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Abstract: We explore the consequences of a deterministic microscopic thermostat-reservoir
contact mechanism for hard disks where the collision rule at the boundary is modified.
Numerical evidence and theoretical argument is given that suggests that an energy balance
is achieved for a system of hard disks in contact with two reservoirs at equal temperatures.
This system however produces entropy near the the system-reservoir boundaries and this
entropy flows into the two reservoirs. Thus rather than producing an equilibrium state, the
system is at a steady state with a steady entropy flow without any associated energy flux.
The microscopic mechanisms associated with energy and entropy fluxes for this system are
examined in detail.
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1. Introduction

The first concept established in equilibrium statistical mechanics is the existence of an equilibrium
state; that is, after a sufficient time macroscopic observables have steady time independent average
values. The concepts of temperature and entropy as applied in equilibrium thermodynamics cannot
apply to some transient system and they do not easily generalize to nonequilibrium systems. However, it
is possible that nonequilibrium steady states may have a thermodynamic description, particularly those
that are close to equilibrium. For an isolated equilibrium system where the entropy is a maximum, if
the system is connected to one or more reservoirs and perturbed from equilibrium the system is said to
produce entropy. The entropy production is transferred to a reservoir or surroundings and the intrinsic
entropy of the nonequilibrium system is lower than at equilibrium. Thus, when the perturbation is
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removed, the relaxation is driven by an increase in the intrinsic entropy. Perhaps a more useful construct
is to instead consider the entropy flow as a flow of energy through the system that maintains it in a steady
state. This energy flow has been called the housekeeping heat [1] to distinguish it from other intrinsic
heat flows.

In the canonical ensemble a system is in thermal contact with a reservoir which can exchange energy
with the system but is sufficiently large so that its thermodynamic state is not effected. Here it is assumed
that the system comes to an equilibrium state and the details of the thermal contact are not believed
to be important, however, away from equilibrium the details of the thermal contact are central. We
are only interested in exchanging energy to equilibrate a system, so we assign a fixed temperature or
reservoir momentum to each reservoir. This is an external parameter that remains fixed, so effectively
the reservoir’s thermodynamic state cannot change through the process of interaction with the system.

From a macroscopic viewpoint, the concept of temperature at equilibrium is well established by the
zeroth law of thermodynamics. This involves the idea of bringing together two systems and allowing
them to exchange energy. However, as soon as this idea is considered on a microscopic level it is clear
that a detailed mechanism that facilitates energy transfer is needed, and that involves the details of the
microscopic thermal contact interaction at the boundary. For systems away from equilibrium the status
of the zeroth law is not clear, and despite a number of studies of possible nonequilibrium temperatures,
the question is not settled [2–9]. There is a large literature on thermal conductivity in which reservoirs
are considered as stochastic sources of thermalized particles [10] at some required temperature, but this
approach precludes the use of modern dynamical system techniques.

Molecular dynamics simulations have proved to be a very effective means of testing theoretical
approaches to the study of fluids both in equilibrium and nonequilibrium steady states [11]. Given a
particular atomic pair interaction, the results are free of approximations and have an accuracy limited
only by statistical considerations. It is usual to use the equipartition theorem to define the kinetic
temperature, so in a system of N particles in d spatial dimensions, the translational kinetic energy is
kT
2

per degree of freedom, giving

T =
1

dN

N∑
i=1

p2
i

m
(1)

In this case we will extend the idea of a kinetic temperature to define the local kinetic temperature as the
temperature of the single atom in a particular volume as Ti = p2

i /dm, and this will be used to determine
the local temperature profile inside the system and to test equilibration. We identify separately the x and
y components of the temperature as

Ti,α =
p2
i,α

m
= Tα(x = 〈xi〉) (2)

and we will use the difference between the average of the x and y components of the local kinetic
temperature to give a measure of the deviation from local thermodynamic equilibrium. A change in
local temperature near the system-reservoir boundary for a mechanical reservoir [12] termed a Kapitza
resistance has been previously reported [10,13], but here we investigate the origin of this effect in
our system.
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2. The Generalized Gibbs Relation: Kinetic Theory

