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Abstract: From the perspective of the statistical fluctuation theory, we explore the role
of the thermodynamic geometries and vacuum (in)stability properties for the topological
Einstein–Yang–Mills black holes. In this paper, from the perspective of the state-space
surface and chemical Weinhold surface of higher dimensional gravity, we provide the
criteria for the local and global statistical stability of an ensemble of topological
Einstein–Yang–Mills black holes in arbitrary spacetime dimensions D ≥ 5. Finally, as
per the formulations of the thermodynamic geometry, we offer a parametric account of the
statistical consequences in both the local and global fluctuation regimes of the topological
extremal Einstein–Yang–Mills black holes.
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1. Introduction

Thermodynamic geometry [1–26] plays important role in understanding the stability and phase
structure properties of black holes. There have been several investigations made in this direction, which
explore the thermodynamic structures of black holes in general relativity, string theory and M-theory. In
this paper, we examine thermodynamic structures of topological Einstein–Yang–Mills black holes.
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From the perspective of the SU(2) gauge theory, we explore the thermodynamic properties of the
black hole solutions in non-Abelian gauge theory. In particular, the present consideration investigates the
thermodynamic stability structures of a class of two parameter extremal black hole configurations which
carry an electric charge e and the cosmological constant Λ := kn(n− 1)/l2, where l is the curvature of
the Anti-de Sitter (AdS) space. Here, for a given (n + 1)-dimensional topological Einstein–Yang–Mills
black hole, the symbol k takes values over the set {−1, 1} respectively for the asymptotically AdS and
de Sitter (dS) solutions. From the perspective of the SU(2) gauge theory, [27] offers the subject matter,
namely, the solitonic features towards such a consideration. In this concern, the work of Yasskin [28]
gives the corresponding colored black hole solutions with SO(3) gauge group symmetry.

For a given colored black hole solution, in the above setup, the black hole uniqueness theorem leads
to the fact that arbitrary dimensional topological solutions of the Einstein–Yang–Mills black holes are
hairy in their character. In contrast to the Kerr–Newman family, the exterior geometry of the both the
above family of solutions, apart from the global asymptotic charges, require additional parameters of
the metric tensor and the corresponding matter fields [29–31]. The nature of these solutions have been
extended for the higher derivative corrections. Namely, [32,33] provide the contribution arising from
the Gauss–Bonnet terms. [34–38] describe the corresponding cosmological constant contributions to the
entropy and ADM mass of the topological Einstein–Yang–Mills black holes. It is worth mentioning
further that all the above solutions indicate a non-trivial domain of instability for the non-negative
cosmological constant solutions, see for a reference [39]. [37,40] provide the (in)stability structures
of the associated negative cosmological constant black holes.

From the perspective of gauge field theories, for a given N-parameter semi-simple Lie gauge group,
the action of (n + 1)- dimensional Einstein–Yang–Mills gravity theory describes black hole solutions.
This consideration involves three types of contributions to the Lagrangian of the theory. These terms are
respectively the contributions arising from the Ricci scalar, cosmological constant (or AdS curvature)
and the Yang-Mills field strength tensor. The equations of the motion of such a Lagrangian are
obtained via variations of the background space-time metric tensor and the underlying Yang-Mills
gauge fields. For given gauge fields and space-time metric tensor, the equations of motion render as
a set of coupled Yang-Mills equations with sources and the Einstein field equations with cosmological
constant. Such a theory can be simplified via the consideration of the Cartan’s criteria. Namely, this
yields to the fact that both the energy momentum tensor and current of the theory can be expressed
in terms of the structure constants of the gauge group, gauge coupling constants and underlying gauge
fields. From the consideration of Wu–Yang Ansatz [41,42] provides explicit topological character of
Einstein–Yang–Mills black holes and thus one obtains black hole solutions in four, five and arbitrary
space-time dimensions. It is worth mentioning that the determination of the currents and the gauge
fields of the theory requires specification of structure constants of the gauge group. Moreover, the static
space-time metric tensor of such a black hole, which possesses the hyperbolic horizon, arises by solving
the corresponding cosmological Einstein field equations for specific components of the background
space-time metric tensor. In this perspective, [43] provides a class of static non-Abelian five-dimensional
black holes in the theory of N = 8 maximal gauged supergravity.

Notice further that the [42] provides an appropriate platform to study the thermodynamic
geometric properties of the non-Abelian black holes. In any case, as a generalization of the Abelian
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Einstein–Maxwell gravity, these black holes are based on the analysis of the Einstein field equations. For
nonlinear field sources with generic topological nature, we shall offer exact thermodynamical properties
of the standard four and higher dimensional black holes in the theory of the Yang–Mills gravity.
Specifically, for given (n+1)-dimensional topological Einstein–Yang–Mills black holes with a negative
cosmological constant, the thermodynamics lies on the properties of the Einstein field equations, gauge
current and stress-energy tensor for arbitrary finite semi-simple gauge group. In fact, the consideration
of [42] leads to explicit horizon properties of the four dimensional solution with SO(2, 1) gauge
symmetry. The above research direction further continues towards the topological properties of a family
of logarithmically corrected black hole solutions in the five and other higher dimensional generalizations.
The examination of the five-dimensional static black holes provides interesting issues for the hyperbolic
horizon spherically symmetric solutions with SO(3, 1) gauge isometries. In this perspective, we refer
the reader to [42] for explicit expressions of the mass, entropy and Hawking temperature of the black
holes of the present interest. Namely, the consideration of the thermodynamic geometry offers further
issues for the non-static asymptotically de Sitter solutions in six and higher space-time dimensional
Einstein–Yang–Mills gravity with a non-negative mass, which we relegate to the section 3 and 4 of
this paper. The motivation of the present paper lies in the fact that these solutions describe black
holes if the corresponding solutions exist in the Einstein–Maxwell gravity [42]. Namely, it is worth
mentioning that the notion of the thermodynamic geometry opens new direction to examine the stability
properties of topological Einstein–Yang–Mills black holes in arbitrary (n + 1)-dimensional space-time
with SO(n(n− 1)/2− 1, 1) semi-simple gauge group symmetries.

Here, our goal is to analyze the statistical nature of the topological Einstein–Yang–Mills black holes,
in general. Namely, we wish to explicate the local and global statistical stability of an ensemble of
such black holes in arbitrary space-time dimensions D ≥ 5. Our framework allows one to geometrically
explore the nature of the local and global statistical correlations about a fixed vacuum of the non-Abelian
Yang–Mills gauge theory containing Einstein–Yang–Mills black holes. As per the quantitative analysis
of the thermodynamic geometric model provided in the section 2, this paper offers an explicit realization
of the statistical (in)stabilities. For the given black hole entropy and mass, we shall illustrate that the
parametric fluctuations are intrinsic geometric in the nature. Subsequently, the framework of fluctuation
theory is capable of offering an appropriate account of the statistical properties of all finite dimensional
topological Einstein–Yang–Mills black hole configurations. From the perspective of the thermodynamic
geometries and fluctuation theory, the statistical ensemble (in)stabilities via the Ruppeiner geometry
and the corresponding Legendre transformed Weinhold geometry of the arbitrary finite space-time
dimensional topological Einstein–Yang–Mills black hole configurations are of the particular interest in
the consideration of the present paper.

The rest of the paper is organized as follow. In Section 2, we provide a brief review of the
fluctuation theory of the two parameter black hole configuration and thereby specialize it from the
perspective application of the thermodynamic Riemannian geometries. In Section 3, we analyze the
Ruppeiner geometry for the five dimensional topological Einstein–Yang–Mills black hole configuration
and thereby extend our consideration for the ensemble of arbitrary finite dimensional topological
Einstein–Yang–Mills black holes. In Section 4, we explore the above consideration from the perspective
of the Weinhold geometry, where we first analyze the ensemble of the five dimensional topological
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Einstein–Yang–Mills black holes and subsequently consider the case of arbitrary finite dimensional
topological Einstein–Yang–Mills black hole configuration. Finally, in Section 5, we present our
conclusions and some remarks for a future investigation such as the corresponding non-extremal
configurations.

