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Abstract: Cellular automata (CA) are a remarkably efficient tool for exploring general
properties of complex systems and spatiotemporal patterns arising from local rules. Totalistic
cellular automata, where the update rules depend only on the density of neighboring
states, are at the same time a versatile tool for exploring dynamical processes on graphs.
Here we briefly review our previous results on cellular automata on graphs, emphasizing
some systematic relationships between network architecture and dynamics identified in this
way. We then extend the investigation towards graphs obtained in a simulated-evolution
procedure, starting from Erdős–Rényi (ER) graphs and selecting for low entropies of the CA
dynamics. Our key result is a strong association of low Shannon entropies with a broadening
of the graph’s degree distribution.
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1. Introduction

Understanding the shaping of biological networks by function is a major challenge in current research
on complex systems. Many deviations from randomness detected in network-like situations in Biology
can be interpreted as an imprint of evolution and a prerequisite for successful system function.

Network research employs the formal view of graph theory to understand the design principles
of complex systems. Particularly for biological networks, this large-scale, system-wide perspective
of the network architecture (the “topology” of such graphs) has yielded some unexpected universal
features (e.g., the ubiquity of heavy-tail degree distributions [1,2], the presence and possible functions
of modules [3,4] and a similarity in motif content of functionally similar networks [5,6]).

On this basis, network analysis provides a unifying framework to investigate the dynamics of
numerous complex systems, ranging from social and technical systems to regulatory functions of living
organisms (see, e.g., [7]). In his famous review article from 2001, S. Strogatz concisely summarized
the understanding of dynamical processes on graphs at that time: ”If we now couple many such
systems together, what can be said about their collective behavior? The answer is not much—the details
matter.” [8]. Even after years of research we are still far away from finding the universal laws and
ordering principles that govern this intricate relationship. Any progress in this field can be expected
to have immediate impact on many natural and technical processes. In particular, the understanding of
biological networks on the intracellular level would benefit from such general theoretical results. The
intuition that some properties of dynamics on graphs are indeed determined (or at least systematically
shaped) by graph topology stems from a range of case studies, particularly of random walk (or diffusion
processes) on graphs [9] and of synchronization of oscillatory nodes in a graph (see, e.g., [10]).

Modularity is a fascinating and important example of a network property known to have dynamical
relevance. At the same time, it is found in many complex networks. It can be at the same time formally
defined on the level of the graph [11] and due to functional criteria (see, e.g., [12,13]). The fact that maps
of random walks reveal the community structure of complex networks [9,14] is one of the few very clear
observations about the interplay between network topology and dynamics.

The results presented here show that the degree distribution can also be related to the dynamic
properties of the network: In the following we will show that a dynamic requirement selected for via
simulated evolution can have a direct impact on the degree distribution. The framework we employ is
that of cellular automata (CA) on graphs [15,16], together with the notion of simulated evolution for
enhancing a specific dynamic function.

Among the first simulated-evolution studies of dynamics on graphs was an attempt to relate a graph’s
modularity with the time structure of the objective function [17] (see also [18]), where the effect of
temporally varying goals on the architecture of evolved networks has been discussed. In subsequent
work [19] it is shown that modularity can also emerge from heterogeneous environments, i.e., from
modularly varying goals in space, rather than in time.

The results from [20–22] on the subgraph composition of flow networks evolved towards robustness
against, e.g., link or node removal suggest a specific imprint of robustness in the network topology. The
authors show that a simulated evolution scheme selecting for robustness of the input/output relation with
respect to link or node removal, when applied to flow networks, leads to an enhancement of specific
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topological properties (in this case, a pattern of enhanced and suppressed three-node subgraphs). In
subsequent works from the same group, the shaping of network architectures via simulated evolution
using an ODE system with switch-like dynamics representing gene regulation has been explored [23].
For this system, however, no direct enhancement of a specific subgraph composition is observed during
the simulated evolution.