In nonequilibrium thermodynamics the kinetic-theory basis of the heat transport model in
quasi-one-dimensional (QOD) systems has been discussed recently [14]. The basic ingredient [15,16] is
the Boltzmann entropy S(t) which is defined, up to a constant, to be

S(t) =
∫
dr s(r, t) = −

∫
dr
∫
dv f(r,v, t) ln f(r,v, t) (3)

where s(r, t) is the entropy density at position r at time t and we take Boltzmann’s constant to equal one.
The Boltzmann entropy is just the kinetic contribution and the configurational contribution written in
terms of correlation functions is often referred to as the Green entropy [17]. We assume that the system
has reached a steady state so that the entropy, and all other thermodynamic properties, no longer depend
on time. The distribution function f(r,v, t) = n(r, t)P (r,v, t) obeys the Boltzmann equation, which
without external forces takes the following form

∂f

∂t
+ v · ∂f

∂r
= J [f ] (4)

where J [f ] is the collision integral and P (r,v, t) is the momentum probability density. The distribution
function is normalized so that ∫

dvf(r,v, t) = n(r, t) (5)

where n(r, t) is the local number density of the system. The local entropy-balance equation is obtained
by using the Boltzmann equation, Equation (4), to calculate the total time-derivative of the Boltzmann
entropy, Equation (3). When the fluid is on average stationary, the result is expressed as

∂s

∂t
+∇ · js = σent (6)

where js is the entropy flux and σent is the entropy production. The kinetic contribution to the entropy
flux js is given by

js(r) = −
∫
dv vf ln f (7)

The entropy-production per unit volume σent is given exactly by the first equality in Equation (8).
However, the collision integral is too difficult to handle so we approximate it using the BGK
approximation as J [f ] = ν(f(v)− floc(v)), thus we can estimate σent as

σent(r) = −
∫
dv J [f ] ln f = ν(r)

∫
dv{f(v)− floc(v)} ln f(v) (8)

where ν(r) is the local relaxation frequency proportional to ν0n(r)
√
T (r) (ν0 is a constant that depends

on dimensionality). According to the H-theorem [18] σent(r) must be positive. All the local quantities
associated with the entropy balance equation have been defined through the Boltzmann equation
and their definitions are exact within its validity and are not restricted to the linear regime. In the
Chapman–Enskog expansion solution to first order in the gradient (that is Navier–Stokes order [19])
the distribution function is given by f = floc(1 + Φ), where floc is the local-equilibrium distribution
function, which is a Gaussian at the local temperature and number density.
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3. The Model System

To specify the thermal contact between system and reservoir, it is necessary to move from a
macroscopic picture to a microscopic one, describing the collision process that allows energy to
flow at the system-reservoir boundary. We can separate simplified reservoir models into two classes;
stochastic and deterministic. A typical stochastic model uses Gaussian reservoirs to provide a source of
thermalized particles from a Gaussian distribution at a set temperature. These reservoirs cannot sense
the temperature as they are simply sources of thermalized particles.

The QOD system introduced recently [20] can be modified to interact with an idealized mechanical
heat reservoir in a deterministic and reversible way [21], to study both heat conduction in low
dimensional systems and the Lyapunov mode structure. The deterministic reservoir allows the calculation
of the usual dynamical systems properties as well as the thermodynamic properties. Similar systems have
been used recently to study heat flow [22,23], Eckmann and Young [24] have developed Hamiltonian
and stochastic models for heat transport in low dimensional systems. The Hamiltonian models consist
of energy storage devices which couple to each other through the motion of tracer particles that carry the
energy. Although these models principally store energy as rotational kinetic energy, they are similar in
many ways to the QOD system considered here which store energy locally in the y degree of freedom.
If we envisage taking the QOD system, expanding odd numbered disks to twice their diameter and
shrinking the even numbered ones to points, we obtain a scatterer-tracer system but with tracers always
confined between the same two scatterers. The chaotic scattering of hard disks in two-dimensions gives
a mechanism to transfer energy between particles with different momentum components, and hence may
be more realistic than one-dimensional models particularly for fluid systems.