2. Thermodynamic Geometry

In what follows next that we consider the Riemannian geometric model whose covariant metric
tensor may be defined as the Hessian matrix of the entropy with respect to an arbitrary number of
parameters characterizing a black hole system of the statistical interest. We shall examine the nature
of the fluctuation properties with a minimal number of parameters, such as fixed volume system,
characterizing the thermodynamics of the associated equilibrium statistical configuration of an ensemble
of arbitrary finite dimensional topological Einstein–Yang–Mills black holes. In particular, let us define
the entropy representation of the chosen black hole configuration with the entropy S(xi) for a given set of
parameters of the configuration. Such a definition can be introduced in terms of the parameters, such as
the entropy S, temperature T , mass M , charges qi, and others if any, of the black hole. This gives a finite
dimensional basis set {xi} of the black hole fluctuations over a given statistical equilibrium ensemble.

As mentioned above, in the present work we only consider extremal black holes. However, let us
notice immediately that the issue of stability we study for the extremal case, which concerns fluctuations
of the cosmological constant instead of the temperature (which is considered fixed at zero value), is
based upon a method that can be applied also to the case of black holes with non-vanishing temperature,
which lies beyond the scope of the present paper and can be considered in a separate publication. We
also stress that it is our primary focus in the present consideration, to study an ensemble of topological
Einstein–Yang–Mills black holes described in terms of the electrical charge, entropy, mass, and
cosmological constant, which is then considered as one of the fluctuating parameters. The following
analysis, carried out in the section below, allows us to consider issues of stability of different black
holes, living in universes having different cosmological constant.

Herewith, for a given ensemble of topological Einstein–Yang–Mills black holes described in terms
of a set of parameters xi such as the electrical charge e, entropy S, mass M , and cosmological constant
λ as statistical events {ij | j ∈ Λ} ⊂ Z on a finite set Λ as a finite lattice, the Gaussian distribution
function can be determined the fluctuation of {xi} over an equilibrium black hole configuration. Thus,
as per the theory of general coordinate transformations of a differentiable manifold, we shall consider
the state-space and chemical surfaces parameterized by {l, e}. Physically, in the sense of fluid/ gravity
correspondence [44] relating the dynamics of Einstein’s equations with a given non-zero cosmological
constant to the dynamics of relativistic fluid equations, we shall view the flow of the entropy S and mass
M of the black hole in terms of its parameters {l, e}. Over such a given equilibrium configuration [45],
the fluctuation theory provides the underlying Riemmanian geometric inner product structures, see for a
review [1].

Moreover, by considering the extremal limit of a given non-extremal black hole system, we examine
the stability of an extremal ensemble of topological Einstein–Yang–Mills black holes for the limiting
zero temperature configurations. The Weinhold geometry can be realized as the fluctuations of the
chemical potentials. The corresponding Legendra transformed Ruppeiner geometry is realized when
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the charge and cosmological constant are allowed to fluctuate [1]. It is worth mentioning that the
method of the fluctuation theory as invoked here applies to the non-extremal configurations, as well.
Indeed, as outlined above, the stability analysis of the corresponding non-extremal topological black
hole ensemble, involves fluctuations in all of the concerned black hole parameters. Namely, for the
non-extremal topological Einstein–Yang–Mills black holes, our consideration opens the three parameter
generalization for a perspective research.

In this setup, the set {xi}, for i = 1, ..., n, when treated as a set of extensive thermodynamic variables,
forms coordinate charts for the corresponding intrinsic manifold. In this sense, an appropriate choice of
the parameters xi characterizes the entropy of the system. This characterization of the fluctuations of an
ensemble of finite dimensional topological Einstein–Yang–Mills black holes renders into the so-called
Ruppeiner geometry [1–6]. In general, the components of the covariant Ruppeiner metric tensor are
defined as

gij := −∂2S(x⃗)

∂xi∂xj
(1)

where the vector x⃗ = (xi) ∈ Mn. Explicitly, for the case of the two-dimensional intrinsic Riemannian
geometry parameterized by x⃗ = (x1, x2) ∈ M2, the components of the thermodynamic Ruppeiner metric
tensor are given by

gx1x1 = −∂2S

∂x2
1

gx1x2 = − ∂2S

∂x1∂x2

gx2x2 = −∂2S

∂x2
2

(2)

Notice that the components of the intrinsic metric tensor are associated to the respective pair
correlation functions of the concerned entropy flow. It is worth mentioning that the co-ordinates of
the underlying fluctuations lie on the surface of the parameters {x1, x2}, which in the statistical sense,
gives the origin of the fluctuations in the vacuum topological Einstein–Yang–Mills black holes. This
is because the components of the Ruppeiner metric tensor comprise the Gaussian fluctuations of the
degeneracy of the microstates, which is a function of the parameters of the associated macroscopic black
hole configuration. For a given black hole, the local stability of the underlying statistical system requires
both the principle components to be positive. In this concern, the diagonal components of the Ruppeiner
metric tensor, {gxixi

| i = 1, 2} signify the heat capacities of the chosen system. From the perspective of
the fluctuation theory, it is required that the diagonal components of the Ruppeiner metric tensor remain
positive definite quantities, viz. we must have

gxixi
> 0, i = 1, 2 (3)

for the existence of the local statistical stability of the two parameter black holes. In this case, we see
that the determinant of the metric tensor can be given as

∥g∥ = Sx1x1Sx2x2 − S2
x1x2

(4)
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Notice further that the global stability of a given black hole ensemble requires the positivity of the ∥g∥,
in addition to the positivity of the diagonal components of the Ruppeiner metric tensor. The Christoffel
connections Γijk, Riemann curvature tensors Rijkl, Ricci tensors Rij and the scalar curvature R of the
two dimensional thermodynamic geometry (M2, g) can be computed further. With the above notion, we
find that the scalar curvature can be shown to be

R =
1

2∥g∥2

(
Sx2x2Sx1x1x1Sx1x2x2 + Sx1x2Sx1x1x2Sx1x2x2

+Sx1x1Sx1x1x2Sx2x2x2 − Sx1x2Sx1x1x1Sx2x2x2

−Sx1x1S
2
x1x2x2

− Sx2x2S
2
x1x1x2

)
(5)

Interestingly, the relation between the thermodynamic scalar curvature and the Riemann curvature
tensor for any two dimensional intrinsic Riemannian geometry is given (see for details [8,9]) by

R =
2

∥g∥
Rx1x2x1x2 (6)

It is worth mentioning that the relationship of a non-zero scalar curvature with an underlying
interacting statistical system remains valid for higher dimensional intrinsic manifolds as well. Namely,
the connection of a divergent (scalar) curvature with phase transitions can be analyzed from the
Hessian matrix of the considered fluctuating entropy. In the sense of the state-space fluctuations,
such a consideration of the statistical fluctuations requires an ensemble of vacuum black hole
configurations. Specifically, the present article divulges the underlying geometric description in the
Gaussian approximation. Such an analysis is thus concerned in the neighborhood of the small
probability fluctuations. Hereby, the present consideration takes into account the scales that are larger
than the correlation length of the system, in which a few microstates do not dominate the entire
macroscopic phase-space configuration of the chosen dimensional topological Einstein–Yang–Mills
black hole ensemble.

As per the Gaussian distribution theory, the thermodynamic Ruppeiner metric may be expressed as
the second moment of the quadratic fluctuations or the statistical parametric pair correlation functions.
Indeed, an explicit evaluation shows the components of the inverse metric tensor are

gij = ⟨xi|xj⟩ (7)

where {xi}’s are the extensive thermodynamic variables conjugate to the intensive variables {Xi}.
Moreover, such Riemannian structures may also be expressed in terms of a suitable thermodynamic
potential obtained by a Legendre transformation. In Section 4, we explicate such a consideration for the
Weinhold geometry, arising from the fluctuations of the mass of the topological Einstein–Yang–Mills
black hole in space-time dimensions D ≥ 5. For a given statistical ensemble, it is worth mentioning
that the above intrinsic geometric setup corresponds to certain general coordinate transformations on the
space of equilibrium states.

3. Ruppeiner Geometry

In this section, we examine thermodynamic fluctuation properties of the topological
Einstein–Yang–Mills black hole as per the prescription of the thermodynamic Rupppenier geometry.
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Following the explanations in the previous section, we first consider the analysis of the vacuum statistical
correlation for an ensemble of five dimensional topological Einstein–Yang–Mills black hole. For the
given vacuum parameters, we shall exhibit that the parametric thermodynamic geometry is well capable
to describe the perspective statistical (in)stability corresponding to the topological Einstein–Yang–Mills
black hole configurations. Subsequently, we analyze the above properties for an ensemble of arbitrary
space-time dimensional topological Einstein–Yang–Mills black holes.