The other cornerstone of our study are cellular automata. Proposed by von Neumann [24] as a model
system for biological self-reproduction, a surge of research activity from the 1970s and 1980s onwards
(e.g., [25–28]) established them as a standard tool of complex systems theory and spatio-temporal
pattern formation (see, e.g., [29–31]). The principal goal of discussing CA on graphs [15] is to explore
the relationship between network architecture and dynamics from the perspective of pattern formation
(and, more specifically, the Wolfram classes [27,28], as a way of characterizing observed dynamic
behaviors). In a series of numerical studies we have employed this framework and related systems to
analyze discrete dynamical processes on graphs [16,32–34]. Furthermore, the concept of probing real
networks with binary dynamics has been formulated for assessing the regularizing capacity of networks
and, conversely, its ability to display complex dynamics [16]. With such “dynamic probes” we found
that complex (high-entropy) dynamics are systematically reduced on metabolic networks compared
to randomized networks with identical degree sequences. Already small topological modifications
substantially enhance the capacity of a network to host complex dynamic behavior and thus reduce
its regularizing potential [16,35].

Motivated by these previous results on metabolic networks, we believe that the requirement of
low-entropy dynamics is non-trivial to incorporate in the network’s topology. Selecting for low-entropy
dynamics thus seems a plausible strategy for better understanding how this dynamical requirement has
a specific impact on network architecture. There is no guarantee that a simulated-evolution study will
converge towards reliable structure-dynamics relationships. In many cases, the results will depend on
the details (e.g., parameter settings) of the dynamics and the technicalities of the simulated evolution.
We employ the simple cellular-automata-on-graphs setting particularly to avoid any additional parameter
dependence in the simulated evolution.

In Section 2 we summarize our methods (the network model, the CA model and the simulated
evolution scheme), as well as our previous results. Section 3 is devoted to the new results on evolved
low-entropy networks. In Section 4 we discuss these findings and put them into perspective.

2. Methods and Previous Results

2.1. Cellular Automata on Graphs

As “dynamic probes” of the evolving networks we use a simple model of dynamics with a binary
state space, termed cellular automata (CA) on graphs [15]. CA have been used in a vast number of
investigations to explore the emergence of complex patterns from simple dynamic rules. Originally
defined on regular lattices [27], they have also been studied on more complex topologies [15,16,36] and
in noisy environments [32,37]. It should be noted that due to the diverse neighborhood sizes (compared
to a regular 1D or 2D lattice) and the lack of ordering of neighbors, only a very small set of rules (from
classical CA) can be plausibly transferred to general graphs. This is why we focus on totalistic CA, where
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only the density of states in the neighborhood enters the update rule. Selecting the new state of a node via
a threshold seems to be the most generic rule set. Plausible extensions we did not discuss are (1) larger
state spaces, and (2) multiple thresholds. A detailed motivation for exploring totalistic single-threshold
CA on graphs is given in [16].

Here, we consider a cellular automaton, where the time evolution xi(t) of an element i only depends
on the density of neighboring states, ρi(t) = 1

kini

∑
j Aijxj(t). The underlying graph is represented by

the adjacency matrix A: If a link connects node j to node i, Aij = 1, and we call j an input node of
i. The number of all input nodes is called the in-degree of node i, kini =

∑
j Aij . The out-degree koutj

is the number of nodes influenced by node j, koutj =
∑

iAij . In the following, we implement threshold
dynamics given by a CA rule: If the state density ρi in the neighborhood of node i exceeds a threshold
κ, the state of node i flips—otherwise, it remains in its previous state:

xi(t+ 1) =

xi(t) , ρi ≤ κ

1− xi(t) , ρi > κ
(1)

In all simulations that follow, we choose κ = 0.3, since this threshold has been shown to generate
topologically sensitive dynamics [16]. We discuss the sensitivity to topology and the selection of the
update rule in more detail in Section 2.5.