3.1. System Dynamics

The QOD system contains N hard disks of diameter σ = 1 and mass m = 1 in a narrow channel
Lx×Ly where the system width is less than twice the particle diameter Ly < 2σ so that the disks remain
ordered (see Figure 1). As the position of the ith particle is restricted to lie between particles i − 1 and
i+ 1 any property of particle i can be associated with the same local density at the average position 〈xi〉
of particle i. For example, the local number density n(r, t) is the inverse of the average volume occupied
by the particle ρi = 1/Vi where Vi = Ly(〈xi+1 − xi−1〉)/2.

The equations of motion connecting the QOD system to the two reservoirs at x = 0 and Lx define the
thermal contact. When a particle collides with a reservoir wall the usual collision rule in the x direction
is replaced by

p′x = εpI − (1− ε)px (9)

where pI = ±
√

2TI is the fixed value of the reservoir momentum for the I th reservoir (either pL for
the left-hand side or pR for the right-hand side) for a given boundary temperature of TI . Note that the
reservoir momentum is always directed from the reservoir into the system; so here pL > 0 and pR < 0.
We use a system width of Ly = 1.15σ, allowing Lx to vary with the number of particles N to give the
desired density ρ = Nσ2/(LxLy). The temperature profile is determined from the average components
of the kinetic temperature of each particle [the average of Equation (2)].
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Figure 1. Schematic presentation of an N hard-disk quasi-one-dimensional (QOD) system.
The height Ly is sufficiently small that the disks cannot pass one another. We choose the
coordinate origin to be located at the bottom left corner of the system, and system boundaries
are denoted by dashed lines. The boundaries at x = 0 and Lx are hard walls and those at
y = 0, Ly periodic (that is, a (H,P) quasi-one-dimensional system).

The parameter ε represents the strength of the coupling between the reservoir and the system. If
ε = 0 there is no interaction with the reservoir, while if ε = 1 the incoming momentum is completely
replaced by the reservoir momentum. Here we use an intermediate value of ε = 0.5, which provides
an effective mix of the incoming momentum with the reservoir momentum. The physical interpretation
of Equation (9) is straightforward; when a collision occurs with a reservoir the reflected particle has
the x component of its momentum changed to a linear combination of the reservoir momentum and its
momentum before collision. This results in a strong peak in the reflected momentum near the value of
the reservoir momentum which is broadened due to the randomness of the incoming particle momentum,
shown in Figure 2. This produces a probability density P (r,v) which is quite different from Gaussian
at the local temperature and density. Through interactions with other particles this reflected momentum
distribution returns to a more Gaussian-like distribution after four or five particles, regardless of N .

Figure 2. The probability density divided by the local Gaussian probability density for the
velocity of particles 1, N/2 and N respectively in an N hard-disk quasi-one-dimensional
(QOD) system with reservoirs at the same temperature. Particles 1 and N are nearest the
two reservoirs so their probability densities in vx are mirrored, while particle N/2 is in the
middle of the QOD system. The horizontal axis is vx and the vertical axis is vy with the
colour scale for the probability on the right-hand side. The probability density for particle 1

shows a strong injection peak around the reservoir velocity which is positive. The probability
density for particle N/2 is essentially equal one everywhere except for v2

x + v2
y > 62 where

the numerical probability density is zero (thus colored red).
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3.2. Energy Balance

In a numerical simulation we can calculate the energy flux between system and reservoir by direct
calculation or we can calculate it indirectly through the probability density of incident momentum and the
collision frequency. Once obtained, the probability density of incident momentum px will give all of the
fluxes to and from the reservoirs per collision. The number of collisions per unit time nL with momentum
−px on the left-hand wall is given by the product of, the length of the collision cylinder |px|δt for particles
which collide within time δt, and the probability density that a particle has momentum −px is given by
P (−px). Thus the number of collisions for particles with momentum px is nLδt = |px| exp(−1

2
βp2

x)δt

and the normalized incoming wall collision probability density is P (px) = β|px| exp(−1
2
βp2

x). To
calculate the energy balance at the left-hand reservoir we use the wall collision distribution and calculate
the average energy transfer

