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Abstract: Consideration is given to macrosystems called paramacrosystems with states
of finite capacity and distinguishable and undistinguishable elements with stochastic
behavior. The paramacrosystems fill a gap between Fermi and Einstein macrosystems.
Using the method of the generating functions, we have obtained expressions for probabilistic
characteristics (distribution of the macrostate probabilities, physical and information
entropies) of the paramacrosystems. The cases with equal and unequal prior probabilities
for elements to occupy the states with finite capacities are considered. The unequal
prior probabilities influence the morphological properties of the entropy functions and the
functions of the macrostate probabilities, transforming them in the multimodal functions.
The examples of the paramacrosystems with two-modal functions of the entropy and
distribution of the macrostate probabilities are presented. The variation principle does not
work for such cases.

Keywords: entropy; macrosystems; paramacrosystems; generating functions; variational
principle

1. Introduction

Entropy maximization as the classical variational principle of the statistical physics is an effective
tool for modeling and solving a lot of applied problems. There are many definitions of “entropy”
functions [1]. Part of them is connected with characterization of the macrosystems [2]. They are the
systems which consist of a lot of number elements with stochastic behavior but theirs holistic behavior
is quasi-deterministic one.
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For the first time this approach has been formulated in physics where the terms “microlevel,
macrolevel” and “microstate, macrostate” appeared. Then it came into other scientific disciplines.
Gradually, it became a tool for theoretic and experimental research. The macrosystems theory is based
on this approach.

One of its branches is connected with the study of equilibria in macrosystems with indistinguishable
elements, which are distributed in a random way among Fermi-, or Einstein-, or Boltzmann-states. For
Fermi-macrosystems, only one element can be in each state, and for Einstein-macrosystems, any number
of elements can be in each state. Boltzmann-macrosystems are considered as asymptotics of the first two
classes of macrosystems, namely, when the mean number of elements in the the subsets of close states
is small. The above phenomenology of states can be interpreted as a statistic by Fermi, Einstein, and
Boltzmann, respectively.

However, the question arises as to how the statistics are arranged in macrosystems, the states in which
can take 2, 3, . . . , s < ∞ elements, i.e., the states can have capacities s = {s1, . . . , sm}, where m is the
number of the subsets and si is the number of elements that can occupy the i-th subset. These statistics
occupy the interval between the Fermi- and the Einstein-statistics and they are called parastatistics of
the order s [3,4]. In the terms of the order, the Fermi-statistics is the parastatistics of the order 1, and
the Einstein-statistics is the parastatistics of the order∞.

We shall identify the macrosystems whose states are characterized by parastatistics of the order s as
paramacrosystems of the order s [5]. The problems of existing, uniqueness (or non-uniqueness) and
identification of the equilibrium macrostates remain burning ones for paramacrosystems. In addition,
these problems concern possibility to apply the variation principle of entropy maximization. They are
not only cognitive but pragmatic, since a lot of applied systems related to urban and regional planning,
demo-economic prediction, routing in computer network, and etc., have “parastatistical” properties.

As microlevel of a paramacrosystem consists of elements with stochastic behavior, the macrostates
are also random. Identification of macrostates, selection and study of equilibrium macrostate are based
on forming of probabilistic characteristics of paramacrosystems (probability distribution or entropy
functions), investigation of their morphological properties, and declaration of the variation principle.

The classical variation principle of statistical physics enunciates the uniqueness of the realized
equilibria with entropy maximum. It is true for linear world or not so far from equilibrium state (also in
the framework of the linear hypothesis). But the real world is nonlinear. The entropy function can have
several maxima. Realization of macrostate depends on a dynamics of the distributed process and domain
of attraction of any maximum of the entropy function.

Let us remark that the macrosystem theory is based on the phenomenological scheme in which the
elements and the states are indistinguishable. However there are many interesting applied problems
when the properties of the elements and the states are more various.

Our contribution to this theory consists of two parts. First, it is the method of forming the
probability characteristics of the paramacrosystem with both the equiprobable microstates and the
different combination of the distinguishable and indistinguishable elements and states.

The second contribution is connected with accounting of prior information (when the prior
probabilities of microstates are not equal) by forming the probability characteristics of the
paramacrosystem.
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The probability characteristics (probability distribution and entropy functions) give the important
information about the realized macrostate, i.e., the information about the number of the function’s
maxima, and their morphological properties, namely, their “sharpness”. If the maximum is unique and
“sharp”, then we could hope that the macrostate corresponding to such maximum is realized. The Fermi-,
Einstein-, Boltzmann-macrosystems have these properties.

However, some types of the paramacrosystems have the entropy function and the probability
distribution functions with non-unique maximum. Such situations arise when prior probabilities are
not equiprobable. We will demonstrate some examples.

2. Phenomenology and Classification of Paramacrosystems

Description of the paramacrosystem includes descriptions of the elements, the states and the set of
states S. First of all, let us consider elements and states. Assume that there are two functionals, one of
which is a generalized characteristics of the element and the other is a generalized characteristics of the
state. If this functional takes on similar values for all elements, then the elements are indistinguishable
(IE). If these values are strictly different, then the elements are distinguishable (DE). Analogical
procedure can be applied for selection of the states. We will have the indistinguishable states (IS) and
the distinguishable states (DS).

