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Abstract:



The minimum error entropy (MEE) criterion has been receiving increasing attention due to its promising perspectives for applications in signal processing and machine learning. In the context of Bayesian estimation, the MEE criterion is concerned with the estimation of a certain random variable based on another random variable, so that the error’s entropy is minimized. Several theoretical results on this topic have been reported. In this work, we present some further results on the MEE estimation. The contributions are twofold: (1) we extend a recent result on the minimum entropy of a mixture of unimodal and symmetric distributions to a more general case, and prove that if the conditional distributions are generalized uniformly dominated (GUD), the dominant alignment will be the MEE estimator; (2) we show by examples that the MEE estimator (not limited to singular cases) may be non-unique even if the error distribution is restricted to zero-mean (unbiased).






Keywords:


entropy; estimation; minimum error entropy estimation




MSC Codes:


62B10








1. Introduction


A central concept in information theory is entropy, which is a mathematical measure of the uncertainty or the amount of missing information [1]. Entropy has been widely used in many areas, including physics, mathematics, communication, economics, signal processing, machine learning, etc. The maximum entropy principle is a powerful and widely accepted method for statistical inference or probabilistic reasoning with incomplete knowledge of probability distribution [2]. Another important entropy principle is the minimum entropy principle, which decreases the uncertainty associated with a system. In particular, the minimum error entropy (MEE) criterion can be applied in problems like estimation [3,4,5], identification [6,7], filtering [8,9,10], and system control [11,12]. In recent years, the MEE criterion, together with the nonparametric Renyi entropy estimator, has been successfully used in information theoretic learning (ITL) [13,14,15].



In the scenario of Bayesian estimation, the MEE criterion aims to minimize the entropy of the estimation error, and hence decrease the uncertainty in estimation. Given two random variables: [image: there is no content], an unknown parameter to be estimated, and [image: there is no content], the observation (or measurement), the MEE estimation of [image: there is no content] based on [image: there is no content] can be formulated as:


[image: there is no content]



(1)




where [image: there is no content] denotes an estimator of [image: there is no content] based on [image: there is no content], [image: there is no content] is a measurable function, [image: there is no content] stands for the collection of all measurable functions of [image: there is no content], [image: there is no content] denotes the Shannon entropy of the estimation error [image: there is no content], and [image: there is no content] denotes the probability density function (PDF) of the estimation error. Let [image: there is no content] be the conditional PDF of [image: there is no content] given [image: there is no content]. Then:


[image: there is no content]



(2)




where [image: there is no content] denotes the distribution function of [image: there is no content]. From (2), one can see the error PDF [image: there is no content] is actually a mixture of the shifted conditional PDF.



Different from conventional Bayesian risks, like mean square error (MSE) and risk-sensitive cost [16], the “loss function” in MEE is [image: there is no content], which is directly related to the error’s PDF, transforming nonlinearly the error by its own PDF. Some theoretical aspects of MEE estimation have been studied in the literature. In an early work [3], Weidemann and Stear proved that minimizing the error entropy is equivalent to minimizing the mutual information between the error and the observation, and also proved that the reduced error entropy is upper-bounded by the amount of information obtained by the observation. In [17], Janzura et al. proved that, for the case of finite mixtures ([image: there is no content] is a discrete random variable with finite possible values), the MEE estimator equals the conditional median provided that the conditional PDFs are conditionally symmetric and unimodal (CSUM). Otahal [18] extended Janzura’s results to finite-dimensional Euclidean space. In a recent paper, Chen and Geman [19] employed a “function rearrangement” to study the minimum entropy of a mixture of CSUM distributions where no restriction on [image: there is no content] was imposed. More recently, Chen et al. have investigated the robustness, non-uniqueness (for singular cases), sufficient condition, and the necessary condition involved in the MEE estimation [20]. Chen et al. have also presented a new interpretation on the MSE criterion as a robust MEE criterion [21].