3.1. Five Dimensional Black Holes

From the [42], the entropy of a topological Einstein–Yang–Mills black hole in space-time dimension
D = 5 can be expressed as

S(l, e) :=
1

32
V3 l

3 (1 +

√
1 +

8 e2

l2
)3 (8)

As per the notion of the Gaussian fluctuation theory, we see that the line elements associated with the
Ruppeiner geometry is given by

ds2 = −(
∂2

∂e2
S(l, e)) d e2 − 2 (

∂2

∂l ∂e
S(l, e)) d e d l − (

∂2

∂l2
S(l, e)) d l2 (9)

Before proceeding further, we introduce the following scaling factor

f :=

√
l2 + 8 e2

l2
(10)

With this convention, we find the following components of the Ruppeiner metric tensor

g ll = −3

8
V3

(6 e2 f + 10 e2 + l2 f + l2) l (1 + f)

f (l2 + 8 e2)
(11)

g el = −3

4
V3

(16 e2 + l2 + l2 f) e (1 + f)

f (l2 + 8 e2)

g ee = −3

4
V3

l (16 e2 f + l2 + l2 f) (1 + f)

f (l2 + 8 e2)

For a given V3 , in order to analyze the instability occurring due to a entropy fluctuations with respect
to the electric charge e and cosmological constant parameter l, Figures 1 and 2 show the fluctuations in
the diagonal components {gee, gll} of the metric tensor. The value of V3 depends on the phase-space of
the black hole, and thus it may vary from vacuum to vacuum, however the procedure of the state-space
analysis remains the same. In the regime of l ∈ (−1, 1) and e ∈ (0, 10), we notice that the amplitude
of {gee} takes a value between {−40,+40}. In this range of the parameters {e, l}, we find that the mix
component {gel} lies in the range of {−16, 0}. In this case, we see that the range of the growth of the
amplitude of {gll} remains in the regime of {−8,+8} for the parameters {e, l}. Explicitly, this signifies
that the five dimensional topological Einstein–Yang–Mills black holes are thermodynamically unstable
in the limit of a large e and a positive l. Thus, the order higher entropy corrections are required for a large
e in order to stabilize the five dimensional topological Einstein–Yang–Mills black hole system, which can
easily be extracted from positivity of the components of the state-space metric tensor. Similarly, Figure 3
shows the nature of {gel} component of the state-space metric tensor. We find that the mix component
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{gel} takes an uniform decreasing value from zero to −16 in both the limit of the parameter l and for the
increasing value of e. In this limit of {e, l}, the local fluctuation of the entropy of the five dimensional
topological Einstein–Yang–Mills black hole as depicted in Figures 1–3 illustrates the state-space stability
properties of the five dimensional topological Einstein–Yang–Mills black hole ensemble. In short, the
self pair fluctuations involving {e, l}, as defined by the metric tensor {gij | i, j = e, l}, have both positive
and negative numerical values, and thus the five dimensional topological Einstein–Yang–Mills black hole
are stable only in a particular domain of the vacuum parameters.

Figure 1. The ee component of Ruppeiner metric tensor plotted as the function of {e, l},
describing the fluctuations in five dimensional topological Einstein–Yang–Mills black hole
configurations.

Figure 2. The ll component of Ruppeiner metric tensor plotted as the function of {e, l},
describing the fluctuations in five dimensional topological Einstein–Yang–Mills black hole
configurations.
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Figure 3. The el component of Ruppeiner metric tensor plotted as the function of {e, l},
describing the fluctuations in five dimensional topological Einstein–Yang–Mills black hole
configurations.

From the above expression of the metric tensor, it is not difficult to see that the determinant of the
metric tensor can be expressed in the following form

g =
9

16
V3

2 (1 + f)2

f3 (l2 + 8 e2)

(
(16 f + 38) e4 + (10 f + 14) l2 e2 + (f + 1) l4

)
(12)

where the factor f is defined as per the Equation (10). Here with, we see that the five
dimensional topological Einstein–Yang–Mills black holes remain stable under the effect of underlying
thermodynamical fluctuation of {e, l} in a chosen domain.

In this case, the ensemble stability of the five dimensional topological Einstein–Yang–Mills black
holes can be determined in terms of the values of the regulation parameters e, l. This follows from the
behavior of the determinant of metric tensor. Notice that the determinant of the metric tensor tends
to a well-defined positive value when the vacuum parameters take relatively larger absolute values,
viz. e → 10 and l → ±1. For e ∈ (0, 10) and l ∈ (−1, 1), Figure 4 shows that the determinant of
the metric tensor lies in the interval (0, 140). In fact, we find that the positivity of g increases as the
values of (e, l) are increased from origin to (10,±1). In such cases, we find that the surface defined
by the fluctuations of {e, l} is stable. When only one of the parameter is allowed to vary, the stability
of the underlying black hole configuration is determined by the positivity of the first principle minor.
In other words, this amounts to the positivity statement of the ee component of the Ruppeiner metric
tensor. The above graphical properties and positivity of the state-space quantities provide the underlying
stability properties of the two parameter topological Einstein–Yang–Mills black holes in five space-time
dimensions.
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Figure 4. The determinant of Ruppeiner metric tensor plotted as the function of {e, l},
describing the fluctuations in five dimensional topological Einstein–Yang–Mills black hole
configurations.

To examine the metric structure properties of the above fluctuations, we may compute the fluctuations
of the metric tensor gij . For a given intrinsic surface of {e, l}, these fluctuations are precisely given by
the following Christoffel symbols

Γeee = −24V3
(16 e2 + 5 l2) e3

f (l2 + 8 e2)2 l
(13)

Γeel = −3

4
V3

(64 f e4 + 20 l2 e2 + 16 l2 f e2 + l4 f + l4)

f (l2 + 8 e2)2

Γele = −3

4
V3

(64 f e4 + 20 l2 e2 + 16 l2 f e2 + l4 f + l4)

f (l2 + 8 e2)2

Γell = −72V3
e5

f (l2 + 8 e2)2 l

Γlle = −72V3
e5

f (l2 + 8 e2)2 l

Γlll = −3

8
V3

(120 e4 + 64 f e4 + 20 l2 e2 + 16 l2 f e2 + l4 f + l4)

f (l2 + 8 e2)2

In this case, we find that the underlying thermodynamic configuration has no global fluctuation and
the associated correlation length vanishes identically with the following Ruppeiner scalar curvature

R (e, l) = 0, ∀ (e, l) ∈ M2 (14)

The global stability properties of the two parameter topological Einstein–Yang–Mills black holes in
five space-time dimensions follow from the underlying state-space scalar curvature. As, in this case,
we find that the scalar curvature vanishes identically for all values of the black hole parameters. This
shows that the fluctuating five dimensional topological Einstein–Yang–Mills black holes correspond
to a noninteracting statistical configuration. In short, the above observations of the state-space
geometry indicates that although the five dimensional topological Einstein–Yang–Mills black holes are
non-interacting in the global sense, they correspond to a stable statistical configuration in a specific
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domain of the vacuum parameters. Namely, when the parameter {e, l} are allowed to fluctuate, we see
that there exists certain domain of the vacuum parameters in which some of the component can fail
to remain positive, thus incurring a local statistical instability. This observation follows from the fact
that there are non-trivial instabilities at the local level of the vacuum fluctuations. From the above
observation, it can be seen that the iterative procedure of vacuum parameters can be replaced by a
statistically directed method of the state-space geometry. This formulation incorporates fluctuation of
the parameters which follows the non-linearity Gaussian approximation about an equilibrium topological
Einstein–Yang–Mills black hole system.

Without loss of the generality, for the pictorial representation of the thermodynamic quantities, we
may as well choose the phase space volume to be unity, viz. V3 := 1.