Throughout the paper, we use synchronous update (like in all our previous publications on this
topic). The updating scheme (synchronous, random, asynchronous sequential) is a very important
topic in cellular automata (and has been very prominently discussed in the framework of Random
Boolean Networks). Some attractors that are stable in a synchronous updating scheme disappear
under asynchronous or random update. Here we do not want to explore the impact of the updating
scheme on the simulated evolution, as our focus is rather on enhanced network properties than on
dynamical attractors.

2.2. Entropy Measures

We apply two entropy-like measures to classify the dynamic capabilities of the evolving networks.
Both measures have been successfully used for the quantification of pattern complexity in CA-on-graph
dynamics (see Section 2.1) [15,16,32,35]. The Shannon entropy ES serves as a measure for the
asymmetry between zeros and ones in the time series of each node and, when averaged over all nodes, of
the “spatio”-temporal patterns. To obtain this Shannon entropy of the pattern, we calculate the Shannon
entropy of a time series for each node and then average over all N nodes:

ES =
1

N

N∑
i=1

−(p0i log2 p
0
i + p1i log2 p

1
i ) (2)

The probabilities p0i and p1i are estimated from the ratios of 0’s and 1’s in the time series of node i.
The word entropy EW quantifies the irregularity of a time series on a larger (time) scale by counting

the number of constant words (i.e., blocks of constant states confined by the respective other binary state):

EW =
1

N

N∑
i=1

(
−

t∑
l=1

pli log2 p
l
i

)
(3)
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The probability pli is the number of constant words of length l divided by the number of all words found
in the time series of node i. The maximal possible word length is given by the length T of the time
series analyzed. In the original work on cellular automata from [28], the measure entropy was used as
a means for classifying CA dynamics. Qualitatively speaking, in the measure entropy, all words are
taken into account (i.e., all lengths and compositions), while we here approximate this deliberately by
looking only at constant words. In [15] we introduced this classification of the CA-on-graphs dynamics
in a plane consisting of the Shannon entropy ES and the pattern asymmetry index from Equation (3)
that we called the word entropy EW due to its similarity to Wolfram’s measure entropy. We would like
to emphasize, however, that EW cannot be normalized, as it is based on a subset of all possible words
(namely all constant words of length l) and thus is not an entropy in the usual information-theoretical or
thermodynamical sense.

In our previous investigations we have shown that the Wolfram classes can be separated in the entropy
plane introduced above. Wolfram classes I and II are found at lower entropies, while Wolfram classes III
and IV are located at higher entropies with a high word entropy and an intermediate Shannon entropy
being the characteristic of Wolfram class IV dynamics (see Section 2.3 below for details). This is the
main basis for associating low entropies with more regular behavior. A more detailed discussion of the
association of low entropies with higher dynamical order is given in [35].

2.3. Previous Results

Here we briefly summarize our previous results with the framework described above. In order to
first assess the features of the dynamics encoded in the one-parameter CA rule from Equation (1), we
simulate classical spatiotemporal patterns on a 300-node ring graph. Figure 1a shows time courses for
three different values of κ. At low and high values of κ, the elements essentially show an oscillatory and a
steady-state behavior, respectively. At intermediate κwe observe complex (Wolfram class IV) dynamics.

The two quantifiers of the dynamics, the Shannon entropy ES and the word entropy EW are capable
of qualitatively separating the four Wolfram classes [15]. Figure 1b shows the corresponding clouds of
points in the entropy plane obtained from randomly generated CA. Colors have been assigned to the
points by visually sorting them into the four Wolfram classes. Examples of time courses are provided for
seven cases.