〈
p′2x − p2

x

〉
. Using the collision rule from Equation (9) and taking the wall

momentum as pL =
√

2TL, we look for the value of β for which there is on average no energy transfer
in a collision. Therefore we require that

εp2
L + 2(ε− 1) 〈px〉 pL + (ε− 2)

〈
p2
x

〉
= 0 (10)

The probability density for the incoming momenta gives 〈px〉 = −
√
π/2β and 〈p2

x〉 = 2/β, where the

incoming collisional temperature T = 1/β. We then obtain a quadratic equation for
√
T/TL,

T

TL
−
√
π

(ε− 1)

(ε− 2)

√
T

TL
+

ε

(ε− 2)
= 0 (11)

Solving this equation gives

T =

√
π

2

(ε− 1)

(ε− 2)

1±

√√√√1− 4ε(ε− 2)

π(ε− 1)2

TL (12)

Note that as ε− 2 is always negative when 1 > ε > 0, the term inside the square root is always positive.
Here we have chosen a temperature to associate with the incoming momentum distribution and found
the value which produces an energy balance at the boundary. In this analysis the temperature T only
depends on the value of ε, not on the system size N or the density ρ. As a concrete example, we consider
a QOD system of 640 hard disks at density ρ = 0.8 connected to reservoirs with equal temperatures
TL = TR = 2, which gives a fitted incoming momentum probability density P (px) = αpx exp(−1

2
βp2

x)

where α = 0.547 and β = 0.537, implying T = 1.862. This is not a good fit to the data and for
the distribution to be properly normalised we require α = β. For ε = 1/2, there is only one physical
solution to Equation (12), T = 1.78152, independent of both N and ρ. Whether this temperature should
be associated with the particle closest to the boundary or some other bulk measure of the temperature is
not immediately clear. In Table 1 we observe that the x and y temperatures of particle 1 converge quickly
with increasing N , but to different values, and Tx is greater than the boundary temperature of 2.
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Table 1. The temperature of the left-hand boundary particle - particle 1 - for QOD systems
as a function of system size with fixed reservoir temperatures of TL = TR = 2. The first two
columns are for a density ρ = 0.03 while the last two columns are for a density ρ = 0.8.
This data is also contained in Figure 3.

N Tx(1) Ty(1) Tx(1) Ty(1)

80 2.1270 1.8241 2.0836 1.7796

160 2.1205 1.8271 2.0785 1.7852

320 2.1179 1.8313 2.0755 1.7837

640 2.1157 1.8320 2.0750 1.7832

1280 2.1147 1.8333 − −

Figure 3. The temperature profiles Tx (red symbols) and Ty (blue symbols) as a function
of X = (i − 0.5)/N where i is the particle index for QOD systems of 80, 160, 320 and 640

hard-disks with TL = TR = 2. Plot (a) is the result for ρ = 0.03 and (b) is the result for
ρ = 0.8. These profiles are strongly dependent on system size with the bulk temperature
smaller with increasing N and there are local differences between Tx and Ty. The results are
remarkably insensitive to density with only very slightly smaller values at the higher density.

The best predicted temperature T is very close to Ty at ρ = 0.8, but different from the low density
result. Numerically, we find that a two parameter form for the probability density gives a much better fit
(see Figure 4),

PL(px) = (αpx + γp2
x) exp(−βp2

x/2) (13)

and the temperature is more consistent with the temperature at the centre of the system. When γ = 0,
α = β and this reduces to the simpler distribution. This distribution can also be used to calculate the
energy balance or flux across the boundary by considering the average per collision

〈
p′2x − p2

x

〉
and
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multiplying this by the collision frequency (for collisions with reservoir I). The parameters for the fits to
the incoming momentum probabilities, shown in Table 2, are remarkably insensitive to system size N .