Thereby, we obtain four classes of paramacrosystems:

• DEDS is a paramacrosystem with distinguishable elements and states;

• IEDS is a paramacrosystem with indistinguishable elements and distinguishable states;

• DEIS is a paramacrosystem with distinguishable elements and indistinguishable states;

• IEIS is a paramacrosystem with indistinguishable elements and states.

The classification above may be illustrated by the following examples with a random behavior of
elements. Let us consider a distribution of specialists over vacancies in the labor market. In this case,
the elements are the specialists and the states are vacancies. The functional for the elements is the level
of qualification. The functional for the states is the salary. If the functionals for elements and states are
different, then we have a model of DEDS-paramacrosystem.

Let us imagine that the specialists have the same level of qualification, and the salaries of the vacancies
are different. In this case we have a model of IEDS-paramacrosystem.

A reversed situation occurs, when specialists of different level have to be distributed over equal
vacancies, which corresponds to a model of DEIS-paramacrosystem.

Finally, there may be a situation, when specialists of equal level are distributed over identical
vacancies, i.e., according to a model IEIS-paramacrosystem.

Now consider the set S which is a union of disjoin subsets S1, . . . ,Sm with G1, . . . , Gm states. The
states have capacities s1, . . . , sm. If all capacities s1 = · · · = sm = 1, we have a macrosystem with
Fermi-states. If all capacities s1 = · · · = sm =∞, we have a macrosystem with Einstein-states.

The macrostates are described by vectors N = {N1, . . . , Nm} ∈ N , where Ni is a number of elements
occupying the subset Si and N is the set of feasible macrostates. From this definition, it follows that
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elements and states are faceless in it. On the other hand, its characteristics are made of some union of
microstates, which are defined by a complete microscopic description of elements and states.

The microstate is characterized by the tuple X, whose components are indexed elements, occupied
a state in the set Si. The set M of microstates contains Z various microstates X, each of which is
implemented with a probability w(X).

Let, for each subset Si, there exist a prior probability ai ∈ (0, 1] of the entry into any of the Gisi

states belonging to it. All ai are not equal to one another. Because it is assumed that the elements are
distributed by states randomly and independently of one another, the probability of the fact that in the
subset Si containing the Gisi states the Ni states will be occupied and Gisi − Ni states will be free, is
equal to aNi

i (1− ai)
(Gisi−Ni).

As the subsets S1, . . . ,Sm do not intersect, the probability of the microstate X is defined by the
following equality:

w(X) =
m∏
i=1

aNi
i (1− ai)

(Gisi−Ni) (1)

This function display the following property:

G1s1∑
N1=1

· · ·
Gmsm∑
Nm=1

m∏
i=1

aNi
i (1− ai)

(Gisi−Ni) = 1 (2)

Introduce two functions:

ϕ(ai) =
ai

1− ai
, A =

m∏
i=1

(1− ai)
(Gisi) (3)

We will present the function w(X) (1) in the form

w(X) = A
m∏
i=1

[ϕ(ai)]
Ni (4)

In the setM of microsets there exists a subsetMN of microstates X with prior probabilities w(X), which
generate the macrostate N. Denote the number of this microstates in the subsetMN by the Z(N).

In view of the independence of microstates, the probability P (N) of the macrostate N for
unequal-probable microstates takes the form:

P (N) ,
Z(N)

Γ(Y )

m∏
i=1

[ϕ(ai)]
Ni (5)

where the normalization constant is

Γ(Y ) =
∑
N∈N

Z(N)
m∏
i=1

[ϕ(ai)]
Ni (6)

Here Y =
∑m

i=1Ni.
If the ai = a for all subsets Si then w(X) = aY (1− a)(G−Y ) = R = const, where G =

∑m
i=1 Gisi. In

this case, the probability P (N) of the macrostate N for equal-probable microstates takes the form:

P (N) =
Z(N)

Γ(Y )

m∏
i=1

(7)
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where the normalization constant is
Γ(Y ) =

∑
N∈N

Z(N) (8)

We will use also the physical entropy defined with accurate multiplicative constant:

E(N) = lnP (N) (9)

This implies that the problems of forming probabilistic characteristics of the paramacrosystems are
reduced to defining the number Z(N).

3. Probability Characteristics of Paramacrosystems of Order “s” with Equal-Probable Microstates

We shall assume the distribution of elements is performed in two stages: first, the elements are
distributed over the subsets S1, . . . ,Sm; and then, over the states within the subsets.

Following this distribution scheme, the number of microstates Z(N) generating the macrostate
N is defined by the product of the numbers of elements’ allocations at the first Z1(N) and second
Z2(N) stages:

Z(N) = Z1(N)Z2(N) (10)

3.1. DEDS-Paramacrosystem

We have paramacrosystem with distinguishable elements and states. So, the function Z1(N) defines
the number of allocations for Y different elements in the subsets S1, . . . ,Sm with occupation numbers
N1, . . . , Nm:

Z1(N) =
Y !

N1! · · ·Nm!
(11)

The states in each subset Si with occupation number Ni are different; their number is Gi and capacity
is si. Denote WDD(Ni, Gi, si) as a number of allocations for Ni different elements in Gi states with
capacity si. As states are independent, then the function Z2(N) takes them form:

Z2(N) =
m∏
i=1

WDD(Ni, Gi, si) (12)

We shall define the functions WDD(Ni, Gi, si) using the method of generating functions [6,7]. Since the
elements and states are different, the exponential generating function for permutations is used:(

1 + t +
t2

2
+ · · ·+ tsi

si!