The dynamics calibrated in this form can then be used to study the relationship between network
architecture and dynamics, as well as the “pattern formation capabilities” (e.g., the percentage of
Wolfram class IV dynamics; see [16]) of real and synthetic networks. One of the first topological
properties investigated with this formalism is the number of shortcuts inserted in a ring graph. Shortcuts
in a regular architecture affect the information transport through the system due to the severe decrease
in average path length [38]. Another role of shortcuts, affecting the pattern formation on these graphs,
is the destabilizing effect of topological perturbations by propagating distant uncorrelated information,
similarly to stochastic noise. We systematically analyzed the functional similarity of rewiring and noisy
communication on patterns of binary cellular automata and found that the effect of shortcuts can resemble
noise: In graphs with clustered neighborhood structures, links between distant regions of the network
can have the same effect as stochastic perturbations of the dynamic signals themselves, if the signal



Entropy 2012, 14 998

conferred by these shortcuts displays an appropriate degree of chaoticity [32]. The general similarity
between shortcuts and noise has also been pointed out in [39].

Figure 1. Summary of the formalism for cellular automata on graphs. The one-parameter
CA rule, when applied to a ring, displays very different Wolfram classes for different values
of the parameter κ (a). The entropy plane introduced in Section 2.2 allows a qualitative
separation of the four Wolfram classes (b) (adapted from [15]). For (a), 500 time steps
on a 300-node ring graph have been simulated starting from random initial conditions.
Parameter values have been κ = 0.1, 0.3, 0.9, respectively. For (b) time courses have been
generated on random 1-dimensional CA with neighborhood sizes up to 10. Patterns of
stationary, oscillatory, periodic and chaotic automata, (a)–(f), comprise 500 time steps, the
two class IV patterns (f) and (g) comprise 2000 time steps. Zeros are indicated in black, ones
in white. See [15] for further details.
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Our next investigation with these methods focused on metabolic networks. As often discussed in
the broader framework of “network biology” [2], abstracting cellular processes into networks can
help to identify deviations from randomness and contribute to an understanding of how such systems
function. On the intracellular scale, the two most prominent examples of such network representations
are biochemical reaction networks in metabolism (e.g., [1]) with pools and flows of metabolites, and
gene regulatory networks (e.g., [40]).
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Early studies on metabolic network topologies mostly focused on the broad degree distribution
and the associated scale-free property [1,3]. More recent work attempts to link topological properties
with biological function [41,42], particularly with enzyme essentiality and flux organization [43–45].
However, the design principles of metabolic networks and, particularly, dynamic processes as essential
elements in shaping the topology of metabolic networks, are far from being understood (see, e.g., [46]).
Metabolic networks are at the same time scale-free, modular, layered and bipartite. Assessing, e.g., the
motif structure of metabolic networks is an outstandingly difficult task due to the lack of suitable null
models. The recent work by Basler et al. [47] has summarized this point in a clear and concise fashion.
Despite their topological complexity, many functional properties of metabolic networks can be derived
from steady-state dynamics. Indeed, many theoretical investigations, like flux-balance analysis, rely on
extracting function from steady state flux distributions [48–50]. This leads to the interesting question
of how metabolic networks avoid complex dynamics and maintain a steady-state behavior. In [35]
we exposed metabolic network topologies to CA dynamics and found that the networks’ response is
highly specific: In the (ES, EW ) entropy plane, the metabolic networks occupy a low-entropy region,
compared to randomized networks with the same degree sequences (see Figure 2). Similar differences
to randomized networks are observed, when randomization towards hierarchized or anti-hierarchized
networks is performed or the randomization maintains the network’s diameter or module structure, in
addition to its degree sequence [35].

Figure 2. Average entropy signature of the metabolic networks of 22 species and randomized
counterparts. The region in the entropy plane, where the metabolic network topologies (black
boxes) reside, is clearly separated from the entropy signatures of the randomized networks
(red boxes) of the same size, connectivity and degree sequence. The species abbreviations
refer to the identifiers used in the Ma–Zeng database of metabolic networks [51]. The
“randomization path” indicates the change of entropies upon gradual randomization of one
of the networks (sce).
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The update rule from Equation (1) represents a single-parameter switching device, where switching is
triggered by the density of 1s in the neighborhood of an element. In addition to this specific update rule,
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it is instructive to explore a larger set of rules. In [16] we studied the dynamics generated by all rules of
the form

xi(t+ 1) =


α ρi < κ

β ρi = κ

γ ρi > κ

(4)

where (α, β, γ) ∈ {0, 1, +, −} with ′+′ = xi(t) and ′−′ = 1 − xi(t). One of the findings is that the
number of complex dynamics changes systematically with connectivity in ring graphs.