Figure 4. The probability density of incoming momentum (dots) and its functional fit (line)
for both the left and right hand reservoirs for a QOD system of 80 hard-disks at a density
ρ = 0.8 with ε = 0.5 and reservoir temperatures T = 2. Note that all incoming momenta for
the left hand reservoir must be negative so PL(px) = 0 for px > 0. Similarly, PR(px) = 0 for
px < 0. The functional form [Equation (13)] is an excellent fit to the data for both boundary
distributions.
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Table 2. Parameters for the incoming momentum distributions at the left-hand side of QOD
systems as a function of system size at density ρ = 0.8 with reservoir temperatures of
TL = TR = 2.

N α β γ T
80 −0.45624 0.62897 0.1098 1.5899

160 −0.45850 0.62913 0.1084 1.5895

320 −0.45904 0.62954 0.1082 1.5885

640 −0.45946 0.63001 0.1084 1.5895

To produce a nonequilibrium steady state it is sufficient to have reservoirs of different temperatures on
each side of the QOD system. The energy entering the system from a boundary with reservoir momentum
pI during a collision with a particle of incoming momentum px is given by

∆eI =
1

2
(p′

2
x − p2

x) =
ε

2
[εp2

I + 2(ε− 1)pIpx + (ε− 2)p2
x] (14)

The time average of this quantity gives the flux of energy into the system so for a total system energy
balance ∆eL must be equal in magnitude but opposite in sign to ∆eR. The energy flux is controlled
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by both the reservoir momentum pI , the value of ε, and the probability distribution for the incoming
momentum, and goes to zero as ε→ 0.

3.3. Temperature Profiles

The generic picture used to construct the canonical ensemble is a system in contact with a heat
reservoir; a system in contact with two reservoirs at the same temperature is both canonical and
in equilibrium with both reservoirs. In a mechanical dynamical system we expect that an arbitrary
initial condition after some transient (a large number of collisions) will come to an equilibrium state,
independent of the initial configuration, and remain there indefinitely. After this transient, there is no
average energy transfer between system and reservoir. In the equilibrium state the components of the
local kinetic temperature, Tx and Ty, would be expected to become equal, Tx = Ty. For the QOD system
the temperature profiles can be presented as either functions of the average position of the particle, or
as a function of particle number (as the order is fixed), but to be able to compare systems of different
size we use a simple scaling function X = (i − 0.5)/N where i is the particle number. Figure 5 shows
both x and y components of the temperature profile for QOD systems of 3 to 50 disks connected to
two reservoirs with the same temperatures TL = TR = 1 as a function of x = (i − 0.5)/N . For these
small systems the temperature profiles show very strong number dependence and there is no evidence of
equilibration between x and y temperatures before the system size nears 50, but even here 〈Tx〉 > 〈Ty〉
everywhere in the system. The drop in 〈Ty〉 for the two particles in contact with the reservoirs is a
consistent feature in all profiles. Further, the temperature in the centre of the system is significantly
lower than the temperature of the reservoirs and this varies with system size. The direct numerical
calculation of the px and py-distributions gives good fits to Gaussians with temperatures equal to local
kinetic x and y temperatures, away from the boundaries, thus the second moment calculated from the
distribution is consistent with that calculated directly.

A systematic study of the temperature profile for larger systems shows that the same behaviour persists
but becomes smaller with increasing N (see Figure 3). There is a strong dependence on system size as
the bulk T is lowered with increasing N with no indication that the profiles will converge to some
universal N →∞ limit. The profiles seem almost completely independent of the density, as can be seen
by comparing the two graphs in Figure 3. Although the temperature difference between the boundary
and particle 1 is not given by the analysis above, we can construct an argument for the systematically
lower temperatures in the centre of the QOD systems as N increases. As the difference in temperature
between the boundary and Ty(1) is independent of N and decreases monotonically with particle number
with the same slope regardless of N , a larger system size will lead to a larger decrease and thus a lower
centre temperature.
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Figure 5. (a) The temperature profiles Tx (top) and Ty (bottom) as a function of X for
QOD systems of 3, 5, 7, 9 and 15 hard-disks at ρ = 0.8 as a function of X = (i − 0.5)/N .
These profiles are strongly dependent on system size and there are significant differences
between Tx and Ty for the smaller systems. (b) The temperature profiles for a QOD system
of 50 hard-disks showing that despite good equilibration of Tx and Ty locally, there remains a
systematic difference between the two temperatures with Tx > Ty. (c) The temperature of the
middle particle(s) in the QOD systems of different size plotted against 1/N . Whilst initially
appearing to converge, for systems of more than 100 disks the change in temperature with
system size increases. Notice that the temperature near the centre is more than 20% smaller
than the nominal reservoir temperature T = 1. All graphs have the same vertical scale.