)Gi

=
∑
Ni

WDD(Ni, Gi, si)
tNi

Ni!
(13)

This equality determines values of the function WDD(Ni, Gi, si) numerically. Examples of its
computation are shown in the first column of Tables 1 and 2.
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Table 1. Examples of the allocation functions for Gi = 7, si = 2.

G = 7, s = 2

Ni WDD(Ni, 7, 2) WID(Ni, 7, 2) WDI(Ni, 7, 2) WII(Ni, 7, 2)

1 7 7 1 1
2 49 28 2 2
3 336 77 4 2
4 2226 161 10 3
5 14070 266 26 3
6 83790 357 76 4
7 463680 393 232 4
8 2346120 357 763 4
9 10636920 266 2583 3
10 42071400 161 8820 3
11 139708800 77 27720 2
12 366735600 28 72765 2
13 681080400 7 135135 1
14 681080400 1 135135 1

Table 2. Examples of the allocation functions for Gi = 7, si = 3.

G = 7, s = 3

Ni WDD(Ni, 7, 3) WID(Ni, 7, 3) WDI(Ni, 7, 3) WII(Ni, 7, 3)

1 7 7 1 1
2 49 28 2 2
3 343 84 5 3
4 2394 203 14 4
5 16590 413 46 5
6 113610 728 166 7
7 765030 1128 652 8
8 5039160 1554 2779 9
9 32287080 1918 12607 10
10 200008200 2128 60340 10
11 1189788600 2128 299915 10
12 6744183600 1918 1512665 10
13 36097261200 1554 7562555 9
14 180435855600 1128 36501465 8
15 830791962000 728 165540375 7
16 3460897440000 413 686686000 5
17 12727626912000 203 2525322800 4
18 39863888064000 84 7909501600 3
19 100380151872000 28 19916696800 2
20 182509367040000 7 36212176000 1
21 182509367040000 1 36212176000 1
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We can obtain analytic expressions for Fermi- and Eistein-states:

• the capacity of the states is si = 1, i ∈ [1,m]

WDD(Ni, Gi, si) =
Gi!

(Gi −Ni)!
, Ni ≤ Gi, i ∈ [1,m] (14)

• the capacity of the states is infinite

WDD(Ni, Gi, si ≥ Ni) = (Gi + Ni)
(Gi+Ni), i ∈ [1,m] (15)

The last relation corresponds to the number of permutations Ni of elements among Gi boxes with
unbounded returns [2].

Thereby, from (10) we obtain that

Z(N) =
Y !

N1! · · ·Nm!

m∏
i=1

WDD(Ni, Gi, si), Z =
∑

N

Z(N) (16)

and the distribution of the macrostates probabilities takes the form:

PDD(N) =
Y !

Z

m∏
i=1

WDD(Ni, Gi, si)

Ni!
(17)

According to definition (9) the physical entropy of the DEDS-paramacrosystem is

EDD(N)
.
=

m∑
i=1

(lnWDD(Ni, Gi, si)− lnNi!) (18)

where .
= implies an equality with accurate additive constant.

We shall write expressions for the distribution of probabilities and entropies of the macrostates
for Fermi-, Einstein-, Boltzmann-states. Let us consider a macrosystem with Fermi-states
(si = 1, i ∈ [1,m]). According to (17) and (14) the distribution of macrostates probabilities will have
the following form:

P F
DD(N) =

Y !

Z

m∏
i=1

Gi!

Ni!(Gi −Ni)!
(19)

Physical entropy will be

EF
DD(N) =

m∑
i=1

ln (fracGi!Ni!(Gi −Ni)!) (20)

Assuming that the general number of elements in the F-macrosystem is sufficiently great, we can
use the Stirling approximation of the factorial function. Then from (20) we obtain the expression for
information entropy (Fermi-entropy) [8]:

HF
DD(N) = −

m∑
i=1

Ni lnNi + (Gi −Ni) ln(Gi −Ni) (21)

Let us consider the paramacrosystems with Einstein-states (si > Ni, i ∈ [1,m]). The distribution of
macrostates probabilities is defined by the following equality:

PE
DD(N) =

Y !

Z

m∏
i=1

(Gi + Ni)
(Gi+Ni)

Ni!
(22)
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Physical entropy is

EE
DD(N) =

m∑
i=1

(Gi + Ni) ln(Gi + Ni)− lnNi! (23)

The information entropy is constructed by the Sterling-approximation of the factorial function:

HE
DD(N) = −

m∑
i=1

Ni lnNi − (Gi + Ni) ln(Gi + Ni) (24)

Let us consider macrosystems with Boltzmann-states. To obtain expressions for the distribution
of macrostates probabilities, the limiting process in the corresponding expressions for Fermi- and
Einstein-macrosystems is used.

For example, at Ni � Gi, i ∈ [1,m] (F-macrosystem)

Gi!

(Gi −Ni)!
∼= GNi

i (25)

Then the function distribution of macrostates probabilities for Boltzmann-states takes on the
following form:

PB
DD(N) =

Y !