In this work, we continue the study on the MEE estimation, and obtain some further results. Our contributions are twofold. First, we extend the results of Chen and Geman to a more general case, and show that when the conditional PDFs are generalized uniformly dominated (GUD), the MEE estimator equals the dominant alignment. Second, we show by examples that, the unbiased MEE estimator (not limited to singular cases) may be non-unique, and there can even be infinitely many optimal solutions. The rest of the paper is organized as follows. In Section 2, we study the minimum entropy of a mixture of generalized uniformly dominated conditional distributions. In Section 3, we present two examples to show the non-uniqueness of the unbiased MEE estimation. Finally, we give our conclusions in Section 4.




2. MEE Estimator for Generalized Uniformly Dominated Conditional Distributions


Before presenting the main theorem of this section, we give the following definitions.



Definition 1: Let [image: there is no content] be a set of nonnegative, integrable functions, where [image: there is no content] denotes an index set (possibly uncountable). Then [image: there is no content] is said to be uniformly dominated in [image: there is no content] if and only if [image: there is no content], there exists a measurable set [image: there is no content], satisfying [image: there is no content] and:


[image: there is no content]



(3)




where [image: there is no content] is Lebesgue measure. The set [image: there is no content] is called the [image: there is no content]-volume dominant support of [image: there is no content].



Definition 2: The nonnegative, integrable function set [image: there is no content] is said to be generalized uniformly dominated (GUD) in [image: there is no content] if and only if there exists a function [image: there is no content], such that [image: there is no content] is uniformly dominated, where:


[image: there is no content]



(4)




The function [image: there is no content] is called the dominant alignment of [image: there is no content].



Remark 1: The dominant alignment is, obviously, non-unique. If [image: there is no content] is a dominant alignment of [image: there is no content], then [image: there is no content], [image: there is no content] will also be a dominant alignment of [image: there is no content].



When regarding [image: there is no content] as an index parameter, the conditional PDF [image: there is no content] will represent a set of nonnegative and integrable functions, that is:


[image: there is no content]



(5)




If the above function set is (generalized) uniformly dominated in [image: there is no content], then we say that the conditional PDF [image: there is no content] is (generalized) uniformly dominated in [image: there is no content].



Remark 2: The GUD is much more general than CSUM. Actually, if the conditional PDF is CSUM, it must also be GUD (with the conditional mean as the dominant alignment), but not vice versa. In Figure 1 we show two examples where two PDFs (solid and dotted lines) are uniformly dominated but not CSUM.


Figure 1. Uniformly dominated PDFs: (a) non-symmetric, (b) non-unimodal.
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Theorem 1: Assume the conditional PDF [image: there is no content] is generalized uniformly dominated in [image: there is no content], with dominant alignment [image: there is no content]. If [image: there is no content] exists (here “exists” means “exists in the extended sense” as defined in [19]) then [image: there is no content] for all [image: there is no content] for which [image: there is no content] also exists.



Proof of Theorem 1: The proof presented below is similar to that of the Theorem 1 in [19], except that the discretization procedure is avoided. In the following, we give a brief sketch of the proof, and consider only the case [image: there is no content] (the proof can be easily extended to [image: there is no content]). First, one needs to prove the following proposition.



Proposition 1: Assume that the function [image: there is no content], [image: there is no content], [image: there is no content] (not necessarily a conditional PDF) satisfies the following conditions:

	(1)

	
non-negative, continuous, and integrable in [image: there is no content] for each [image: there is no content];




	(2)

	
generalized uniformly dominated in [image: there is no content], with dominant alignment [image: there is no content];




	(3)

	
uniformly bounded in [image: there is no content].









Then for any [image: there is no content], we have:


[image: there is no content]



(6)




where [image: there is no content] (here we extend the entropy definition to nonnegative [image: there is no content] functions), and:


[image: there is no content]



(7)







Remark 3: It is easy to verify that [image: there is no content] (not necessarily [image: there is no content]).



Proof of Proposition 1: The above proposition can be readily proved using the following two lemmas.



