemma 3.5 (a)–(c) and their corresponding proofs, we conclude the following results.

(a) σi(f
ν(a)) · σi(f

ν(ξν)) ≥ 0, ξν = c1, and

ω
p(ν)
λ(ν) = ω1

ν = M (−,...,−) ∈ Bi

[check (25)] for all ν ≥ 1, 1 ≤ i ≤ l.

(b) σi(f
ν(b)) · σi(f

ν(ην)) ≥ 0, ην = cl, and

ω
q(ν)
ρ(ν) = ωl

ν = M (−,...,−) ∈ Bi

for all ν ≥ 1, 1 ≤ i ≤ l, l odd.

(c) σi(f
ν(b)) · σi(f

ν(ην)) ≥ 0, ην = cl, and

ω
q(ν)
ρ(ν) = ωl

ν = m(+,...,+) ∈ Bi

for all ν ≥ 1, 1 ≤ i ≤ l, l even.

In sum, {
ω
p(ν)
λ(ν) = ω1

ν ∈ Bi ω
q(ν)
ρ(ν) = ωl

ν ∈ Bi,

σi(f
ν(a)) · σi(f

ν(ξν)) ≥ 0, and σi(f
ν(ην)) · σi(f

ν(b)) ≥ 0

for all ν ≥ 1, and i ∈ {1, ..., l}. From the definition (28) it follows that all the αi
ν’s and βi

ν’s vanish. �

Another nice simplification occurs when the map is unimodal because then sn =
∑l

i=1 s
i
n = s1n. To

make the notation uniform, set ων ≡ ω1
ν , B ≡ B1 = {m0,m+,M0,M−}, Kn ≡ K1

n ⊂ {1} × {1, ..., l},

αν ≡ α1
ν , and βν ≡ β1

ν in the unimodal case. Furthermore, for l = 1 Equations (28)–(30) get abridged to

αν =

{
1 if σ(f ν(a)) · σ(ωλ(ν)) ≥ 0 and ωλ(ν) �∈ B
0 otherwise

βν =

{
1 if σ(f ν(b)) · σ(ωρ(ν)) ≥ 0 and ωρ(ν) �∈ B
0 otherwise

(37)

where σ(·) ≡ σ1(·), λ(1) = ρ(1) = 1, and for ν ≥ 2,

λ(ν) =

{
1 if σ(f ν−1(a)) · σ(ωλ(ν−1)) < 0

λ(ν − 1) + 1 if σ(f ν−1(a)) · σ(ωλ(ν−1)) ≥ 0

ρ(ν) =

{
1 if σ(f ν−1(b)) · σ(ωρ(ν−1)) < 0

ρ(ν − 1) + 1 if σ(f ν−1(b)) · σ(ωρ(ν−1)) ≥ 0

(38)

Note that Equation (29) boils down to p(ν) = q(ν) = 1 for any ν ≥ 1 (as it should, since unimodal maps

have only one MMS).
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Theorem 6.3 ([16]). Let ω = (ων)ν≥1 be the MMS of f ∈ F1, B = {m0,m+,M0,M−}, and

Kn = {1 ≤ κ ≤ n : ωκ ∈ B}

If (αν)ν≥1, (βν)ν≥1, are the 0-1 sequences obtained from (37)–(38), then

�n+1 = 2�n−2
∑
κ∈Kn

(�n+1−κ − �n−κ)− αn − βn (39)

where n ≥ 1 and �0 = 1 (17).

Proof. In the unimodal case, Equation (35) reads

sn = �n − 2
∑
κ∈Kn

sn−κ − αn − βn (40)

Substitution of sν = �ν+1 − �ν (23) with ν = n and ν = n− κ into (40), produces (39). �

Denote by c the only critical point c1 of f ∈ F1. Application of Lemma 6.1 (f(c) > c) and Lemma 6.2

(f(c) < c) to Theorem 6.3 yields a further simplification.

Corollary 6.4 ([13,15]). Let ω = (ων)ν≥1 be the MMS of a quasi boundary-anchored map f ∈ F1

(i.e., f ν(a) < c, f ν(b) < c for all ν ≥ 1). Then,

�n+1 = 2�n − 2
∑
κ∈Kn

(�n+1−κ − �n−κ) (41)

for n ≥ 1.

Alternatively, one can set l = 1 and αi
ν = βi

ν = 0 in (31)–(32) to derive, under the assumptions of

Corollary 6.4,

�n = 1 +
n−1∑
ν=0

sν (42)

where s0 = 1 [see (17)], and

sν = 1 +
ν−1∑
μ=0

sμ − 2
∑
κ∈Kν

sν−κ (43)

for ν ≥ 1.

As a quick check, observe that if f(c) < c, then ω = (M−)∞, hence Kn = {1, ..., n}. In this case,

(41) collapses to �n+1 = 2�0 = 2. Likewise, (43) provides sν = 0 for all ν ≥ 1, thus �n = 1 + s0 = 2

by (42).