Z

m∏
i=1

GNi
i

Ni!
(26)

Physical entropy is

EB
DD(N) =

m∑
i=1

Ni lnGi −Ni! (27)

After application the Sterling-approximation we obtain the generalized information entropy by
Boltzmann–Shannon [8]:

HB
DD(N) = −

m∑
i=1

Ni ln
Ni

Gi

(28)

3.2. IEDS-Paramacrosystem

In this paramacrosystem, a microstate is specified by the numbers of elements N j
i that occupy the

state j in the subset Si. So, a microstate

X = x = {N1
1 , . . . , N

G1
1 ; . . . ;N1

m, . . . , N
Gm
m } (29)

The vector of macrostate N consists of the components Ni =
∑Gi

j=1N
j
i . Hence, Z(N) is a number of

microstates, i.e., the vectors x generating the occupation numbers N1, . . . , Nm.
As the subsets Si are independent:

Z(N) =
m∏
i=1

WID(Ni, Gi, si) (30)

where WID(Ni, Gi, si) is a number of locations of Ni indistinguishable elements in Gi distinguishable
states with capacities si. The values of the function WIEDS

(Ni, Gi, si) are defined by an ordinary
generating function [7] in the following form:

(1 + t + · · ·+ tsi)Gi =
m∑
i=1

WID(Ni, Gi, si)t
Ni (31)
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This equality allows obtaining the analytical expression for the function WID(Ni, Gi, si), which takes
the form:

WID(Ni, Gi, si) =

Gi∑
k=0

(−1)k
Gi!(Ni + Gi − 1− k(si + 1))!

k!(Gi −Ni)!(Ni − k(si + 1))!(Gi − 1)!
(32)

Tables 1 and 2 contain the values of the function WID(Ni, Gi, si) for Gi = 7, si = 1 and Gi = 7, si = 3

(second columns of the indicated tables).
As the subsets are independent, the distribution of the macrostates probabilities is equal to;

PID(N) =
1

Z

m∏
+i = 1WID(Ni, Gi, si) (33)

For IEDS-paramacrosystems, the physical entropy has the form

EID(N) ,
Gi∑
k=0

ln

(
(−1)k

Gi!(Ni + Gi − 1− k(si + 1))!

k!(Gi −Ni)!(Ni − k(si + 1))!(Gi − 1)!

)
(34)

Let us consider the special cases of the expressions obtained. At si = 1, we obtain the distribution of
macrostates probabilities (19) and the entropy functions (20) and (21) for Fermi-states.

If si →∞, then we obtain the well-known expressions for macrosystem with Einstein-states:
—the distribution of the macrostates probabilities

PE
ID(N) =

1

Z

m∏
i=1

(Gi + Ni − 1)!

Ni!(Gi − 1)!
(35)

—the physical entropy

EE
ID(N) ,

m∑
i=1

ln(Gi + Ni − 1)!− lnNi!− ln(Gi − 1)! (36)

—the information entropy

HE
ID(N)

.
= −

m∑
i=1

Ni lnNi − (Gi + Ni) ln(Gi + Ni) (37)

When Ni � Gi, we obtain Boltzmann distribution (26) from (35). The macrosystems of the ID-class
with si = 1 and si =∞ are considered in [8].

3.3. DEIS-Paramacrosystem

The DI-microstates can be viewed as classes of equivalency in the set of the DD-microstates. Those
DD-microstates are equivalent such that one can be transferred into another by means of permutations
of states within the subset Si.

By analogy with the DEDS-paramacrosystems, the function Z(N) defining the number of
DI-microstates generating the macrostate N is determined by the following expression:

Z(N) = Y !
m∏
i=1

WDI(Ni, Gi, si)

Ni!
(38)
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Here the function WDI(Ni, Gi, si) defines the number of locations of Ni different elements in Gi in
indistinguishable states with the capacity si. Using the technique stated in [7], we obtain a generating
function for WDI(Ni, Gi, si) from the equality

Gi∑
k=0

1

k!

(
t +

t2

2!
+ · · ·+ tsi

si!

)k

=
∞∑

Ni=0

WDI(Ni, Gi, si)
tNi

Ni!
(39)

Examples of the functions WDI(Ni, Gi, si) for Gi = 7, si = 2 and Gi = 7, si = 3 are shown in the third
column of Tables 1 and 2.

For the DI-paramacrosystem, the distribution of the macrostates probabilities can be represented in
the form

PDI(N) =
Y !

Z

m∏
i=1

WDI(Ni, Gi, si)

Ni!
(40)

The physical entropy takes the form

EDI(N) ,
m∑
i=1

lnWDI(Ni, Gi, si)− lnNi! (41)

Let us consider DI-macrosystem with Fermi-states. Assuming in (39) that si = 1, we obtain:

WDI(Ni, Gi, si) = 1, Ni ≤ Gi, i ∈ [1,m] (42)

It should be noted that these expressions do not derive from (14) that defines the functions
WDD(Ni, Gi, si) and WID(Ni, Gi, si) for macrosystems with Fermi-states. The distinction is that the
function WDI(Ni, Gi, si) does not depend on Ni and Gi.

Substituting (42) into (40), we obtain the expression for the distribution of the macrostate probabilities
of the DI-macrosystems with Fermi-states:

P F
DI(N) =

Y !