(a) (b) (c)

3.4. Temperature Differences and Equilibration

The temperature differences Tx − Ty as a function of particle number are shown in Figure 6 for both
low density and high density systems and we see in both cases that the effects are mostly visible in the
first ten particles regardless of the system size and the density. We will refer to this behaviour as an
order one effect as it is independent of system size N and always involves the same number of particles
near a boundary. For 80 and 160 particles Tx > Ty so nowhere in the system is the temperature fully
equilibrated. At the larger system sizes of 320 and 640 particles the results for Tx − Ty look like noise
with a mean of zero, so the temperature has equilibrated. Thus the temperature equilibration in the bulk
of the system is an order N effect, requiring somewhere between 160 and 320 particles, but near both
boundaries there is a region of approximately 10 particles that never equilibrate.
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Figure 6. The temperature difference Tx − Ty profiles as a function of the particle index for
QOD systems of 80, 160, 320 and 640 hard-disks with TL = TR = 2. The vertical scale on
both graphs is the same. (a) Results for ρ = 0.03 and (b) Results for ρ = 0.8. These profiles
are remarkably independent of system size N and density ρ.

4. Entropy

We consider a steady system with reservoirs of equal temperature at each end. As can be seen from
Figures 3 and 5, even in the absence of an external temperature gradient both the x and y temperatures
vary with position and are generally not equal. The Chapman–Enskog expansion solution, to first order
in the gradient of the distribution function, is given by f = floc(1+Φ) where floc is the local-equilibrium
distribution function, βx = 1/Tx and βy = 1/Ty depend upon x and are allowed to differ locally. Then
floc can be written as

floc(x,v) =
mn(x)

2π
(βxβy)

1/2 exp
[
−m

2

(
βxv

2
x + βyv

2
y

)]
(15)

The right-hand side depends on x through n(x), βx and βy. This is an extension of the local equilibrium
concept to a system which can have differing temperatures in the x and y directions as is commonly found
for nonequilibrium steady states [25]. The entropy density is obtained at the level of the local-equilibrium
approximation as

sloc(x) ' −
∫
dvfloc ln floc = n(x)

{
1− ln

[(
mn(x)

2π

)
(βxβy)

1/2

]}
(16)

This entropy density obtained is reminiscent of the equilibrium Sackur–Tetrode equation, except here
the hydrodynamic fields are local.

In the computer simulation of the QOD system a histogram of the velocity distribution for each
particle is collected on a fixed grid size ζ . For a velocity distribution in two variables P (vx, vy) the
distribution at vx = vi and vy = vj is f(i, j) = nP (vx, vy). The discrete distribution for each histogram
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cell fi,j is the integral of the probability distribution f(i, j) over the cell so fij =
∫
f(i, j)dv ' f(i, j)ζ2

so that f(i, j) = fij/ζ
2. The entropy can then be calculated for each particle as follows

s = −
∫
dvf ln f ' −

∑
i,j

ζ2f(i, j) ln f(i, j) = −
∑
i,j

fi,j ln fi,j + 2n ln ζ (17)

The convergence of the entropy density s(x) and the local equilibrium entropy density sloc(x) is quite
different. The entropy density requires the convergence of the numerical velocity distribution itself while
the local equilibrium entropy density only requires the convergence of the field variables n(x), βx(x) and
βy(x). In Figure 7 we see that sloc is an upper bound for s and the two entropies are in good agreement
with each other. The number dependence of the entropy is similar to the the number dependence of the
temperature as S becomes smaller with increasing N .