7. An Algorithm for the Topological Entropy

The logical flow of the algorithm provided by Theorem 5.3 for the calculation of �n is as follows. We

use the notation ‘A −→Equation (n)−→ B’ to indicate that data B is computed from data A via the

formula given in Equation (n).

• Preprocessing. Calculate the MMSs of f ∈ Fl, (ω
k
ν )1≤ν≤n−1 for 0 ≤ k ≤ l + 1 [remember the

convention (14)]. The sequences (ωi
ν)1≤ν≤n−1, 1 ≤ i ≤ l, readily follow from the initial symbols

ωi
1 and the kneading sequences γi via the transition rules given in Table 1.
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• Seeds. p(1) = 1, q(1) = l, λ(1) = ρ(1) = 1, and si0 = 1 (1 ≤ i ≤ l).

• Steps 1 ≤ ν ≤ n− 2. For 1 ≤ i, k ≤ l:

ω0
ν , ω

p(ν)
λ(ν) −→ Equations (28),(29),(30) −→ αi

ν , p(ν + 1), λ(ν + 1)

ω
q(ν)
ρ(ν), ω

l+1
ν −→ Equations (28),(29),(30) −→ βi

ν , q(ν + 1), ρ(ν + 1)

sk0, s
k
1, ..., s

k
ν−1, α

i
ν , β

i
ν −→ Equation (32) −→ siν , sν

• Final step ν = n− 1. For 1 ≤ i, k ≤ l:

ω0
n−1, ω

p(n−1)
λ(n−1) −→ Equation (28) −→ αi

n−1

ω
q(n−1)
ρ(n−1), ω

l+1
n−1 −→ Equation (28) −→ βi

n−1

sk0, s
k
1, ..., s

k
n−2, α

i
n−1, β

i
n−1 −→ Equation (32) −→ sin−1, sn−1

s1,s2, ..., sn−1 −→ Equation (31) −→ �n

From a computational point of view, the core of the calculation program is a loop that is exited when

a chosen precision ε = 10−d in the estimation of h(f) has been reached, i.e., when∣∣∣∣1ν log �ν − 1

ν − 1
log �ν−1

∣∣∣∣ ≤ ε

(otherwise, the loop is left with a flag after exceeding a preset maximal number of iterations nmax). In

other words, the final step n is dynamically determined by the number d of exact decimal digits in the

estimation of h(f) —unless n = nmax before getting that precision.

8. Numerical Simulations

The algorithm of Section 7 was implemented with the software package MATHEMATICA for

arbitrary l, and run on an Intel(R) Core(TM)2 Duo CPU. The logarithms were taken to base 2, so the

values of h(f) are given in bits per iteration. We summarize next some numerical results obtained with

2- and 3-modal maps. In all these simulations, nmax = 500.

8.1. Simulations with Bimodal Maps

The workhorse in most of our numerical simulations with bimodal maps was the two-parametric

family of cubic polynomials

fv1,v2(x) = (v1 − v2)(16x
3 − 24x2 + 9x) + v2

where x ∈ [0, 1]. These maps have convenient properties for numerical simulations as they share the

same fixed critical points,

c1 = 1/4, c2 = 3/4

the critical values are precisely the parameters,

fv1,v2(1/4) = v1, fv1,v2(3/4) = v2
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and the values of f at the endpoints are explicitly given by the parameters as follows:

fv1,v2(0) = v2, fv1,v2(1) = v1

Therefore, if we choose v1, v2 ∈ [0, 1] with v1 > v2, we obtain bimodal maps with a positive shape. It is

customary to call control parameter(s) the parameter(s) labeling the maps of a family.

Figure 3 (left) shows the graphs of the full range map f1,0, together with f0.9,0.1 and f0.8,0.2. The

convergence rate of (�n)
1/n to 2h(f) for these three maps when n increases is shown in Figure 3 (right).

The precision obtained for h(fv1,v2) in this range of parameters and n = 200, is the following:

∣∣∣∣ 1

200
log2 �200 −

1

199
log2 �199

∣∣∣∣ =
{

0.0000942... for f0.9,0.1

0.0002204... for f0.8,0.2

For n = 500, the estimation of h(f0.8,0.2) has four exact decimal digits.

Figure 3. Left, graphs of the maps f1,0, f0.9,0.1, f0.8,0.2. Right, the corresponding convergence

plots of (�n)
1/n to 2h(f) as a function of n (top to bottom).
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A typical benchmark for estimators of the topological entropy consists in determining the entropy as a

function of the control parameter(s). Since fv1,v2 depends on two control parameters, we have calculated

that dependence both on one parameter (while keeping fixed the other one), and on the two of them.

Figure 4 is a plot of h(f1,v2) vs. v2. As h(f1,v2) gets smaller, the number of iterations needed to get the

entropy with a given precision grows higher. In Figure 4, the mesh constant used was Δv2 = 10−3, and

the precision ε = 10−4.