Z

m∏
i=1

1

Ni!
, Ni ≤ Gi, i ∈ [1,m] (43)

It is classical polynomial distribution at equally possible outcomes of independent tests. The physical
entropy for this class of macrosystems has the form:

EF
DI(N) , −

m∑
i=1

lnNi! (44)

Using the Stirling approximation, we obtain the expression for the information entropy:

HF
DI(N)

.
= −

m∑
i=1

Ni lnNi (45)

Let us now consider DI-macrosystem with Einstein-states (si > Ni). In this case we can represent the
function WDI(Ni, Gi, si) (39) at analytical form:

WDI(Ni, Gi, si) =

Gi∑
k=1

S(Ni, k) (46)
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where

S(Ni, k) =
k∑

j=1

(−1)(j+k)jNi

j!(k − j)!
(47)

are Stirling numbers of the second kind. So, the distribution of the macrostate probabilities for
Einstein-macrosystem takes the form:

PE
DI(N) =

Y !

Z

m∏
i=1

Gi∑
k=1

S(Ni, k) (48)

The physical entropy is

EE
DI(N) ,

m∑
i=1

ln

(
Gi∑
k=1

S(Ni, k)

)
(49)

3.4. IEIS-Paramacrosystem

Both elements and states are indistinguishable in II-paramacrosystems. Therefore, II-microstates
can be viewed as classes of equivalency of ID-microstates. We consider the equivalent ID-microstates
where one can be transformed into another by means of permutations within the subset Si.

Then we have

Z(N) =
m∏
i=1

WII(Ni, Gi, si) (50)

The problem of finding the numbers WII(Ni, Gi, si) is related to finding the number of partitions of the
number Ni. The partition of the number Ni is its representation in the form of a sum of unordered set of
integers mi

j , i.e.,
Ni =

∑
j

mi
j (51)

The disorder implies in this case that those sets {mi
j} are considered different and cannot be transferred

from one into another be means of permutations of the numbers mi
j .

The function WII(Ni, Gi, si) specifies a number of partitions of the number Ni such that the number
of parts in them does not exceed Gi and the size of the part is not greater than si. According to [7], the
generating function for WII(Ni, Gi, si) has the form:

Gi∏
k=1

1− t(si+k)

1− tk
=

∞∑
Ni=0

WII(Ni, Gi, si)t
Ni (52)

Examples of the functions WII(Ni, Gi, si) for Gi = 7, si = 2 and Gi = 7, si = 3 are shown in the fourth
column of Tables 1 and 2.

The distribution of the macrostate probabilities and the physical entropy have the forms:

PII(N) =
1

Z

m∏
i=1

WII(Ni, Gi, si)

EII(N) ,
m∑
i=1

lnWII(Ni, Gi, si) (53)
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Let us consider the case of Fermi-states (si = 1). We obtain:

WII(Ni, Gi, si) = 1, Ni ≤ Gi, i ∈ [1,m] (54)

P F
II(N) =

1

Z
, EF

II(N) = − lnZ (55)

We can see that all macrostates are equally possible. Therefore, there no equilibrium macrostate in
this case.

4. Probability Characteristics of Paramacrosystems of Order “s” with Unequal-Probable
Microstates

A case when the microstates have unequal probabilities is very wide-spread at the applied problems.
For instance, the behaviour of the users in the transportation modeling is described by the unequal prior
probabilities. Migratory decisions of the individuals are characterized by the different prior probabilities.
At last, the prior images in a problem of the computer tomography are described in the terms of the
unequal prior probabilities.

Existence of the unequal-probable microstates significantly influences the morphological properties of
the macrostate probability characteristics for the paramacrosystems of the order s with D and I elements
and states. We will account the unequal-probable microstates following the method from Sections 2
and 3.

4.1. DEDS-Paramacrosystem

According to (5) and (16), the distribution of the macrostates probabilities is

PDD(N) ,
Y !

ΓDD(Y )

m∏
i=1

WDD(Ni, Gi, si)

Ni!
[ϕ(ai)]

Ni (56)

where the functions WDD(Ni, Gi, si) are defined by the equalities (13), and the normalization constant

ΓDD(Y ) = Y !
Y∑

N1+···+Nm=0

m∏
i=1

WDD(Ni, Gi, si)

Ni!
[ϕ(ai)]

Ni (57)

These expressions differ from the corresponding expressions (16) and (17). The multipliers [ϕ(ai)]
Ni

(3) depend on the prior probabilities ai and components of the macrostate’s vector Ni. Moreover,
the definition (57) includes as a normalization not a full number of microstates Z, but a number of
microstates ΓDD(Y ) that corresponds to adopted prior probabilities only.

Let us note that values of the ΓDD(Y ) for various values of the Y can be found using the generating
function:

m∏
i=1

(
1 + ϕ(ai)t + · · ·+ [ϕ(ai)t]

si

si!

)Gi

=
∞∑

Y=0

ΓDD(Y )
tY

Y !
(58)

Consider the special cases of the paramacrosystems of the DD-class, namely, with Fermi- and
Einstein-states in the subsets S1, . . . ,Sm.
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Let us recall that for the Fermi-states, the si = 1 and

WDD(Ni, Gi, si) =
Gi!

(Gi −Ni)!

From (56) the distribution of the macrostates probabilities for Fermi-macrosystem takes the form:

P F
DD(N) =

m∏
i=1

Gi!