The systematic entropy reduction capacity of metabolic networks observed for the CA rule from
Equation (1) has been further confirmed by simulations with the larger class of CA from Equation (4).
We find that while the entropy signatures of most rules do not discriminate between real and randomized
topologies, a few rules are topologically sensitive. For all these rules, the entropy signature of real
metabolic networks is significantly smaller compared to the null model topologies (i.e., random graphs
with the same degree sequence) [16].

In the light of the entropy reduction observed for metabolic network architectures [35], one key
question has not yet been answered: What are the topological characteristics associated with low
entropies of CA dynamics?

Here we use a simulated evolution approach with entropy minimization as a target function to explore
which network properties are enhanced at low-entropy CA dynamics. As the number of links is kept
constant throughout the evolution, the effect results from a re-distribution of existing links and not from
a trivial regularization of the dynamics due to an increase in link density.

2.4. Networks

The famous random graph model of P. Erdős and A. Rényi [52], where each link between two nodes
has a probability p to be present, generates a network with a binomial degree distribution. Here we use
a directed version of these Erdős–Rényi (ER) graphs, where bi-directional links occur at random as the
co-existence of two opposite uni-directional links. A graph represented by the number of nodes N and
the link probability p on average contains M=pN(N − 1) directed links. The number of bi-directional
links is (for small p) proportional to p2.

2.5. Rule Sensitivity

Similar to our previous approach to ring graphs and scale-free networks [16], we here explore the
sensitivity of all totalistic rules to degree-degree changes on directed ER graphs. To that end, we
determine the entropy signature of random directed ER graphs with 100 nodes and 200 links and
compare it to the signature of the same graph in which in-degree correlations have been established
via degree-conserving hierarchization [53].

Figure 3 shows the entropy difference for each rule, where for simplicity we set α = β. The threshold
value κ is color-coded. We find the rules (1, 0), (0,−), (−,+) and (+,−) (the notation is (α, γ);
cf. Equation (4)) to be sensitive to changes in in-degree correlations for a range of threshold values
κ. To make this study comparable with our previous work, we will in the following focus on the rule
(+,−) with κ = 0.3.
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Figure 3. Mean and standard deviation of the entropy signature difference for 10 directed
ER graphs with 100 nodes and 200 links. We find the rules (1, 0), (0,−), (−,+) and (+,−)

to be sensitive to changes in in-degree correlations for a range of threshold values κ.
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2.6. Simulated Annealing

We use the decrease of the average Shannon entropy or of the average word entropy under the CA
update rule from Equation (1) as our selection criterion for a simulated annealing [54] evolution of
random ER graphs. Specifically, we apply the following protocol:

1. Generate a directed ER graph with 100 nodes and about 200 links (p ≈ 0.02).

2. Implement the cellular automaton defined in Equation (1) with κ = 0.3, 200 timesteps and
100 different initial conditions.

3. Evaluate the (node-)averaged Shannon and word entropies as defined in Equations (2) and (3).

4. Apply a single rewiring step by randomly choosing a directed link and connect either the start or
the end of the link to a randomly chosen node. Ensure that the new link does not yet exist and that
the resulting graph is weakly connected (i.e., the undirected version of the graph is connected).
Repeat steps 2–3 for the new graph.

5. Accept the new graph (labeled i) and discard graph i − 1, if the entropy differences ∆E
(i)
S =

E
(i−1)
S − E(i)

S ≥ 0. If ∆E
(i)
S < 0, accept the new graph with probability Pi = exp(∆E

(i)
S /T (i)).