Figure 5 is the same kind of plot, this time for h(fv1,v2) as a function of both control parameters,

with 0.5 ≤ v1 ≤ 1, and 0 ≤ v2 ≤ v1 − 0.5. This figure depicts also some level sets, just to illustrate

the monotonicity of the topological entropy in the parametric space. This property, first conjectured by

Milnor and Thurston [17], was later proved for quadratic maps in [18,19]. Only recently did H. Bruin

and S. van Strien succeed in proving it also for multimodal maps [20]. The computation parameters were

set as follows: Δv1 = Δv2 = ε = 10−2.
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Figure 4. Plot of h(f1,v2) vs. v2, 0 ≤ v2 ≤ 1.
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Figure 5. Level sets of the plot of h(fv1,v2) vs. v1, v2, 0 ≤ v2 ≤ v1 − 0.5.
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8.2. Simulations with 3-Modal Maps

Consider next the 3-modal maps fv2,v3 : [0, 1] → [0, 1] defined by the quartic polynomials

fv2,v3(x) =
4
[(
2
√
2− 1

)
v2 − 2v3

]
x

2(2
√
2 + 1)v3 − 7v2

[
4
(
1 + 2

√
2
)
(x− 1)(1− 2x)2v3

+
(
−56x3 + 20

(
4 +

√
2
)
x2 −

(
37 + 18

√
2
)
x+ 3

√
2 + 5

)
v2

]
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where 0 ≤ v2 < v3 ≤ 1. The derivative is

f ′
v2,v3

(x) = A(x− c1)(x− c2)(x− c3)

where A = 128
(
2
√
2v2 − v2 − 2v3

)
, and

c1 =
−√

2v2 − 4v2 + 12
√
2v3 − 8v3

8
(−7v2 + 4

√
2v3 + 2v3

) , c2 = 1/2, c3 =
1

4
(2 +

√
2)

This family verifies fv2,v3(0) = 0, fv2,v3(c2) = v2, f(c3) = v3, and

fv2,v3(1) =
4
(
5
√
2− 8

)
v2

((
2
√
2− 1

)
v2 − 2v3

)
−7v2 + 4

√
2v3 + 2v3

Thus, fv2,v3 has two fixed critical points (c2 and c3), while the critical point c1 depends on the control

parameters v2, v3. And again, v2, v3 coincide with the critical values at c2 and c3, respectively. The

restriction v2 < v3 postulated above relates to v2 being a local minimum and v3 a local maximum.

Moreover, the left endpoint, x = 0, is a fixed point.

In particular, the choice v2 = 0 and v3 = 1 produces a full range quartic, Figure 6, with equation

f0,1(x) = −16x(x− 1)(1− 2x)2

Figure 7 (left) shows the dependence of h(fv2,1) on the control parameter 0 ≤ v2 < 1, while Figure 7

(right) does the same for h(f0,v3) with 0 < v3 ≤ 1. As in the previous computation with a uniparametric

cubic, Δv1 = Δv2 = 10−3, and ε = 10−4. Finally, Figure 8 depicts some level sets of h(fv2,v3) with

0 ≤ v2 ≤ 5 and v2 + 0.3 ≤ v3 ≤ 1. Here Δv1 = Δv2 = ε = 10−2.

Figure 6. The full range quartic f0,1.

0 1
4
�2 � 2 � 1

2
1
4
�2 � 2 � 1

0.0

0.2

0.4

0.6

0.8

1.0



Entropy 2012, 14 766

Figure 7. Left, plot of h(fv2,1) vs. v2, 0 ≤ v2 < 1. Right, plot of h(f0,v3) vs. v3, 0 < v3 ≤ 1.
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Figure 8. Level sets of the plot of h(fv2,v3) vs. v2, v3, v2 + 0.3 ≤ v3 ≤ 1.
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9. Conclusions

We have given an algorithm to efficiently calculate the lap number �n (hence, the topological entropy)

for the iterates of a twice differentiable l-modal map f . The algorithm is based on l + 1 symbolic

sequences (ωi
ν)ν∈N, 0 ≤ i ≤ l+1, —the min-max sequences of f—that contains qualitative information

about the structure of maxima and minima of the map iterates fn and the orbits of the endpoints.

Theorem 6.3 shows that �n is determined by the initial segments (ωi
n)1≤ν≤n−1, hence by the itineraries

of the critical and boundary points up to order n − 1. This approach builds on previous results for

unimodal, boundary-anchored maps obtained in [13] and [15] (Corollary 6.4) and [16]. To test if the

topological entropy is positive, we test if the kneading sequences are similar or differ from the kneading

sequences associated with the Feigenbaum period doubling cascade ([16], Section 5). If the kneading

sequences are similar, than the map has zero topological entropy. Finally, we would like to add that



Entropy 2012, 14 767

the counting techniques developed here can be extended to maps with jump discontinuities and to

piecewise continuous and monotonous maps. However in this case, the kneading sequence calculus

must be substantially changed.
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