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Abstract: In modified theories of gravity including a critical acceleration scale a0, a critical

length scale rM = (GM/a0)
1/2 will naturally arise with the transition from the Newtonian

to the dark matter mimicking regime occurring for systems larger than rM . This adds a

second critical scale to gravity, in addition to the one introduced by the criterion v < c of

the Schwarzschild radius, rS = 2GM/c2. The distinct dependencies of the two above length

scales give rise to non-trivial phenomenology in the (mass, length) plane for astrophysical

structures, which we explore here. Surprisingly, extrapolation to atomic scales suggests

gravity should be at the dark matter mimicking regime there.
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1. Introduction

Over the past years numerous approaches have appeared, proposing to interpret galactic rotation

curves and other dynamical astrophysical observations, as well as gravitational lensing, as gravitational

effects. All the many theoretical approaches proposed as alternatives to dark matter share in common, by

construction, the reproduction in the relevant acceleration and velocity limits, of accelerations which tend

to ∝ M1/2/r for large distances from a spherical mass M . This regime appears at accelerations lower

than the critical value of the MOND a0 parameter, to reproduce the observed flat rotation curves and

Tully–Fisher relation of spiral galaxies. Examples of the above are the modified dynamics approach

of MOND, e.g., [1], the Lagrangian MOND schemes of, e.g., [2], covariant MOND formulations,

e.g., [3,4], the Tensor-Vector-Scalar formalism of TeVeS of [5], or conformal gravity theories, e.g., [6].

From a cosmological perspective, the qualitative similarity between the early inflationary phase and

the current late accelerated expansion phase has been interpreted as evidence for a common physical
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origin for both, in terms of modified gravity [7]. This approach has been extensively explored over

the past years by several authors, who have now shown the consistency of the proposal with all

global expansion history observations for a variety of extensions to general relativity, e.g., [8–14]. The

connection between such approaches and dark matter inferences at galactic dynamics level has also been

explored for the case of F (R) modifications to general relativity by, e.g., [15–17].

Very recently, independent observations for three distinct types of astrophysical systems have severely

challenged the standard gravity plus dark matter scenario, showing a phenomenology which is actually

what modified gravity theories predict. Firstly, the case of globular clusters is interesting, with these

systems having traditionally been thought of as classical examples of purely Newtonian gravity, and

exhibiting values of a > a0 throughout most of their extent. Recently however, results sampling stellar

kinematics in their outskirts by [18] and [19] have indicated the appearance of MOND type dynamics

appearing precisely beyond the point where accelerations fall below a0. Further, the recent analysis

of [20] has shown the appearance of a “Tully–Fisher” relation in these systems, a scaling of their

dispersion velocities at the outskirts with the fourth root of their total masses. These observations are

precisely what is expected under modified theories of gravity, but would require rather contrived and

fine tuned explanations under standard gravity. Secondly, [21] recently reported a gravitational anomaly

of the type generally ascribed to dark matter at galactic scales, at the much smaller and unexpected

scales of 1–10 pc associated with wide binaries in the solar neighbourhood. These authors show that

typical binary stellar orbital velocities cease to fall with separation along Keplerian expectations, and

settle at a constant value consistent with modified gravity predictions, exactly on crossing separations

where the acceleration falls below a0. Finally, [22] showed that the inferred infall velocity of the bullet

cluster is inconsistent with the standard cosmological scenario, where much smaller limit encounter

velocities are expected at those redshifts. The problem was more carefully re-analysed in [23], reaching

identical conclusions. The inconsistency stems from the physically imposed escape velocity limit present

in standard gravity; the “bullet” should not hit the “target” at more than the escape velocity of the

joint system, as it very clearly did. The slower radial fall-off of the gravitational force in modified

gravity schemes, however, makes it natural to obtain encounter velocities much beyond classical

escape velocities, as shown in, e.g., [24]. The above mentioned observations put us in a situation

where modifications to gravity at low acceleration scales cease to be a matter of choice, and now

appear inevitable.

The introduction of a critical acceleration in modified gravity theories in turn implies the appearance

of a critical mass dependent length scale rM = (GM/a0)
1/2. Systems having extents larger than their

corresponding rM values will be in the dark matter mimicking regime, while those smaller than this

value will be in the Newtonian regime, provided equilibrium velocities satisfy v << c, e.g., [25,26]. The

appearance of a critical mass dependent length scale is not new to gravity; in the covariant version of

Newtonian gravity, general relativity, the introduction of a critical velocity, c, introduces a corresponding

critical mass dependent length scale rS = 2GM/c2.

Generally, we are accustomed to thinking in terms of Schwarzschild radii for astrophysical objects

which are much smaller than the extent of the systems in question, which can then be smaller or

larger than their corresponding rM values, depending on whether observed dynamics satisfy Newtonian

expectations or not. A general consistency check for the gravitational interpretation of astrophysical
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dynamics is found in that not a single high acceleration system (a > a0) is known where dark matter

is required, and conversely, not a single low acceleration system (a < a0) is known where dark matter

is not required, when interpreting observations under Newtonian gravity. An exception to either of the

two above rules would seriously challenge many of the modified theories of gravity currently under

consideration.