Here, we choose a linear cooling scheme T (i) = T (0)(1 − i/s) where s denotes the number of
evolution steps (5000) and T (0) denotes the initial temperature, which we choose as 0.01. If graph
i is accepted, continue with step 2, otherwise choose a new graph i with step 4.

Summarizing, we employ simulated evolution to modify graph topology in such a way that some
desired dynamical features (here: low entropies) are enhanced. Such a simulated evolution should not
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be confused with biological evolution in any sense. Even though both may be interpreted as a search
in high-dimensional space, simulated evolution depends on a specific objective function rather than
“biological fitness”. Also, diverse physical, chemical and biological constraints enter biological evolution
biasing the “search” in a multitude of ways.

It is not clear whether the final result (i.e., the set of evolved networks) is rather shaped directly by the
objective function or rather by the details of the search method. In other words, we cannot be certain to
discover the same properties of successful networks, if (hypothetically) all possible successful networks
were enumerated, rather than searching them via a simulated-evolution strategy.

3. Results

3.1. Evolved Networks

We explore a simulated evolution of graphs towards binary dynamics with low average entropy.
The entropy of the time series observed at a node in the graph here serves as a measure for the local
complexity of the dynamics, as well as a way of assessing, whether local perturbations are predominantly
amplified or dampened at this site in the graph [35].

We follow the protocol outlined in Section 2.5 and generate in each run 10 ER graphs with N = 100

nodes, a directed link probability of p = 2
N−1 ≈ 0.02 and thus, about 200 links. Each of the graphs

is probed with 100 initial conditions. The CA from Equation (1), when implemented on this graph,
gives rise to complex spatiotemporal patterns. One graph and one 2D projection of the pattern from
the ensemble of graphs and patterns is shown in Figure 4A. After 5000 evolution steps, both the graph
topology and the patterns have changed considerably (see Figure 4B). The mean Shannon entropy of
the initial graphs are peaked well above 0.8 (see Figure 4C, filled bars), while the reduced complexity
of the time series results in a distribution of entropies around 0.5 (Figure 4, white bars). The decreasing
Shannon entropy for 10 different initial graphs is shown in Figure 4D.

3.2. Topological Analysis

What is the topological imprint (i.e., the systematically altered topological properties) of the changed
dynamic potential of the evolved graphs? We compare the in-degree and out-degree distributions of
initial and evolved graphs and find remarkable differences. The out-degree distribution of the evolved
graph (Figure 5B, right) follows a binomial distribution with a peak at two, just like for the distributions
of the initial graph (Figure 5A). The in-degree distribution of the evolved graph however has a peak
shifted to 1 and longer tail towards higher degrees. The emergence of nodes with low degree at the
periphery of the graph and hubs in the center is already discernable in the graph plot in Figure 4B. To
correlate the changes in the in-degree distribution with the dynamic potential of the graph, as measured
by the Shannon entropy, we show ten trajectories with 5000 evolution steps in Figure 5C. Interestingly,
the standard deviation of the in-degree distribution increases in a linear fashion with decreasing Shannon
entropy. At the same time no clear effect on the out-degree is observable (Figure 5C right). Finally, we
study the changes of the word entropy and its correlation with the graph degrees in Figure 5D: While
the word entropy decreases along with the selection on low Shannon entropies, the correlation between
dynamic readout and topological measure is less clear in this case.
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Figure 4. Simulated evolution. (A) We implement the dynamic probe (1) on a directed
Erdős-Rényi (ER) graph with 100 nodes and 200 links (left), resulting in a spatio-temporal
pattern (right). We quantify the dynamic potential of the graph with the average Shannon
entropy from Equation (2) of 100 runs with random initial conditions. We evolve the network
by a single rewiring step, where either the start point or the end point of a randomly chosen
link is attached to a new, randomly chosen node. If the Shannon entropy (again we take
the mean over 100 runs with random initial conditions) of the new network is smaller, we
accept it. If it is higher, we accept it with a certain temperature-dependent probability (see
Section 2.6 for details) to avoid local minima. (B) An evolved network and spatiotemporal
pattern after 5000 evolution steps. (C) Shannon entropies for the ER graph (black) and the
evolved network (white). (D) Decreasing Shannon entropy for 10 initial ER graphs. Colors
denote different runs.
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Figure 5. Topological changes. (A) In-degree and out-degree distribution for an initial
ER graph and (B) an evolved networks. The in-degree distribution significantly broadens
(p-value < 0.008, Kolmogorov–Smirnov test) during the evolution. (C) The standard
deviation of the in-degree distribution increases linearly with decreasing Shannon entropy
(we show the same 10 runs as in Figure 4), while the out-degree distribution shows no clear
change. (D) The word entropy decreases accordingly, with a less clear correlation between
degree and EW signature. Colors denote different runs.
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It should be noted that the details of the simulated-evolution procedure affect properties of the evolved
networks. In particular, the distribution of initial conditions and the exact model for the starting networks
have a considerable impact. Figure 6 provides some intuition on the amount of variability we can expect.
Different schemes of averaging over initial conditions during the simulated evolution have been studied:
Scheme 1 (standard setup): entropies are averaged over 100 random initial conditions; at each generation,
new initial conditions are selected. This is evaluated in Figures 4, 5, and 6A. Scheme 2: entropies are
averaged over 100 random initial conditions; these initial conditions remain the same across the whole
simulated evolution. This is the configuration behind Figure 6B.