Ni!(Gi −Ni)!
ϕ(ai)]

Ni (59)

The physical entropy is

EF
DD(N) ,

m∑
i=1

(lnGi!− lnNi!− ln(Gi −Ni)! + Ni lnϕ(ai)) (60)

The generalized information entropy HF
DD(N) [8] is defined by the following expression:

HF
DD(N) = −

m∑
i=1

Ni ln
Ni

ϕ(ai)
− (Gi + Ni) ln(Gi + Ni) (61)

Consider the DD-paramacrosystems with Einstein-states, for which the capacities of states are
unbounded. So,

WDD(Ni, Gi, si > Ni) = GNi
i (62)

The distribution of the macrostate probabilities takes the form:

PE
DD(N) =

1

Γ̃(Y )

m∏
i=1

[Giϕ(ai)]
Ni

Ni!
(63)

where the normalization constant is

Γ̃(Y ) =
Y∑

N1+···+Nm=0

m∏
i=1

[Giϕ(ai)]
Ni

Ni!
(64)

The physical entropy takes the form:

EE
DD(N) , −C +

m∑
i=1

Ni(lnGi + lnϕ(ai))− lnNi! (65)

where
C = ln Γ̃(Y ) (66)

Using the Stirling’s approximation we can obtain the information entropy for the DD-paramacrosystem
with Einstein-states:

HE
DD(N)

.
=

m∑
i=1

Ni ln
Giϕ(ai)

Ni

(67)

From these formulas we can see that the distribution of the macrostate probabilities and the entropy
functions do not depend on the capacities of the states. So, the capacity of states can be any value.
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4.2. IEDS-Paramacrosystem

According to (14), the distribution of the macrostate probabilities for ID-paramacrosystem acquires
the form:

PID(N) =
1

ΓID(Y )

m∏
i=1

Gi∑
k=0

(−1)k
Gi!(Ni + Gi − 1− k(si + 1))!

k!(Gi −Ni)!(Ni − k(si + 1))!(Gi − 1)!
[ϕ(ai)]

Ni (68)

where the functions WID(Ni, Gi, si) are defined by the equalities (32) and

ΓID(Y ) =
Y∑

N1+···+Nm=0

m∏
i=1

Gi∑
k=0

(−1)k
Gi!(Ni + Gi − 1− k(si + 1))!

k!(Gi −Ni)!(Ni − k(si + 1))!(Gi − 1)!
[ϕ(ai)]

Ni (69)

For the macrosystem with the Fermi-states, the expression (68) is transformed to the distribution (59).
For the macrosystem with the Einstein-states, we will have:

PE
ID(N) =

m∏
i=1

(Gi + Ni − 1)!

Ni!(Gi − 1)!
[ϕ(ai)]

Ni (70)

The physical entropy is

EE
ID(N) ,

m∑
i=1

(ln(Gi + Ni − 1)!− lnNi!− ln(Gi − 1)! + Niϕ(ai)) (71)

The generalized information entropy by Einstein takes the form:

HE
ID(N)

.
= −

m∑
i=1

Ni ln
Ni

ϕ(ai)
− (Gi + Ni) ln(Gi + Ni) (72)

4.3. DEIS-Paramacrosystem

According to (5), the distribution of the macrostate probabilities is defined by the following equality:

PDI(N) =
Y !

ΓDI(Y )

m∏
i=1

WDI(Ni, Gi, si)

Ni!
[ϕ(ai)]

Ni (73)

where the functions WDI(Ni, Gi, si) are defined by the generating function (39), and

ΓDI(Y ) = Y !
Y∑

N1+···+Nm=0

m∏
i=1

WDI(Ni, Gi, si)

Ni!
[ϕ(ai)]

Ni (74)

Consider the special cases of the function (73). If the DI-paramacrosystem has Fermi-states (si = 1),
then according to (39) W F

DI(N) = 1 for Ni ≤ Gi. The distribution of the macrostate probabilities for the
DI-paramacrosystem with Fermi-states takes the form:

P F
DI(N) =

(
Y∑

N1+···+Nm=0

m∏
i=1

[ϕ(ai)]
Ni

Ni!

)−1 m∏
i=1

[ϕ(ai)]
Ni

Ni!
, Ni ≤ Gi, i ∈ [1,m] (75)

Let us consider the DI-paramacrosystem with Einstein-states. According to (46) and (47) we will have

PE
DI(N) =

(
Y∑

N1+···+Nm=0

m∏
i=1

Gi∑
k=1

S(Ni, k)[ϕ(ai)]
Ni

)−1 m∏
i=1

Gi∑
k=1

S(Ni, k)[ϕ(ai)]
Ni (76)
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4.4. IEIS-Paramacrosystem

According to (5) the distribution of the macrostate probabilities takes the form:

PII(N) =

∏m
i=1 WII(Ni, Gi, si)[ϕ(ai)]

Ni∑Y
N1+···+Nm=0

∏m
i=1WII(Ni, Gi, si)[ϕ(ai)]Ni

(77)

where the functions WII(Ni, Gi, si) are defined by the generating functions (52).
For the II-paramacrosystem with Fermi-states WII(Ni, Gi, si) = 1, the distribution of the macrostate

probabilities is

P F
II(N) =

∏m
i=1[ϕ(ai)]

Ni∑Y
N1+···+Nm=0

∏m
i=1[ϕ(ai)]Ni

(78)

5. Examples

5.1. DD-Paramacrosystem

We consider a subway train consisting of m cars, each of which can accommodate R passengers. The
car has two types of places in which passengers can be disposed: the seats and the car floor. The seats
and floor are quantified, i.e., there are Q “sitting” and (R − Q) “standing” places. We will assume that
the numbers of “sitting” and “standing” places are identical, i.e., R = 2Q. In addition, the “sitting” and
“standing” places differ by their location in the car. The passengers are also different. We assume that
the passengers are distributed in the car randomly and independently of one another. This distribution
N1, . . . , Nm is also random.