Figure 7. The entropy profiles s(x) (blue symbols) and sloc(x) (red line) as a function of
X = (i − 0.5)/N where i is the particle index for QOD systems of 80, 160, 320 and 640

hard-disks with TL = TR = 2. (a) are the results for ρ = 0.03 and (b) are the results
for ρ = 0.8. These profiles are strongly dependent on system size. They change with
system size but the agreement between sloc(x) and s(x) is impressive in all cases. Note that
sloc(x) > s(x) for all values of x. The largest difference between s(x) and sloc(x) is at the
boundaries where the momentum distributions deviate most greatly from Gaussian.

4.1. Entropy Production and Flux Near Reservoirs

It is surprising to find that despite the absence of entropy production and entropy flux in the bulk of the
system, it is evident near the reservoirs. There is entropy production in this steady state system and an
associated entropy flux directed into each reservoir. In Figure 8, the entropy production calculated from
Equation (8) is concentrated on the particles closest to each of the reservoirs. The entropy properties
come directly from the BGK approximation and the velocity probability density for each particle.

σent(x) = ν(x)
∫
dv{f(x,v)− floc(x,v)} ln f(x,v) (18)
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The two-dimensional velocity probability density for each particle P (v) is calculated numerically on a
grid of typically 301 × 301 with a resolution of 0.05. The entropy, entropy flux and entropy production
are all calculated numerically by integrating this probability density using Equations (3), (7), (8) with
an error in the order of the square of the resolution, that is 0.0025. The entropy flux and production
are expected to be good representations at low density in the kinetic regime where ρ < 0.1, but would
neglect potential contributions at higher density. In the steady state ∂s

∂t
= 0 so ∇ · js = σent. As both the

entropy current and production are defined at each particle, we can associate these properties with the
regions assigned to each particle and approximate the integral in Equation (18) as a sum.

jm − jm+1 =
∫ m

m+1
σent(x)dx ∼ −∆xmνmam (19)

Here we can choose the particle numberm freely and ∆xm is related to the local density by ρm = 1
∆xmLy

.
We have separated the entropy production into the product of two terms; the first is the local frequency
parameter of the BGK approximation νm, and the other is the integral of velocity probability density.
Thus we can write νm in terms of known quantities calculated, using the BGK approximation only for
am, and ask what value of νm is required to obtain consistent results. We have

νm =
ρmLy
am

(jm+1 − jm) (20)

Figure 8. The entropy flux and entropy production plotted against particle number for an
equilibrium QOD system ofN hard-disks with TL = TR = 2. System sizes used areN = 80

(filled circles), 160 (open circles), 320 (open diamonds), 640 (crosses) and the results are
remarkably insensitive to N . The entropy production is positive near the boundary and the
entropy flux is directed into the boundary (reservoirs). Panel (a) is for and ρ = 0.03, (b) is
for ρ = 0.8.

In Figure 8 we see that for a system in contact with two the equal reservoirs the entropy production
is confined to a small number of particles nearest the wall and that the entropy production is largely
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independent of the system size (thus order one). The entropy production in a system with equal reservoirs
is intensive, and only involves properties of the particles that are in contact with the reservoirs. The
numerical convergence of these two quantities is quite different; the entropy production converges
with the smoothness of the distribution increasing slowly and monotonically near the reservoirs and
decreasing in the central part until a steady value is reached. Statistically, the probability density needs
to be sampled sufficiently to obtain a reliable value over the whole two-dimensional space (vx, vy) and
the convergence of the local distribution depends on the convergence to the local fields n(x), Tx(x)

and Ty(x).
Using Equation (20) we calculate the BGK frequency that is required to give the simulation results

that we observe in Figure 8. These results are plotted in Figure 9 and give a required frequency of
about 0.02 at the lower density of 0.03, and a frequency of about 0.6 at the higher density of 0.8. The
single particle collision frequency is independent of system size N and is about 2.5 times larger than
the BGK frequency at ρ = 0.03. At the higher density ρ = 0.8 the single particle collision frequency
is almost 20 times larger than the BGK frequency. This suggests that the BGK frequencies are not
connected with the frequencies of collision events in the simulation but rather relate to the longer time
scale associated with the relaxation of the distribution. Comparing the two BGK frequencies we see
that they are consistent with a linear dependence on density but do not give particular support to that
proposition.