Lemma 1 [19]: Assume the nonnegative function [image: there is no content] is bounded, continuous, and integrable, and define the function [image: there is no content] by ([image: there is no content] is Lebesgue measure):


[image: there is no content]



(8)







Then the following results hold:

	(a)

	
Define [image: there is no content], [image: there is no content], and [image: there is no content]. Then [image: there is no content] is continuous and non-increasing on [image: there is no content], and [image: there is no content] as [image: there is no content].




	(b)

	
For any function [image: there is no content] with [image: there is no content]


[image: there is no content]



(9)








	(c)

	
For any [image: there is no content]


[image: there is no content]



(10)













Proof of Lemma 1: See [19].



Remark 4: Denote [image: there is no content], and [image: there is no content]. Then by Lemma 1, we have [image: there is no content] and [image: there is no content] (let [image: there is no content]). Therefore, to prove Proposition 1, it suffices to prove:


[image: there is no content]



(11)







Lemma 2: Functions [image: there is no content] and [image: there is no content] satisfy:

	(a)

	


[image: there is no content]



(12)








	(b)

	


[image: there is no content]



(13)













Proof of Lemma 2: (a) comes directly from the fact [image: there is no content]. We only need to prove (b). We have:


[image: there is no content]



(14)




where [image: there is no content] is the [image: there is no content]-volume dominant support of [image: there is no content]. By Lemma 1 (c):


[image: there is no content]



(15)







Thus [image: there is no content], we have [image: there is no content]:






Q.E.D (Lemma 2)







We are now in position to prove (11):


[image: there is no content]



(16)




where [image: there is no content] denotes the indicator function, and (a) follows from [image: there is no content], [image: there is no content], that is:


[image: there is no content]



(17)







In the above proof, we adopt the convention [image: there is no content].






Q.E.D (Proposition 1)







Now the proof of Proposition 1 has been completed. To finish the proof of Theorem 1, we have to remove the conditions of continuity and uniform boundedness imposed in Proposition 1. This can be easily accomplished by approximating [image: there is no content] by a sequence of functions [image: there is no content], [image: there is no content], which satisfy these conditions. The remaining proof is omitted here, since it is exactly the same as the last part of the proof for Theorem 1 in [19].






Q.E.D (Theorem 1)







Example 1: Consider an additive noise model:


[image: there is no content]



(18)




where [image: there is no content] is an additive noise that is independent of [image: there is no content]. In this case, we have [image: there is no content], where [image: there is no content] denotes the noise PDF. It is clear that [image: there is no content] is generalized uniformly dominated, with dominant alignment [image: there is no content]. According to Theorem 1, we have [image: there is no content]. In fact, this result can also be proved by:


[image: there is no content]



(19)




where (b) comes from the fact that [image: there is no content] and [image: there is no content] are independent (For independent random variables [image: there is no content] and [image: there is no content], the inequality [image: there is no content] holds). In this example, the conditional PDF [image: there is no content] is, obviously, not necessarily CSUM.



Example 2: Suppose the joint PDF of random variables [image: there is no content], [image: there is no content] ([image: there is no content]) is:


[image: there is no content]



(20)




where [image: there is no content], [image: there is no content]. Then the conditional PDF [image: there is no content] will be:


[image: there is no content]



(21)







One can easily verify that the above conditional PDF is non-symmetric but generalized uniformly dominated, with dominant alignment [image: there is no content] (the ε-volume dominant support of [image: there is no content] is [image: there is no content]). By Theorem 1, the function [image: there is no content] is the minimizer of error entropy.




3. Non-Uniqueness of Unbiased MEE Estimation


Because entropy is shift-invariant, the MEE estimator is obviously non-unique. In practical applications, in order to yield a unique solution, or to meet the desire for small error values, the MEE estimator is usually restricted to be unbiased, that is, the estimation error is restricted to be zero-mean [15]. The question of interest in this paper is whether the unbiased MEE estimator is unique. In [20], it has been shown that, for the singular case (in which the error entropy approaches minus infinity), the unbiased MEE estimation may yield non-unique (even infinitely many) solutions. In the following, we present two examples to show that this result still holds even for nonsingular case.