Unequal prior probabilities. A survey of the transport behavior of passengers shows that the position of
a car in the train plays an important role in the choice by the passenger of one or another car. Therefore,
it seems to be natural to assign to each car a definite probability ai of the fact that it will be chosen by a
passenger and, respectively, the probability (1− ai) of the fact that ith car will not be chosen.

Now let us describe this object in paramacrosystem terms. In this case, elements are the passengers
distinguishable by their characteristics. As to states, we will consider the states of the first type, when a
passenger can sit, and the states of the second type, when a passenger can only stand. The ith car is the
subset Si of close states.

Thus, there are m subsets S1, . . . ,Sm, each of which contains two different states, i.e., the capacities
of the subsets are G1 = · · · = Gm = G = 2. The states of the first type and of the second type have
identical capacities s = Q.

Since the states and elements are distinguishable, and the states have a finite capacity Q > 1, we
have the model of the DD-paramacrosystem of the order Q. Its macrostates is specified by the vector
N = {N1, . . . , Nm}, the components of which are the numbers of passengers in appropriate cars.

By way of illustration, we will give a simple numerical example. We consider a train of two cars
(m = 2), each of which contains Q = 3 seats and R − Q = 3 standing places. Consequently,
G1 = G2 = G = 2 and s = 3, R = 6. The total number of passengers that the train can accommodate is
equal to 12. The passengers select the first or the second types of places, respectively, in a random way,
independently of one another, and with prior probabilities a1 = 0.4 and a2 = 0.8. According to (3) the
functions ϕ(a1) = 0.67; ϕ(a2) = 4.
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Using the definition of the generating function (13), we can represent the function WDD(n, 2, 3) by
the following equality:

1 + 2t + 2t2 +
4

3
t3 +

7

12
t4 +

1

6
t5 +

1

36
t6 =

6∑
n=1

WDD(n, 2, 3)
tn

n!
(79)

Equating the coefficients at identical degrees t, we can obtain values of the function WDD(n, 2, 3), which
are given in Table 3.

Table 3. Values of the function WDD(n, 2, 3).

n 0 1 2 3 4 5 6
WDD(n, 2, 3) 1 2 4 8 14 20 20

In this case WDD(N1, 2, 3) = WDD(N2, 2, 3) = WDD(n, 2, 3). So, the distribution of the macrostates
probability takes the form:

PDD(N1, N2) =
1

ΓDD

DD(N1, 2, 3)DD(N2, 2, 3)

N1!N2!
[ϕ(a1)]

N1 [ϕ(a2)]
N2 (80)

where

ΓDD =
6∑

N1,N2=1

DD(N1, 2, 3)DD(N2, 2, 3)

N1!N2!
[ϕ(a1)]

N1 [ϕ(a2)]
N2 (81)

Values of the function PDD(N1, N2) are listed in Table 4, and its graphic representation is shown in
Figure 1.

Table 4. Probability distribution function PDD(N1, N2) with a1 = 0.4; a2 = 0.8.

N2/N1 0 1 2 3 4 5 6 ×
0 4.72 6.33 4.23 1.88 0.55 0.1 0.012 10−4

1 3.78 5.02 3.38 1.51 0.44 0.08 0.0094 10−3

2 1.51 2 1.34 0.6 0.18 0.033 0.004 10−2

3 4 5.4 3.6 1.6 0.47 0.088 0.01 10−2

4 7 9.4 6.3 2.8 0.81 0.15 0.18 10−2

5 8.1 10.82 7.2 3.2 9.4 0.17 0.02 10−2

6 5.4 7.2 4.8 2.2 6.3 0.12 0.013 10−2
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Figure 1. Probability distribution function PDD(N1, N2) with a1 = 0.4; a2 = 0.8.

We can see that the function PDD(N1, N2) has two maxima. One of them has value 0.1082 and
argument (5, 1), and the other has value 0.094 and argument (5, 4). In this situation, the variation
principle does not work.

Equal prior probabilities. If ai = a, then the distribution of the macrostates probabilities takes the
form:

PDD(N1, N2) =
1

ΓDD

DD(N1, 2, 3)DD(N2, 2, 3)

N1!N2!
(82)

where

ΓDD =
6∑

N1,N2=1

DD(N1, 2, 3)DD(N2, 2, 3)

N1!N2!
(83)

Its values are given in Table 5, and its graphic representation is shown in Figure 2.

Table 5. Probability distribution function PDD(N1, N2) with a1 = a2 = a.

N2/N1 0 1 2 3 4 5 6 ×
0 1.95 3.91 3.91 2.56 1.15 0.33 0.055 10−2

1 3.91 7.94 7.94 5.25 2.32 0.66 0.11 10−2

2 3.91 7.94 8.01 5.25 2.32 0.66 0.11 10−2

3 2.56 5.25 5.25 3.54 1.59 0.44 0.073 10−2

4 1.15 2.32 2.32 1.59 0.67 0.19 0.032 10−2

5 0.33 0.66 0.66 0.44 0.19 0.055 0.0091 10−2

6 0.055 0.11 0.11 0.073 0.032 0.0091 0.0016 10−2
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Figure 2. Probability distribution function PDD(N1, N2) with a1 = a2 = a.