3.2. Higher Dimensional Black Holes

In this subsection, we illustrate the role of state-space geometry to the arbitrary higher dimensional
topological Einstein–Yang–Mills black holes. In the highly growing space-time dimension, the entropy
maximization is necessary in order to define the statistically stable limit of the field theory vacuum.
Notice that, for the entropy maximization procedure, the Ruppeiner geometric state-space constraints
as defined in the Section 2 are governed by the entropy flow equations. From the [42], the entropy of a
topological Einstein–Yang–Mills black hole in any space-time dimension D = 1+n can be expressed as

S(l, e) :=
1

8
V
√
2

√
n− 2

n
l (1 +

√
1 +

4n e2

(n− 2) l2
)(n−1) (15)

To simplify the subsequent expression, we define a level function fn as

fn := (l2 + 4 e2)n− 2 l2 (16)

Thence, from the definition of Hessian of the entropy Equation (15), we find the following expressions
for the components of the metric tensor

g ll = −1

2

√
2 (4n e2

√
fn

(n− 2) l2
+ l2 + l2

√
fn

(n− 2) l2
)V

√
n− 2

n

(1 +

√
fn

(n− 2) l2
)(n−3) (n− 1)n e2

/
(

√
fn

(n− 2) l2
l3 fn)

g el =
1

2

√
2 (4n e2

√
fn

(n− 2) l2
+ l2 + l2

√
fn

(n− 2) l2
)V

√
n− 2

n

(1 +

√
fn

(n− 2) l2
)(n−3) (n− 1)n e

/
(l2 fn

√
fn

(n− 2) l2
)

g ee = −1

2

√
2 (4n e2

√
fn

(n− 2) l2
+ l2 + l2

√
fn

(n− 2) l2
)V

√
n− 2

n

(1 +

√
fn

(n− 2) l2
)(n−3) (n− 1)n

/
(

√
fn

(n− 2) l2
fn l) (17)
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Notice that the local stability characteristic of the higher dimensional topological
Einstein–Yang–Mills black holes follows from the positivity of the heat capacities {gee, gll} of
the state-space metric tensor. These are basically the diagonal components of the metric tensor
associated with entropy maximization of a chosen ensemble of the higher dimensional topological
Einstein–Yang–Mills black holes. For the choice of V = 1, the explicit graphical view of the above
mentioned local fluctuations is depicted in Figures 5 and 6. In the regime of e, l ∈ (0, 1), we see that
the amplitude of {gee} takes a value of the order −8 × 10+07. In this range of the parameters {e, l},
we find that the component {gll} lies in the range of (−5 × 10+10, 0). In this case, we observe that the
growth of the amplitude of {gee, gll} happens in the same distinct limit of {e, l}, that is a large e and
a small l. In the above regime, for a given value of e up to 0.15, the system is nearly stable up to in
the range of l ∈ (0.2, 1). Smaller values of the l tend the system towards an instability. The entropy
of a large e and a small l leads to an intrinsic state-space instability and thus can be the cause the
black hole to disappear. This is also forbidden by the black hole remnant hypothesis. As shown in the
Equation (17), the entropy flow, namely the heat capacities, depends on the black hole parameters, and
thus changing the value of a parameter or the fluctuation in {e, l} can affect the stability characteristics
of the chosen higher dimensional topological Einstein–Yang–Mills black hole ensemble. Thus, the
diagonal component of the state-space metric tensor should be positive for which the fluctuations
provide a set of values of {e, l} from which one can determine the required local values of the flow
parameters e and l. This signifies that the entropy extremization could characterize the underlying
thermodynamic instability of an ensemble of chosen black holes. Here, one is only required to chose
a specific domain of the parameters {e, l} such that the desired system remain in a well balanced limit
of the entropy flow parameters. Further, we notice from Figure 7 that the mix component {gel} of the
state-space metric tensor has a positive value under the entropy fluctuation. Interestingly, we find that
all the local fluctuations happen in a small limit of the flow parameter l, and a large limit of the flow
parameter e, where higher value of e happen to cause an instability. Figure 7 shows that the higher
dimensional topological Einstein–Yang–Mills black holes cannot flow throughout the vacuum, as long
as there is a positive local heat capacity. In this examination, the other parameters have to be kept
constant in order to determine the limiting parametric stability of the higher dimensional topological
Einstein–Yang–Mills black hole ensemble. In this sense, we see that Figures 5–7 illustrate the local
fluctuation properties of ensemble of arbitrary dimensional topological Einstein–Yang–Mills black
holes under the entropic flow of the {e, l}. In fact, both the self pair fluctuations involving {e, l}, as
defined by the metric tensor {gij | i, j = e, l} have only the negative numerical values, while the mix
component {gel} does not. More precisely, in order to see the global stability limit, we require that the
determinant of the metric tensor should be also positive in a chosen domain of the parameters {e, l}.
Thus, for the values from a given set of fluctuating {e, l} as shown in Figures 5–7, the illustration of the
above type of ensemble of higher dimensional topological Einstein–Yang–Mills black holes happens to
be true locally. This is because of the fact that the determinant of the state-space metric tensor vanishes
identically for all values of {e, l}. Thus, the entropy extremization of higher dimensional topological
Einstein–Yang–Mills black hole ensemble for given {e, l}, in order to find a positive determinant
regime, would require further higher derivative stringy corrections or quantum loop corrections to the
entropy in order to keep an ensemble of topological Einstein–Yang–Mills black holes globally stable.
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Figure 5. The ee component of Ruppeiner metric tensor plotted as the function of {e, l},
describing the fluctuations in six dimensional topological Einstein–Yang–Mills black hole
configurations.

Figure 6. The ll component of Ruppeiner metric tensor plotted as the function of {e, l},
describing the fluctuations in six dimensional topological Einstein–Yang–Mills black hole
configurations.

Figure 7. The el component of Ruppeiner metric tensor plotted as the function of {e, l},
describing the fluctuations in six dimensional topological Einstein–Yang–Mills black hole
configurations.
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In this case, since the determinant of the state-space metric tensor vanishes identically for all values
of the parameters {e, l}, there is no question of computing the state-space scalar curvature. From
the perspective of intrinsic geometry, we find that the Christoffel symbols of arbitrary topological
Einstein–Yang–Mills black hole can be expressed as the following expressions
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where the factors {Γijk
(1 ),Γijk

(2 )|i , j , k ∈ {e, l}} of arbitrary Ruppeiner metric tensor are relegated to
Appendix A.

4. Weinhold Geometry

In this section, we illustrate the role of thermodynamic geometry from the perspective of the energy
minimization, that is here the minimization of the ADM mass of the topological Einstein–Yang–Mills
black hole in space-time dimension D = 5. Given an ensemble of such black hole configurations, the
optimization of the energy is necessary in order to define the vacuum stability of the Yang–Mills gauge
theory with a non-trivial topological black hole, where not only the field theory is considered to have
a fluctuating vacuum but also an imminent black hole in the space-time background of the Yang–Mills
vacuum ensemble. To illustrate the hypothesis, we shall first consider the case of five dimensional
theory and then in the next subsection generalize it to an ensemble of arbitrary dimensional topological
Einstein–Yang–Mills black holes. It is worth mentioning that the energy minimization is intrinsically
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same to the entropy maximization up to a Legendre transformation. Thus, we may notice that the flow
equations and the analysis of the parametric stability constraint in the sense of the Weinhold geometry
follows directly up to a sign with the definition of the Ruppeiner geometry. Both of these thermodynamic
geometries are intertwined to each other, as we have defined then in the Section 2.

4.1. Five Dimensional Black Holes

From the [42], the ADM mass of a topological Einstein–Yang–Mills black hole in space-time
dimension D = 5 is given by

M(e, l) := −1

3
e2 (ln(

1

4
l2 +

1

4
l (l2 + 8 e2))− 1

2
)− 1

24
l2 − 1

24
l (l2 + 8 e2) (19)

With the notions of the thermodynamic geometry, the Legendre associated Weinhold line element can
be expressed as

ds2 = (
∂2

∂e2
M(e, l)) d e2 + 2 (

∂2

∂l ∂e
M(e, l)) d e d l + (

∂2

∂l2
M(e, l)) d l2 (20)

To simplify the expression of the determinant of the metric tensor, the appropriate scaling function
turns out to be

b := l + l2 + 8 e2 (21)

For the above given mass, the computation of the Hessian matrix shows the following expressions for
the components of the Weinhold metric tensor

g ee =
1

3 b2
(−320 e4 − 64 l e2 − 96 l2 e2 − 32 l3 e2 − 128 l e4 − 3 l4
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+l5 + 16 l3 e2 + 64 l e4)
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(8 l2 e2 + 64 l e4 − 52 l4 e2 − 64 e4 l2 + 256 e6

−l4 − 5 l5 − 7 l6 − 3 l7 − 48 l5 e2 − 192 l3 e4) (22)

In this case, we see that the heat capacities have rather diverse characters. For the case of V = 1,
the heat capacities {gee, gll} are shown in Figures 8 and 9. Here, in the interval of e, l ∈ (0, 1), the
amplitude of {gll} takes a positive value of the order 200. In this range of the parameters {e, l}, Figure 8
shows that the component {gee} lies in the range of (−4,+6). In this case, we hereby observe that the
fluctuations of both the {gee, gll} do not occur with a positive amplitude of the fluctuations. Namely, the
ee component fluctuations are generically present near the origin of the flow parameters, while this is
not the case for the ll component. We see that the ll component energy fluctuations are largely present
for a large e and a small l. Figure 10 shows that the corresponding mix component of the complex ADM
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mass flow fluctuation, in which the elcomponent of the Weinhold metric takes a maximum amplitude of
the order −16. The above plots may change for a different vacuum black hole and for a different field
theory, as well. The values of e and l are sensitive to higher derivative and higher order corrections as
well. This analysis can further be extend for a different Lagrangian of the theory and the background
space-time black hole ensemble.