Figure 9. The recalculated values of the BGK relaxation frequency from the entropy
production and entropy flux of QOD systems of 80 (red filled circles) and 160 disks (blue
filled diamonds) at two different densities with reservoir temperatures of TL = TR = 2.
System sizes used are N = 80, 160 and the results are insensitive to N . Panel (a) is for
ρ = 0.03, panel (b) is for ρ = 0.8.

In Table 3 we give the number of collisions per particle for the different system sizes and densities
we have considered. The numerical results obtained here need to be qualified in the sense that the
process of heat conduction in this system and the relaxation to a steady state is generally very slow.
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Although we base our interpretation on long simulations, we cannot be certain that other slower processes
remain undetected.

Table 3. Simulation lengths given as the number of collisions per particle as a function of
system size at the two different densities with reservoir temperatures of TL = TR = 2.

N ρ = 0.03 ρ = 0.8

80 1× 108 2× 108

160 1.5× 108 2× 108

320 0.75× 108 0.875× 108

640 0.25× 108 0.375× 108

5. Conclusions

We have investigated the consequences of a particular microscopic coupling model between a system
of hard disks and a reservoir, which has the advantage of being relatively simple and deterministic.
The modification to the collision rule at the system-reservoir boundary allows the system to come to a
steady state where on average no energy flows between system and reservoir. We construct a qualitative
argument for the energy balance that implies a lower temperature than the boundary temperature inside
the system which is observed numerically. In this work we have considered reservoirs with equal
temperatures to probe the microscopic mechanisms, but it is possible to have reservoirs of different
temperatures to produce nonequilibrium steady states. Although the collision rule is deterministic, it
does not correspond to deterministic thermostats often used in nonequilibrium steady states [26,27].

In all cases at fixed N the system comes to a steady state but the temperature profiles depend on
the system size. For systems of 3 to 50 disks the steady state temperature profiles differ for the x and
y directions, but as the size gets larger, somewhere between 160 and 320, local thermal equilibration
occurs and Tx ' Ty. While these system size effects get smaller with increasing N it is still clear that
the temperature in the centre of the system has not converged to a limit at N = 640. Indeed numerically
there is no indication that such a limit exists. Evidence that the reservoir affects the temperature profile
near the boundary in the same way regardless of system size, leading to the same temperature gradient,
suggests that the centre temperature will be smaller for larger system. This is observed numerically, but
again the argument is only qualitative. The major unresolved question is whether a large system limit
exists for a QOD system with these reservoirs.

As well as systematic changes in the temperature there are also systematic changes in the local entropy
that occur with system size. These lead to lower values of entropy in the centre of the system at both
low and high densities. Although it can be shown that the entropy derived from the local equilibrium
distribution is an upper bound on the local entropy calculated from the numerical distributions, there is
remarkable agreement between the two entropies in all circumstances.

The deterministic coupling mechanism produces entropy in particles near the reservoir and that
entropy is transported as an entropy flux density into the reservoir. The expected equilibrium
configuration of a system between two reservoirs of the same temperature leads to a system that has
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a steady kinetic temperature which is lower than the temperatures of the reservoirs. By considering the
probability distributions of the momentum of particles near the boundary, as well as the details of the
reservoir dynamics, we provide a microscopic explanation of this effect.

Two effects that are order one (or independent of N ) are the temperature difference near the boundary
Tx−Ty, and the entropy production and flow near a boundary. The temperature difference is independent
of both N and ρ. The entropy production and flux is independent of N but does depend on the density.
There is no energy flux or momentum flux associated with this entropy flux. These local effects that
occur near the boundaries reinforce the picture of a reservoir with a strong effect on the system locally
but sometimes propagates throughout the system, as we see in the profiles of temperature and entropy
density. Such reservoir-system interactions are important in a wide variety of situations and here the
analysis is made possible because the interaction is specified mechanically.
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