As it would be expected, the distribution of the macrostates probabilities proves to be symmetric at
equal prior probabilities. Its maximum equals to 0.0801 and corresponds to the macrostate NDD = (2, 2).

5.2. ID-Paramacrosystem

Let us consider the object of the first example assuming the passengers are indistinguishable, while
the states (places) are distinguishable.

Unequal prior probabilities. All parameters remain the same as those in the preceding example. In
this case, the function WID(n, 2, 3) will be defined by the generating function (31), which at the given
parameters will take the form:

(
1 + t + t2 + t3

)2
=

6∑
n=1

WID(n, 2, 3)tn (84)

Values of the function WID(n, 2, 3) are given in Table 6.

Table 6. Values of the function WID(n, 2, 3).

n 0 1 2 3 4 5 6
WID(n, 2, 3) 1 2 3 4 3 2 1

The distribution of the macrostates probabilities has the form:

PID(N1, N2) =
1

ΓID
ID(N1, 2, 3)ID(N2, 2, 3)[ϕ(a1)]

N1 [ϕ(a2)]
N2 (85)
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where

ΓID =
6∑

N1,N2=1

ID(N1, 2, 3)ID(N2, 2, 3)[ϕ(a1)]
N1 [ϕ(a2)]

N2 (86)

Values of the function PID(N1, N2) are listed in Table 7, and its graphic representation is shown in
Figure 3.

Table 7. Probability distribution function PID(N1, N2) with a1 = 0.4; a2 = 0.8.

N2/N1 0 1 2 3 4 5 6 ×
0 2.36 3.17 3.18 2.84 1.42 0.64 0.21 10−5

1 1.89 2.54 2.55 2.27 1.14 0.51 0.17 10−4

2 1.14 1.52 1.53 1.36 0.68 0.31 0.1 10−3

3 6.06 8.12 8.14 7.27 3.64 1.64 0.54 10−3

4 1.8 2.4 2.5 2.2 1.1 0.5 0.2 10−2

5 4.8 6.5 6.6 5.8 2.9 1.3 0.4 10−2

6 9.7 12.9 13.2 11.6 5.8 2.6 0.9 10−2

Figure 3. Probability distribution function PID(N1, N2) with a1 = 0.4; a2 = 0.8.

For the paramacrosystem under study, the distribution of the macrostates probabilities has a unique
maximum equal to 0.132 and the corresponding argument (2, 6).

Equal prior probabilities. In this case, the distribution of the macrostates probabilities takes the form:

PID(N1, N2) =
1

ΓID
ID(N1, 2, 3)ID(N2, 2, 3) (87)
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where

ΓID =
6∑

N1,N2=1

ID(N1, 2, 3)ID(N2, 2, 3) (88)

Values of the function PID(N1, N2) are listed in Table 8, and its graphic representation is shown in
Figure 4.

Table 8. Probability distribution function PID(N1, N2) with a1 = a2 = a.

N2/N1 0 1 2 3 4 5 6 ×
0 0.39 0.078 1.2 1.6 1.2 0.078 0.039 10−2

1 0.078 1.6 2.3 3.1 2.3 1.6 0.078 10−2

2 1.2 2.3 3.5 4.7 3.5 2.3 1.2 10−2

3 1.6 3.1 4.7 6.2 4.7 3.1 1.6 10−2

4 1.2 2.3 3.5 4.7 3.5 2.3 1.2 10−2

5 0.078 1.6 2.3 3.1 2.3 1.6 0.078 10−2

6 0.039 0.078 1.2 1.6 1.2 0.078 0.039 10−2

Figure 4. Probability distribution function PID(N1, N2) with a1 = a2 = a.

For the paramacrosystem under consideration, the distribution of the macrostates probabilities has the
unique maximum equal to 0.062 and the corresponding argument (3, 3).

6. Conclusions

The equilibrium theory of macrosystems is based on the assumption that their elements can occupy
Fermi-states or Einstein-states only and these states are indistinguishable. However, there is quite a
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vast class of applied object, in which elements are distinguishable and states have finite capacity greater
than unity. For designation of this class objects, the notion “paramacrosystem of the order s ≥ 1” is
introduced in the paper. In these systems the notion of microstate, a set of which generates a macrostate
in such object, differs from the classical one that was formulated in statistical physics. Mechanisms of
element distribution in states have specific features. In this paper, we obtained the distribution of the
macrostates probabilities and “physical” entropies for paramacrosystems, in which there can be both
distinguishable and indistinguishable elements and states with finite capacities.

The method using the generating functions has been developed for determination of the probabilities
characteristics of the paramacrosystems (DD, DI, ID, II class). The gained expressions allow to
obtain known probabilistic characteristics for macrosystems with marginal capacities of states (Fermi
and Einstein).

The method that takes into account prior information on the distribution elements of the
paramacrosystems by states is suggested. The distribution of the macrostates probabilities and the
entropies are obtained for four classes of the paramacrosystems.

It is shown by examples that accounting of the prior information can change the form of the
distribution of the macrostates probabilities. In particular, the entropy functions are transformed from
the single-modal functions into the multimodal functions.
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