Figure 8. The ee component of Weinhold metric tensor plotted as the function of {e, l},
describing the fluctuations in five dimensional topological Einstein–Yang–Mills black hole
configurations.

Figure 9. The ll component of Weinhold metric tensor plotted as the function of {e, l},
describing the fluctuations in five dimensional topological Einstein–Yang–Mills black hole
configurations.
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Figure 10. The el component of Weinhold metric tensor plotted as the function of {e, l},
describing the fluctuations in five dimensional topological Einstein–Yang–Mills black hole
configurations.

To illustrate the metric structure properties of the above mass fluctuations, we now offer the fluctuation
properties of the metric tensor gij . For a given intrinsic Weinhold surface of {e, l}, these fluctuations are
precisely depicted by the following Christoffel symbols
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Here the determinant of the metric tensor reduces to the following formula

g =
1

36 l2 b3

4∑
i=0

ri(l)e
2 i (24)

where the coefficients ri(l) are given in Appendix B.
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As mentioned in the previous section for the fluctuating entropy of an ensemble of five dimensional
topological Einstein–Yang–Mills black hole, we see in this case that the ensemble stability of the
fluctuating configuration can be determined in terms of the values of the determinant of the Weinhold
metric tensor, as the function of the mass flow parameter {e, l}, as defined above. Furthermore, the
global behavior of the system follows from the determinant of fluctuation metric tensor. For the cases
of V = ±1, we observe that the determinant of the Weinhold metric tensor tends to a negative value.
Namely, we see from Figure 11 that the peak of the determinant of the Weinhold metric tensor is of
the order −300. As in the case of the local energy fluctuations of the five dimensional topological
Einstein–Yang–Mills black holes, we find that the global energy fluctuations also happen for a small
value of the parameter l and a large value of the charge e. When only one of the parameter is allowed
to vary, the stability of the five dimensional topological Einstein–Yang–Mills black hole ensemble is
determined by the positivity of the first principle minor p1 := gee. Physically, the above qualitative
demonstrations of the energy fluctuations illustrate the parametric stability properties of an ensemble of
two parameter five dimensional topological Einstein–Yang–Mills black holes.

Figure 11. The determinant of Weinhold metric tensor plotted as the function of {e, l},
describing the fluctuations in five dimensional topological Einstein–Yang–Mills black hole
configurations.

With convention b̃ := ln(l (l + l2 + 8 e2 )), we find that the scalar curvature possesses the following
non-trivial expression

R = 12

∑7
i=0 Ri(l)e

2i

(
∑4

i=0 ri(l)e
2 i)2

(25)

where the factors in the numerator are given in Appendix B. It is worth mentioning that the coefficients
{ri(l)| i = 0 , 1 , 2 , 3 , 4}, appearing in the denominator of the scalar curvature, remain the functions as
those given in Appendix B for the numerator of the determinant of the metric tensor.

In general, it is worth mentioning that the long range correlations are characterized as per the
definition of the scalar curvature. Namely, the global stability properties of the five dimensional
topological Einstein–Yang–Mills black hole ensemble follow from the corresponding thermodynamic
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scalar curvature. In particular, for the range of e, l ∈ (0, 1), Figure 12 shows that the scalar curvature
has a negative amplitude of order −40000. This shows that the underlying five dimensional topological
Einstein–Yang–Mills black hole configuration is an interacting system. The negative sign of the scalar
curvature signifies the attractive nature of the statistical interactions. For the case of e ∈ (0, 1)

and l ∈ (0, 1), we notice from Figure 12 that there exist a number of large negative peak of the
global interactions of the order −20000 to −40000. In this sense, up to a small range of e and l,
the two parameter five dimensional topological Einstein–Yang–Mills black holes behave as a stable
configuration, however an increasing value of {e, l} cannot increase the limit of the parametric stability,
as it could make a negative value of the determinant of the metric tensor. Thus, Figure 12 indicates
the interaction properties of the underlying five dimensional topological Einstein–Yang–Mills black
hole configuration when the parameters {e, l} are allowed to fluctuate. The above instability analysis
shows the above black hole system for small values of the vacuum parameters is highly sensitivity to the
statistical fluctuations.

Figure 12. The Weinhold curvature scalar plotted as the function of {e, l}, describing the
fluctuations in five dimensional topological Einstein–Yang–Mills black hole configurations.

4.2. Higher Dimensional Black Holes

From the [42], the ADM mass of a topological Einstein–Yang–Mills black hole in arbitrary space-time
dimension D = 1 + n can be expressed by
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In this case, let the scaling function be defined as

bn :=
l2 n− 2 l2 + 4n e2

(n− 2) l2
(27)

Thence, for a given mass of the five dimensional extremal topological Einstein–Yang–Mills black
hole, we find the following components of Weinhold metric tensor
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As mentioned the previous case, we find in this case, in the range of e ∈ (0, 1) and l ∈ (−1, 1), that
the fluctuation of the components {gee, gll} lie in a negative interval. Namely, the components gee lie in
(−1.6, 0), while the components gll lie in (−0.8, 0). This shows that the topological Einstein–Yang–Mills
black hole in arbitrary space-time dimension D = 1+ n are locally unstable configurations with respect
to the fluctuations of the {e, l}. In fact, the range of the growth of {gee, gll} happens to be in the same
negative limit of the amplitude under the flow of the parameters {e, l}. Explicitly, from Figures 13 and 14
we observe that the of growth of the gaa and gbb takes place in the limit of a large l for all e. On the other
hand, the component involving two distinct parameters of black hole has been depicted in Figure 15.
In this case, we notice that Figure 15 shows that the el-component of the mass fluctuations lies in the
interval (−1.5, 1.5). Thus, for a given ensemble of higher dimensional topological Einstein–Yang–Mills
black holes, the components of the metric tensor {gij | i, j = e, l} indicate that the fluctuations involving
the vacuum parameters {e, l} have relatively meager positive numerical values and thus they are prone
to yield a statistically unstable ensemble at this order of the ADM mass.

To discuss the thermodynamic properties of arbitrary topological Einstein–Yang–Mills black hole in
(1 + n) space-time dimensions, we introduce a new scaling function

cn := l2 n− 2 l2 + 4n e2 = (n− 2) l2 bn (29)
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With this convension, we obtain the following Christoffel tensors
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where the factors {Γijk
(1 ),Γijk

(2 )|i , j , k ∈ {e, l}} are given in the Appendix C. In this case, we find the
following determinant of the metric tensor
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Interestingly, as the functions of {e, l}, it turns out after a simplification that both the factors g1 (e, l)
and g2 (e, l) can be expressed as the following finite homogeneous polynomials

ga :=
10∑
i=1

gai e
2i l20−2i, a = 1, 2 (32)
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where both the coefficients {g1i , g2i} can be defined as polynomials in dimension of the space n ≥ 6 .
Explicitly, as the powers of the electric charge e , we find that the coefficients {g1i |i = 1 , . . . , 10} give
a particular degree 20 expression. In order to keep readability of the paper, we relegate the expression
of the specific factors to the Appendix C. Similarly, as the powers of the electric charge e , it follows
that the second series of factors {g2i |i = 1 , . . . , 9} reduce to the degree 18 polynomials. Further, the
explicit expression of the factors is provided in the Appendix C.

Figure 13. The ee component of the metric tensor plotted as the function of {e, l},
describing the fluctuations in six dimensional topological Einstein–Yang–Mills black hole
configurations.