Example 3: Let the joint PDF of [image: there is no content] and [image: there is no content] ([image: there is no content]) be a mixed-Gaussian density [20]:


[image: there is no content]



(22)




where [image: there is no content], [image: there is no content]. The conditional PDF of [image: there is no content] given [image: there is no content] will be:


[image: there is no content]



(23)




[image: there is no content], [image: there is no content] is symmetric around zero (but not unimodal in x). It can be shown that for some values of [image: there is no content], [image: there is no content], the MEE estimator of [image: there is no content] based on [image: there is no content] does not equal zero (see [20], Example 3). In these cases, the MEE estimator will be non-unique, even if the error’s PDF is restricted to zero-mean (unbiased) distribution. This can be proved as follows:



Let [image: there is no content] be an unbiased MEE estimator of [image: there is no content] based on [image: there is no content]. Then [image: there is no content] will also be an unbiased MEE estimator, because:


[image: there is no content]



(24)




where (c) comes from the fact that [image: there is no content] is symmetric around zero, and further:


[image: there is no content]



(25)




If the unbiased MEE estimator is unique, then we have [image: there is no content], which contradicts the fact that [image: there is no content] does not equal zero. Therefore, the unbiased MEE estimator must be non-unique. Obviously, the above result can be extended to more general cases. In fact, we have the following proposition.



Proposition2: The unbiased MEE estimator will be non-unique if the conditional PDF [image: there is no content] satisfies:

	(1)

	
Symmetric in [image: there is no content] around the conditional mean [image: there is no content] for each [image: there is no content];




	(2)

	
There exists a function [image: there is no content] such that [image: there is no content], [image: there is no content].









Proof: Similar to the proof presented above (Omitted).



In the next example, we show that, for some particular situations, there can be even infinitely many unbiased MEE estimators.



Example 4: Suppose[image: there is no content] is a discrete random variable with Bernoulli distribution:


[image: there is no content]



(26)







The conditional PDF of [image: there is no content] given [image: there is no content] is (see Figure 2):


[image: there is no content]










[image: there is no content]








where [image: there is no content]. Note that the above conditional PDF is uniformly dominated in [image: there is no content].


Figure 2. Conditional PDF of [image: there is no content] given [image: there is no content]: (a) [image: there is no content], (b) [image: there is no content].
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Given an estimator [image: there is no content], the error’s PDF will be:


[image: there is no content]



(27)







Let [image: there is no content] be an unbiased estimator, then [image: there is no content], and hence [image: there is no content]. In the following, we assume [image: there is no content] (due to symmetry, one can obtain similar results for [image: there is no content]), and consider three cases:



Case 1: [image: there is no content]. In this case, the error PDF is:


[image: there is no content]



(28)







Then the error entropy can be calculated as:


[image: there is no content]



(29)




Case 2: [image: there is no content]. In this case, we have:


[image: there is no content]



(30)







And hence:


[image: there is no content]



(31)




Case 3: [image: there is no content]. In this case:


[image: there is no content]



(32)







Thus:


[image: there is no content]



(33)







One can easily verify that the error entropy achieves its minimum value when [image: there is no content] (the first case). There are, therefore, infinitely many unbiased estimators that minimize the error entropy.




4. Conclusion


Two issues involved in the minimum error entropy (MEE) estimation have been studied in this work. The first issue is about which estimator minimizes the error entropy. In general there is no explicit expression for the MEE estimator unless some constraints on the conditional distribution are imposed. In the past, several researchers have shown that, if the conditional density is conditionally symmetric and unimodal (CSUM), then the conditional mean (or median) will be the MEE estimator. We extend these results to a more general case, and show that if the conditional densities are generalized uniformly dominated (GUD), then the dominant alignment will minimize the error entropy. The second issue is about the non-uniqueness of the unbiased MEE estimation. It has been shown in a recent paper that for the singular case (in which the error entropy approaches minus infinity), the unbiased MEE estimation may yield non-unique (even infinitely many) solutions. In this work, we show by examples that this result still holds even for nonsingular case.
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