Figure 6. 10 simulated evolution runs with 10000 steps, selecting for low Shannon entropy
ES with different schemes of averaging over initial conditions during the evolution. (A) In
each generation, a new set of 100 initial conditions is selected. This leads to a linear increase
of the standard deviation of the kin with decreasing Shannon entropy. (B) In contrast, if we
keep the set of 100 initial conditions during the whole evolution, a maximum of σ(kin) is
reached at ES ≈ 0.3. Further evolution of the networks leas to a sharpening of the in-degree
distribution and, at the same time, a broadening of the out-degree distribution.
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In both cases, the broadening of the in-degree distribution (increase of the standard deviations
σ(kin) with decreasing Shannon entropy ES) is clearly seen in Figure 6A,B (left). However, in the
case of 100 constant initial conditions (Scheme 2), the in-degree distribution is maximally broad at
ES ≈ 0.3 (Figure 6B). If we evolve the networks further, the in-degree distribution again becomes
slightly narrower, while at the same time, the out-degree distribution broadens, in contrast to Scheme 1,
where the out-degrees seem to be unaffected by the simulated evolution. These trajectories suggest a
two-step process: First, the in-degree distribution is broadened to optimize the networks towards low
entropy. In a second step, the out-degree distribution broadens as the networks adapt to the specific set
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of 100 initial conditions. It would be interesting to see how the trajectories of the two schemes converge
for all 2N initial conditions—that is, the limit where Scheme 1 and 2 become identical.

In contrast to the results described so far, selection on the word entropy EW does not lead to a
broadening of the degree distribution (data not shown; see, e.g., Figure 5D for an indication of the much
lesser impact of EW on the spread of the degree).

Ever since the formulation of scale-free graphs [55], broad degree distributions have been associated
with robustness against random node failure. Here we find that, additionally, the broadening of the degree
distribution is associated with a more regular (low-entropy) dynamics as well.

In addition to the degree distribution, we looked at a large number of other topological properties
of the evolved networks. In particular, the low-entropy networks do not deviate systematically from
their unevolved counterparts in their modularity or their degree correlations. They also do not display a
non-random triad significance profile (see [5]) indicative of small network motifs [6].

It should be noted that, as with many simulated-evolution studies, our investigation contains several
technical parameters that can in principle have a strong impact on the topological features of the evolved
networks. We checked that the broadening of the degree distribution is not affected by variations of initial
networks, mutation depth (i.e., the number of rewiring steps before evaluating the entropies again) and
temperature.