Figure 14. The ll component of the metric tensor plotted as the function of {e, l},
describing the fluctuations in six dimensional topological Einstein–Yang–Mills black hole
configurations.
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Figure 15. The el component of the metric tensor plotted as the function of {e, l},
describing the fluctuations in six dimensional topological Einstein–Yang–Mills black hole
configurations.

As the function of {e, l}, the ensemble stability condition of the higher dimensional topological
Einstein–Yang–Mills black holes follows from the positivity of the determinant of the metric tensor.
In this case, we find that the determinant of the metric tensor generically tends to a negative value. For
a typical value of e ∈ (0, 1) and l ∈ (−1, 1), Figure 16 shows that the determinant of the metric tensor
lies in the interval (−0.6,+0.2). Hereby, for a small e, we observe that the determinant of the metric
tensor has an approximate value of +0.15. As we increase the value of the electric charge e, in the limit
of a large |l|, the determinant of the metric tensor nearly takes a larger positive value of its amplitude.
Thence, for a given l, in the limit of a large e, it increases sharply to a larger negative value of order −0.6.
When only one of the parameter is allowed to vary, the stability of the higher dimensional topological
Einstein–Yang–Mills black hole configuration is determined by the positivity of the first principle minor
p1 := gee, see Figure 13. We further find that all the above mentioned qualitative picture remain valid for
other values of n than the special case of n = 5. Thus, the above graphical descriptions of the principle
minors offers a qualitative notion of the stability of the an ensemble of topological Einstein–Yang–Mills
black holes in space-time dimensions D ≥ 5.

From the Equation (28), we see that the Weinhold scalar curvature of fluctuations vanishes identically.
Namely, for all topological Einstein–Yang–Mills black holes, we find that the Weinhold scalar curvature
vanishes identically and we have

R (e, l) = 0, ∀ (e, l) ∈ M2 (33)

It is surprising to notice that the topological Einstein–Yang–Mills black holes correspond to a
non-interacting statistical system for D > 5. This follows from the vanishing value of the scalar
curvature. In effect, we find it interesting that the scalar curvature vanishes identically for all values
of the black hole parameters {e, l}. This shows that the fluctuating higher dimensional topological
Einstein–Yang–Mills black holes are globally stability, namely, there are no vacuum phase transitions in
the underlying ensemble. In short, the above consideration of the thermodynamic geometry indicates that
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although the higher dimensional topological Einstein–Yang–Mills black holes are non-interacting in the
global sense, they correspond to a stably vacuum configurations in a specific domain of the parameters.
Namely, when the parameters {e, l} are allowed to fluctuate, there exists certain domain of the {e, l} in
which there are positive set of the principle minors. Further, the above observation follows from the fact
that there are non-trivial instabilities at the local level of the parametric fluctuations of the ensemble.

Figure 16. The determinant of the metric tensor plotted as the function of {e, l},
describing the fluctuations in six dimensional topological Einstein–Yang–Mills black hole
configurations.

5. Conclusions

The thermodynamic geometric analysis of the topological Einstein–Yang–Mills black hole
configurations is offered under the fluctuations of the vacuum parameters, namely the electric charge
and the cosmological constant. Such fluctuations are expected to arise due to non-zero heating
effects, chemical reactions and possible conventional vacuum fluctuation of a field theory configuration
containing a background black hole. The intrinsic geometric method is used to examine the
structures of the parametric fluctuations in an ensemble of arbitrary space-time dimension topological
Einstein–Yang–Mills black holes. Thus, the stability analysis thus introduced is most generic for the
fluctuations of the parameters that govern the quantum vacuum of the non-Abelian Yang–Mills gauge
theory with a background black hole.

The present analysis is well suited for statistical selection of the stable vacua of the topological
Einstein–Yang–Mills gauge theory. The thermodynamic geometric procedure is presented for the black
holes carrying a (i) cosmological constant term and (ii) an electric charge. In this concern, the
examination of the thermodynamic Ruppeiner and Weinhold geometries shows the entropy and energy
flow properties respectively for an ensemble of Einstein–Yang–Mills black holes in D > 5. The local
stability requires a set of positive heat capacities, while the global stability of the ensemble requires
the positivity of the determinant of the metric tensor as well. These notions illustrate that the typical
instability appears differently for the case of D = 5 and D > 5 topological Einstein–Yang–Mills black
holes. Subsequently, it turns out that the associated ensembles of the topological Einstein–Yang–Mills



Entropy 2012, 14 1069

black holes correspond to a non-interacting system for D = 5, while it becomes ill-defined for the case of
D > 5. From the perspective of the Weinhold geometry, the first case yields a nonzero scalar curvature,
while the second case leads to a non-interacting statistical configuration. This follows from the fact that
the manifold of parameters is curved, while it is flat the second case.

In the limit of the electric charge e ∈ (0, 10) and cosmological parameter l ∈ (−1,+1), we find that
the determinant of the Ruppeiner metric tensor of the five dimensional topological Einstein–Yang–Mills
black hole configurations remains positive, whereas the determinant of the Ruppeiner metric tensor
of the six and higher dimensional topological Einstein–Yang–Mills black hole configurations vanishes
identically for all values of the electric charge e and the cosmological parameter l. This shows that the
five dimensional topological Einstein–Yang–Mills black hole can be statistically stabilized while the six
and higher dimensional counterparts cannot. Thus, the present investigation predicts that the topological
Einstein–Yang–Mills black hole systems with the fluctuating {e, l} are relatively more stable for D = 5

and better-behaved than those in the D > 5. In addition, our model is well suited for the robust statistical
examinations. Such black hole configurations are very known nowadays in string theory and M-theory
vacuum solutions because of their existence in the low energy effective field theory configurations. From
the viewpoint vacuum fluctuations, the parametric fluctuation theory offers a robust model that is very
lucrative. It is worth mentioning that the use of the parametric geometric principle is rapidly growing in
recent years in the area of black hole physics.

Based on the notion of the thermodynamic geometries, namely the definition of Ruppeiner geometry
and Weinhold geometry, the thermodynamic stability analysis remains compatible for parametrically
stable examinations of black holes and their ensemble properties. The present analysis thus provides
the parametric geometric front to the stability analysis of the non-Abelian topological Yang–Mills black
holes and their possible vacuum fluctuations. The method of the parametric geometry may be also
used, in order to model in a suitable fashion the quantum part of the background fluctuations and the
vacuum disturbances to the black hole background space-time configuration. Finally, it is expected
that our analysis offers perspective stability grounds, when applied to the any finite parameter black
hole in the Yang–Mills gauge theory. It is expected further that the present investigation would be an
important factor in an appropriate examination of the statistical stability criteria of the required higher
derivative corrections and the higher quantum loop corrections such that the considered black hole
ensemble becomes statistically stable. This consideration can work as the indicator of fluctuations of
the parameters of a given black hole ensemble, i.e., whether it yields a statistically (in)stable quantum
vacuum. Finally, it would be worth extending the present consideration of thermodynamic geometries
for the dyonic Yang–Mills black holes and their embeddings in the gauged supergravities and string
theories.
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Appendix A: Ruppeiner Geometry of Higher Dimensional Topological Einstein–Yang–Mills Black
Holes

In this appendix, we provide the specific factors of the Christoffel symbols of the state-space
Ruppeiner geometry of arbitrary topological Einstein–Yang–Mills black hole configuration. Namely,
we find after simplification of the Equation (18) that the factors {Γijk

(l)} are given as per the followings

Γeee
(1) = 16 e4 n3 − 48n2 e4 + 4 e2 n3 l2 − 8 l2 n2 e2

−12 l2 n e2 + 3 l4 n2 − 18 l4 n+ 24 l4

Γeee
(2) = +3 l4 n2 − 18 l4 n+ 24 l4

Γeel
(1) = 32 e6 n4 − 64 e6 n3 + 8 e4 n4 l2 − 48 e4 l2 n2

+8 e2 n3 l4 − 38 e2 l4 n2 + 44 e2 l4 n+ l6 n2

−4n l6 + 4 l6

Γeel
(2) = 8 l2 n3 e4 − 16 e4 n2 l2 + 8 l4 n3 e2 − 40 l4 n2 e2

+48 l4 n e2 + l6 n2 − 4 l6 n+ 4 l6

Γele
(1) = 32 e6 n4 − 64 e6 n3 + 8 e4 n4 l2 − 48 e4 l2 n2

+8 e2 n3 l4 − 38 e2 l4 n2 + 44 e2 l4 n+ l6 n2

−4n l6 + 4 l6

Γele
(2) = 8 l2 n3 e4 − 16 e4 n2 l2 + 8 l4 n3 e2 − 40 l4 n2

+48 l4 n e2 + l6 n2 − 4 l6 n+ 4 l6
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Γell
(1) = 16 e6 n4 − 16 e6 n3 + 4 e4 n4 l2 + 8 e4 n3 l2