Going back to the usual hierarchy rS << r < rM or rS << rM < r for astrophysical objects in the

Newtonian or dark matter mimicking regimes, we note that the distinct mass scalings of rS and rM imply

that at sufficiently large masses the situation rM < rS could arise. This leads to non-trivial structure in

the (mass, radius) plane for astrophysical objects, which we explore across 25 orders in magnitude in

both axis in the following section. Section 3 then presents the results of extrapolating the empirical

phenomenology of astrophysical scales down to the atomic regime, with the interesting prediction that at

those scales, gravity should appear to be at the dark matter mimicking regime. Finally, our conclusions

are presented in Section 4.

2. A Gravitational Phase Space Diagram

We begin by examining the distinct dependencies of the two critical length scales which will appear

in any covariant theory of gravity aiming at explaining the observed astrophysical phenomenology at

galactic scales, without invoking dark matter:

rS =
2GM

c2
(1)

and

rM =
(
GM

a0

)1/2

(2)

It is now obvious that a critical dimensionless parameter of the problem will be the ratio of the above

two radii, b = rS/rM . This parameter will be very small for most astrophysical objects. Whilst rS scales

with M , rM scales only with M1/2. This implies a reversal of the accustomed hierarchy rS << rM

into rM < rS at sufficiently large masses, when b will transit from b < 1 to b > 1, with a critical point

appearing at b = 1.

To better appreciate the distinct regions which will appear in the (mass, radius) plane, we plot Figure 1,

where the two thick solid lines show the two physical critical conditions v < c and a = a0, and their

corresponding resulting mass dependent length scales of Equations (1) and (2), in a log-log scale. The

dashed line below the r = rS condition gives the region where relativistic effects begin to appear, at the

threshold where equilibrium velocities cease to be negligible with respect to c, of order v = 0.01c.

We see that the Newtonian region is restricted to a wedge extending downwards and limited along

the top by the dotted line r = 100rS , and from the lower side by the condition r = rM . This clearly

encompasses gravity at the planetary scale, the solar system, globular clusters (excluding their outer

regions), while binary stars transit from this region to the modified gravity regime to the right of it.

Elliptical galaxies appear somewhat at the edge of this region. Indeed, in [27] some of us showed how

the observed scaling relations for ellipticals, along with most of the tilt in the fundamental plane, can

be easily explained by the appearance of non-Newtonian effects outside their core regions, which is

consistent with the approach of the a = a0 threshold.
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Figure 1. Phase space diagram for self-gravitating equilibrium configurations. The labelled

solid lines give the mass dependant scale radii resulting from the two limit conditions v = c

and a = a0, rS = 2GM/c2 and rM = (GM/a0)
1/2. The approach to the former from below

signals the relativistic region, whilst the approach to latter from the left denotes the transition

from the Newtonian to the dark matter mimicking regime. The labels identify the regions

occupied by different astrophysical objects; the solar system, SS, stars, S, wide binaries, WB,

globular clusters, GC, dwarf spheroidal galaxies, dSph, elliptical galaxies, E, spiral galaxies,

S Gal and galaxy clusters, GaC. Distinct regions of the diagram are labelled; black holes,

BH, appearance of relativistic effects, GR, the Newtonian region, N, the modified gravity

regime, M, and the critical density of the universe, or the dark energy density, coinciding

with the critical point b = 1 where rS = rM .
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Within this Newtonian wedge region, increasing the mass or reducing the radius drives a system

into the relativistic region, and then into the black hole regime. Conversely, reducing the mass or

increasing the radius shifts an object from the Newtonian regime into the dark matter mimicking

region. For example, in going from globular clusters to dwarf spheroidal galaxies (dSphs), objects show

comparable masses but qualitatively distinct dynamics. The details of the transition are open to debate,

and are commonly expressed in terms of the choice of the corresponding MOND μ transition function,

e.g., [1,20,27–30].

To the right of the r = rM line we see the dark matter mimicking region, occupied for example by

the dSph galaxies, the most “dark matter dominated” systems known. These have mass to light ratios
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sometimes in the thousands, under Newtonian interpretations, e.g., [31]. Spiral galaxies transit from

being to the left of this line in their internal regions to being to the right of it as one moves away along

their disks. For the Milky Way, we see the Solar radius appearing slightly to the right of the r = rM

threshold, consistent with the Newtonian deduction of a 50% dark matter content within this radius,

e.g., [27]. We see also galaxy clusters to the right of the line marking the end of the Newtonian region at

their outskirts.