4. Conclusions

Cellular automata on graphs are a parameter-efficient framework for exploring the relationship
between network architecture and dynamics from the perspective of pattern formation. Theories of
spatiotemporal pattern formation have contributed fundamentally to a deep understanding of natural
processes, particularly in biology. One striking example is Turing’s concept of reaction-diffusion
processes [56], which has a vast range of applications—from biology to social systems. At the same time,
these theories (or classes of models) are well embedded in the broader framework of self-organization.
Very much in the light of [57] and [34] our principal goal is to understand what the network equivalents
of classical spatiotemporal patterns are, and how, e.g., the presence of loops and feedbacks in networks
relate the processes behind spatiotemporal patterns to the theory of complex systems.

Here we have shown some relations between network architecture and dynamics (reviewed from
previous work and obtained with the simulated-evolution scheme presented in Section 3), which is
interesting in its own right as cornerstones on the road towards a theory of dynamical processes on
graphs. At the same time, this set of relations facilitates an evolutionary interpretation of real biological
networks in the light of dynamical function.

An analysis of topologically sensitive rules (see [16]) with analytical tools as developed in [58,59] or
the basin entropy [60] may reveal state space changes associated with topological modifications. Such
analyses can elucidate dynamic properties also relevant for regulatory dynamics of biological networks,
which have been successfully modeled with CA approaches (see, e.g., [61,62]). From this perspective,
our framework provides a means to comprehensively study the sensitivity of a system to topological
perturbations and associated rule space modifications.

How can the entropies derived from our dynamic-probe studies be interpreted from a functional
perspective? In the cellular automaton from [35], the density of 1s in the neighborhood determines
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whether the state of a node flips. It is clear that these dynamics do not correspond directly to any specific
biological process. However, it is possible to arrive at a biological interpretation of the dynamics in two
different ways:

1. Indirectly, these binary dynamics measure whether fluctuations in the neighborhood of a node will
propagate to the node under consideration, or whether they will rather be dampened out. In fact,
when one discusses a simple system of linear ODEs on the graph and monitors transient lengths,
one sees a clear correlation with our two entropies.

2. When formally re-writing the CA update rules as coupled ODEs (with, e.g., a switching of a state
corresponding to a large term in the corresponding ODE) one could in some cases allow for a
biological interpretation of the update rules, as the right-hand sides of such ODE systems can be
viewed as a “list” of biological processes to the dynamics of the system at hand.

We believe that the application of dynamic probes is a particularly helpful tool for studying dynamical
constraints imposed by network topology.

It is clear that many facets of this topic cannot be solved within the framework of this work, i.e., the
control of technical parameters in the simulated evolution, the full characterization of the evolved
networks, and a (more) complete understanding of low-entropy signatures. We take some of these facets
as an inspiration for continuing this line of work. Quite clearly we hope that eventually the evolved,
low-entropy networks can be characterized more clearly, also giving mechanistic insight into the way
topological properties of a graph regulate the complexity of the dynamics.

Broad degree distributions, like the ones encountered in scale-free graphs [55] and many real
biological and technical networks, are often associated either with specific graph construction processes
(like preferential attachment) or with robustness against random failures [2]. Even though the degree
distributions of the evolved graphs obtained here are far from comparable with the power-law
distributions of scale-free graphs (also due to the small size of the graphs investigated here), it is striking
that in our study the broadening of the degree distribution is related to the functional requirement of
low entropies.
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34. Müller-Linow, M.; Hilgetag, C.C.; Hütt, M.T. Organization of excitable dynamics in hierarchical

biological networks. PLoS Comput. Biol. 2008, 4, e1000190.
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45. Almaas, E.; Kovács, B.; Vicsek, T.; Oltvai, Z.N.; Barabási, A.L. Global organization of metabolic

fluxes in the bacterium Escherichia coli. Nature 2004, 427, 839–843.
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