−36 e4 l2 n2 + 5 e2 n3 l4 − 20 e2 l4 n2 + 20 e2 l4 n

+l6 n2 − 4n l6 + 4 l6

Γell
(2) = 8 l2 n3 e4 − 16 e4 n2 l2 + 5 l4 n3 e2 − 22 l4 n2 e2

+24 l4 n e2 + l6 n2 − 4 l6 n+ 4 l6

Γlle
(1) = 16 e6 n4 − 16 e6 n3 + 4 e4 n4 l2 + 8 e4 n3 l2

−36 e4 l2 n2 + 20 e2 l4 n+ l6 n2 − 4n l6

+4 l6 + 5 e2 n3 l4 − 20 e2 l4 n2

Γlle
(2) = 8 l2 n3 e4 − 16 e4 n2 l2 + 5 l4 n3 e2 − 22 l4 n2 e2

+24 l4 n e2 + l6 n2 − 4 l6 n+ 4 l6

Γlll
(1) = 32 e6 n4 + 8 e4 n4 l2 + 32 e4 n3 l2 − 96 e4 l2 n2

+12 e2 n3 l4 − 42 e2 l4 n2 + 36 e2 l4 n+ 3 l6 n2

−12n l6 + 12 l6

Γlll
(2) = 24 l2 n3 e4 − 48 e4 n2 l2 + 12 l4 n3 e2 − 48 l4 n2 e2

+48 l4 n e2 + 3 l6 n2 − 12 l6 n+ 12 l6

(34)

Appendix B: Weinhold Geometry of Five Dimensional Topological Einstein–Yang–Mills Black
Holes

In this appendix, we provide the specific quantities for the Weinhold geometry of five dimensional
topological Einstein–Yang–Mills black holes. Namely, for the determinant of the metric tensor, as given
in the Equation (24), we find that the factors {ri(l)} can be written as the following expressions

r0 = (2 ln(l b)− 4 ln(2)− 1)l5 + 4 (3 ln(l b)− 6 ln(2)− 1) l6

+24 (ln(l b)− 2 ln(2)) l7 + 2 (10 ln(l b)− 20 ln(2) + 7) l8

+(6 ln(l b)− 12 ln(2) + 17) l9 + 6 l10

r1 = −8 (2 ln(l b)− 4 ln(2) + 7) l3 − 256 l4 + 4 (46 ln(l b)− 92 ln(2)− 67) l5

+4 (78 ln(l b)− 156 ln(2) + 35) l6 + 16 (9 ln(l b)− 18 l7 ln(2) + 21) l7

+128 l8

r2 = −256 (ln(l b)− 2 ln(2) + 4) l2 − 2560 l3

+32 (42 ln(l b)− 84 ln(2)− 19) l4 + 128 (9 ln(l b)− 18 ln(2) + 14) l5

+768 l6

r3 = −256 (6 l ln(l b)− 12 l ln(2) + 25) l + 256 (2 ln(l b)− 4 l2 ln(2)− 35) l2

+1024 (3 ln(l b)− 6 l3 ln(2)− 1) l3

r4 = −18432 + 8192 ln(2)− 20480 l − 4096 ln(l b)− 8192 l2 (35)
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From the viewpoint of the global chemical fluctuations, we find that the factors in the numerator of
the Weinhold scalar curvature as given by the Equation (25) can be expressed as

R0 = −8 l8 + (12 b̃− 24 ln(2)− 94) l9 + (84 b̃− 168 ln(2)− 438) l10

+(246 b̃− 492 ln(2)− 1087) l11 + (390 b̃− 780 ln(2)− 1591) l12

+(360 b̃− 720 ln(2)− 1412) l13 + (192 b̃− 384 ln(2)− 740) l14

+(54 b̃− 108 ln(2)− 207) l15 + (6 b̃− 12 ln(2)− 23) l16

R1 = −64 l6 + (64 b̃− 128 ln(2)− 928) l7 + (576 b̃− 1152 ln(2)− 5728) l8

+(2304 b̃− 4608 ln(2)− 17984) l9 + (5008 b̃− 10016 ln(2)− 31976) l10

+(6288 b̃− 12576 ln(2)− 33560) l11 + (4560 b̃− 9120 ln(2)− 20448) l12

+(1776 b̃− 3552 ln(2)− 6584) l13 + (288 b̃− 576 ln(2)− 840) l14

R2 = (512 ln(2)− 256 b̃− 3456) l5 + (768 b̃− 1536 ln(2)− 27776) l6

+(8704 b̃− 17408 ln(2)− 107776) l7 + (26880 b̃− 53760 ln(2)− 237952) l8

+(45312 b̃− 90624 ln(2)− 306432) l9 + (45312 b̃− 90624 ln(2)− 224128) l10

+(24960 b̃− 49920 ln(2)− 84672) l11 + (5760 b̃− 11520 ln(2)− 12480) l12

R3 = +(8192 ln(2)− 4096 b̃− 55296) l4 + (12288 b̃− 24576 ln(2)− 321536) l5

+(98304 b̃− 196608 ln(2)− 892928) l6 + (221184 b̃− 442368 ln(2)− 1427456) l7

+(276480 b̃− 552960 ln(2)− 1281536) l8 + (199680 b̃− 399360 ln(2)− 574976) l9

+(61440 b̃− 122880 ln(2)− 96768) l10

R4 = (49152 ln(2)− 24576 b̃− 430080) l3 + (155648 b̃− 311296 ln(2)− 1945600) l4

+(737280 b̃− 1474560 ln(2)− 3956736) l5 + (1179648 b̃− 2359296 ln(2)− 4325376) l6

+(991232 b̃− 1982464 ln(2)− 2281472) l7 + (368640 b̃− 737280 ln(2)− 413696) l8

R5 = +(131072 ln(2)− 65536 b̃− 1933312) l2 + (983040 b̃− 1966080 ln(2)− 6586368) l3

+(2949120 b̃− 5898240 ln(2)− 8978432) l4 + (2949120 b̃− 5898240 ln(2)− 5406720) l5

+(1179648 b̃− 2359296 ln(2)− 884736) l6

R6 = −4718592 l + (3145728 b̃− 629145 ln(2)− 9961472) l2

+(4718592 b̃− 9437184 ln(2)− 6553600) l3 + (1572864 b̃− 3145728 ln(2)− 262144) l4

R7 = −6291456 + (4194304 b̃− 8388608 ln(2)− 2097152) l + 2097152 l2 (36)
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Appendix C: Weinhold Geometry of Higher Dimensional Topological Einstein–Yang–Mills Black
Holes

In this appendix, we offer the explicit expressions for the Weinhold geometry of arbitrary higher
dimensional topological Einstein–Yang–Mills black holes of fluctuations. From the definition of the
chemical geometry, we find that the factors {Γijk