At a very large critical mass of Mb = 5.06× 1023M�, we see the intersection of the two gravitational

critical radii at b = 1. The corresponding radius being of Rb = 2.5 × 104Mpc. The above critical mass

and radius are essentially the only such quantities which can be constructed dimensionally from G, c

and a0, Mc = c4/(Ga0) and Rc = c2/a0. It is interesting to note that the density which corresponds to

b = 1 critical parameters, ρb = Mb/R
3
b = 4.8 × 10−27kgm−3 agrees to within a factor of 2 with the

critical density of the universe of ρc = 8.4 × 10−27kgm−3 or equivalently, the density of “dark energy”

inferred under GR. This points to the appearance of the relativistic dark matter mimicking region at

cosmological densities somewhat lower than those present today, coinciding with the regime where the

accelerated expansion of the Universe is detected. Thus, we see that the critical density of the universe

is also critical in the sense of b = 1. Since H2
0 = 8πGρc/3, the agreement of ρb ≈ ρc is equivalent to

the well known numerical coincidence of a0 ≈ H0c (e.g., [32]), and indeed, could point to the physical

origin of the numerical equivalence in question.

Also, the end of the Newtonian sector at masses of order 1018M� implies a region where the dark

matter mimicking regime transits directly into the relativistic one, without passing through a Newtonian

region. To the right of the r = rM threshold, equilibrium velocities satisfy the Tully–Fisher relation:

(
V

c

)2

=
(
GMa0
c4

)1/2

=
(
M

Mc

)1/2

(3)

However, this scaling can not continue to be the case for arbitrarily large masses, which would imply

equilibrium velocities larger than c. We must therefore think of a modification of the type

(
V

c

)2

=
(

M

M +Mc

)1/2

(4)

The thin horizontal continuous line gives the limit mass M = Mc, the level at which the dark matter

mimicking regime becomes relativistic. The corresponding threshold at which this regime should begin

to exhibit relativistic effects, where the standard Tully–Fisher relation yields V = 0.01c, is given by the

horizontal dashed line. We see that galaxy clusters lie very close to this line; in fact, dispersion velocities

in clusters of galaxies often exceed 1000 km/s, much more than the values of around 50 km/s of the

orbit of Mercury, where relativistic effects begin to become apparent. This alerts to the fact that galaxy

clusters probably present non-negligible relativistic effects, and can not be treated under non-relativistic

modified gravity schemes. This appears obvious from the region occupied by galaxy clusters in Figure 1,

only slightly below the horizontal dotted line mentioned.

In view of the above, it is probably more correct to think of the relativistic regime, which within the

Newtonian region is defined by the dashed line r = 100rS , as blending continuously into the horizontal

dashed line appearing a little below M = 1016M�. Above the corresponding v = c line one can speculate

about “MONDian” black holes and other phenomena, but in the absence of observations, we restrict the
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discussion to the regions probed by known astrophysical objects. The relativistic “MONDian” regime

v ∼ c and a < a0 appears populated only by the critical density of the universe.

3. Extrapolation to Atomic Scales

It is interesting to calculate on what side of the r = rM divide systems at the atomic scale lie.

Taking M = Nmp with mp the proton mass, it is immediate to calculate from Equation (2) rM =

3.05× 10−4N1/2Å, with a resulting value of b = 7.44× 10−32N1/2. Therefore atoms, systems in the Å

range of scales with N of order a few, lie several orders of magnitude to the right of the r = rM divide, as

is the case of galactic systems. Hence, the extrapolation of gravitational phenomenology under modified

gravity ideas implies that gravity at atomic scales will be at the dark matter mimicking regime.

One should therefore expect that at atomic scales, a test mass in the presence of a much larger mass

M will experience a gravitational attraction several thousand times larger than the Newtonian prediction.

This remains many orders of magnitude below the electromagnetic effects, which obviously still largely

dominate. However, if such effects can be accounted for, a residual force per unit mass should appear

given by:

F =
c2b

2r
(5)

with a corresponding potential Φ = (c2b/2)ln(r/rS), where rS has been introduced for dimensional

consistency. We see again the critical parameter b appearing. This force will be several orders of

magnitude larger than the Newtonian value. It is important to notice that this prediction is generic

to many modified gravity theories, which explain the dynamics otherwise ascribed to dark matter as

gravitational effects, largely independent of the details of the covariant framework behind the observed

phenomenology. The above expectations could be relevant in light of forthcoming micro-gravity

experiments, e.g., the forthcoming ESA STE-QUEST satellite.

4. Conclusions

We have shown that, since a second gravitational mass dependent length scale appears in addition

to the Schwarzschild radius in modified theories of gravity reproducing the observed astrophysical

phenomenology, non-trivial structure appears in a (mass-radius) phase space diagram for gravity.

The disappearance of the Newtonian region for masses slightly above galactic cluster scales identifies

a limit above which low velocity dark matter mimicking phenomenology can transit into its relativistic

regime, without an intermediary Newtonian region.

The coincidence of the critical mass and radius at this point with the critical density of the universe

could be interpreted as a clue towards understanding the recent appearance of the accelerated expansion

of the Universe, within the framework of modified theories of gravity in general.

In going to the smallest scales available to direct experimentation, we see that a prediction appears, in

the form of gravity at atomic level being decidedly at the dark matter mimicking regime. This constitutes

an exciting prediction for future micro-gravity experiments.
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