(1 ),Γijk
(2 )|i , j , k ∈ {e, l}} of the Christoffel symbols

as given in Equation (30) can be expresses as the following set of the equations

Γeee
(1) = 4n2 e4 + n2 e2 l2 + 8n e2 l2 + 3 l4 n− 6 l4

Γeee
(2) = e2 l2 n2 + 2 e2 l2 n+ 3 l4 n− 6 l4

Γeel
(1) = e2 l6 n3 + e2 n4 l6 + 20 e2 l6 n− 16 e2 l6 n2

+4 e4 l4 n2 − 18 e4 l4 n3 + 8 e4 n4 l4 − 31 e6 l2 n3

+19 e6 n4 l2 − 8 l8 + n3 l8 + 12n4 e8 − 6n2 l8

+12 l8 n

Γeel
(2) = 2n4 e8 + 12 l8 n− 6 l8 n2 + l8 n3

+l6 n4 e2 − l6 n3 e2 − 17 l2 n3 e6 + 12 l4 n2 e4

+9 l2 n4 e6 − 18 l4 n3 e4 − 8 l6 n2 e2 + 12 l6 n e2

+6 l4 n4 e4 − 8 l8

Γele
(1) = e2 l6 n3 + e2 n4 l6 + 20 e2 l6 n− 16 e2 l6 n2

+4 e4 l4 n2 − 18 e4 l4 n3 + 8 e4 n4 l4 − 31 e6 l2 n3

+19 e6 n4 l2 − 8 l8 + n3 l8 + 12n4 e8

−6n2 l8 + 12 l8 n

Γele
(2) = 2n4 e8 + 12 l8 n− 6 l8 n2 + l8 n3

+l6 n4 e2 − l6 n3 e2 − 17 l2 n3 e6 + 12 l4 n2 e4

+9 l2 n4 e6 − 18 l4 n3 e4 − 8 l6 n2 e2 + 12 l6 n e2

+6 l4 n4 e4 − 8 l8

Γell
(1) = l8 n5 + 9 e2 n5 l6 + 26 e4 n5 l4 + 25 e6 n5 l2

−13 l8 n4 + 372 e2 l6 n3 − 98 e2 n4 l6 + 352 e2 l6 n

−600 e2 l6 n2 − 508 e4 l4 n2 + 612 e4 l4 n3 + 4n5 e8

−231 e4 n4 l4 + 256 e6 l2 n3 − 178 e6 n4 l2 − 80 l8

+64n3 l8 − 24n4 e8 − 152n2 l8 + 176 l8 n

Γell
(2) = +l8 n5 − 13 l8 n4 + 176 l8 n− 152 l8 n2

+64 l8 n3 + 7 l2 n5 e6 + 14 l4 n5 e4 + 7 l6 n5 e2

−76 l6 n4 e2 + 288 l6 n3 e2 + 76 l2 n3 e6 − 276 l4 n2 e4

−52 l2 n4 e6 + 332 l4 n3 e4 − 464 l6 n2 e2 + 272 l6 n e2

−125 l4 n4 e4 − 80 l8
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Γlle
(1) = l8 n5 + 10 e2 n5 l6 + 34 e4 n5 l4 + 44 e6 n5 l2

−13 l8 n4 + 414 e2 l6 n3 − 109 e2 n4 l6 + 392 e2 l6 n

−668 e2 l6 n2 − 664 e4 l4 n2 + 800 e4 l4 n3 − 302 e4 n4 l4

+442 e6 l2 n3 − 309 e6 n4 l2 + 16n5 e8 − 80 l8

+64n3 l8 − 88n4 e8 − 152n2 l8 + 176 l8 n

Γlle
(2) = 2n5 e8 l2 − 13 l8 n4 + l8 n5 − 12n4 e8

+176 l8 n− 152 l8 n2 + 64 l8 n3 + 16 l2 n5 e6

+20 l4 n5 e4 + 8 l6 n5 e2 − 87 l6 n4 e2 + 330 l6 n3 e2

+166 l2 n3 e6 − 392 l4 n2 e4 − 115 l2 n4 e6 + 472 l4 n3 e4

−532 l6 n2 e2 + 312 l6 n e2 − 178 l4 n4 e4 − 80 l8

Γlll
(1) = 3360n5 e4 l6 − 8768n4 e6 l4 + n7 l10 + 192n5 e10 + 4404n5 e6 l4

+41n7 e8 l2 − 384 l10 − 530n6 e8 l2 − 6304n2 e2 l8 + 11728n3 e4 l6

−924n6 e6 l4 + 6544n3 e2 l8 − 9008n4 e4 l6 + 1076n5 e2 l8

+43n7 e4 l6 − 608n6 e4 l6 − 3568n4 e2 l8 + 70n7 e6 l4

−1552 l10 n2 − 17 l10 n6 + 122 l10 n5 − 480 l10 n4

+1120 l10 n3 + 1184 l10 n− 56n6 e10 + 4n7 e10

+2144n5 e8 l2 + 11n7 e2 l8 − 170n6 e2 l8 + 2496 l8 e2 n

+6192 l4 e6 n3 − 5952 l6 e4 n2 − 2496 l2 n4 e8

Γlll
(2) = 1184 l10 n+ 1120 l10 n3 − 384 l10 − 480 l10 n4

−1552 l10 n2 − 17 l10 n6 + 122 l10 n5 + l10 n7

−5976 l6 n4 e4 + 9n7 e8 l2 + 556n5 e8 l2 + 2060 l4 n5 e6

−4208 l4 n4 e6 − 5312 l8 n2 e2 + 5488 l8 n3 e2 + 7872 l6 n3 e4

+2112 l8 n e2 − 4032 l6 n2 e4 + 3024 l4 n3 e6 + 2196 l6 n5 e4

+30n7 e6 l4 − 128n6 e8 l2 − 390 l6 n6 e4 + 27 l6 n7 e4

−672n4 e8 l2 + 892 l8 n5 e2 − 140n6 e2 l8 + 9n7 e2 l8

−416n6 e6 l4 − 2976 l8 n4 e2

(37)

From the characterization of the global fluctuation properties, we find that the factors
{g1i |i = 1 , . . . , 10} of degree 20 of the determinant of the metric tensor as given in the Equation (31)
can be written as per the following expressions

g10 = −3145728 + 16777216n− 40632320n2 + 58982400n3 − 57016320n4

+38535168n5 − 18579456n6 + 6389760n7 − 1536000n8 + 245760n9

−23552n10 + 1024n11
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g11 = 40894464n− 197656576n2 + 429391872n3 − 552075264n4 + 465174528n5

−268369920n6 + 107347968n7 − 29392896n8 + 5271552n9 − 559104n10

+26624n11

g12 = −225705984n2 + 978059264n3 − 1880883200n4 + 2106589184n5

−1514110976n6 + 724140032n7 − 230408192n8 + 47022080n9

−5583872n10 + 293888n11

g13 = 680263680n3 − 2607677440n4 + 4365025280n5 − 4166615040n6

+2480128000n7 − 942448640n8 + 223211520n9 − 30115840n10

+1771520n11

g14 = −1184563200n4 + 3948544000n5 − 5626675200n6 + 4442112000n7

−2097664000n8 + 592281600n9 − 92544000n10 + 6169600n11

g15 = 1109065728n5 − 3142352896n6 + 3696885760n7 − 2310553600n8

+808693760n9 − 150185984n10 + 11552768n11

g16 = −307888128n6 + 718405632n7 − 667090944n8 + 307888128n9

−70557696n10 + 6414336n11

g17 = −382205952n7 + 700710912n8 − 477757440n9 + 143327232n10

−15925248n11

g18 = 377487360n8 − 503316480n9 + 220200960n10 − 31457280n11

g19 = −110100480n9 + 91750400n10 − 18350080n11

g110 = 6291456n10 − 2097152n11 (38)

Similarly, it follows that the factors {g2i |i = 1 , . . . , 9} of degree 18 of the determinant of metric
tensor as defined in the Equation (31) are given by

g20 := −3145728 + 16777216n− 40632320n2 + 58982400n3 − 57016320n4

+38535168n5 − 18579456n6 + 6389760n7 − 1536000n8 + 245760n9

−23552n10 + 1024n11

g21 := 37748736n− 182452224n2 + 396361728n3 − 509607936n4 + 429391872n5

−247726080n6 + 99090432n7 − 27131904n8 + 4866048n9 − 516096n10

+24576n11

g22 := −189530112n2 + 821297152n3 − 1579417600n4 + 1768947712n5

−1271431168n6 + 608075776n7 − 193478656n8 + 39485440n9

−4688896n10 + 246784n11

g23 := 508035072n3 − 1947467776n4 + 3259891712n5 − 3111714816n6

+1852211200n7 − 703840256n8 + 166699008n9 − 22491136n10

+1323008n11
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g24 := −754384896n4 + 2514616320n5 − 3583328256n6 + 2828943360n7

−1335889920n8 + 377192448n9 − 58936320n10 + 3929088n11

g25 := 534773760n5 − 1515192320n6 + 1782579200n7 − 1114112000n8

+389939200n9 − 72417280n10 + 5570560n11

g26 := 14155776n6 − 33030144n7 + 30670848n8 − 14155776n9

+3244032n10 − 294912n11,

g27 := −283115520n7 + 519045120n8 − 353894400n9 + 106168320n10

−11796480n11

g28 := 160432128n8 − 213909504n9 + 93585408n10 − 13369344n11

g29 := −25165824n9 + 20971520n10 − 4194304n11 (39)

c⃝ 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).
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