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Abstract: The general quasi-linear autonomous fourth order diffusion equation
ut = −[G(u)uxxx + h(u, ux, uxx)]x with positive variable diffusivity G(u) and lower-order
flux component h is considered on the real line. A direct algorithm produces a general
class of equations for which the Shannon entropy density obeys a reaction-diffusion
equation with a positive irreducible source term. Such equations may have any positive
twice-differentiable diffusivity function G(u). The forms of such equations are the indicators
of more general conservation equations whose entropy equation may be expressed in an
alternative reaction-diffusion form whose source term, although reducible, is positive.
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1. Introduction

Fourth order diffusion equations are conservation equations preserving the mass-integral but they
are dissipative equations, with L2-norm decreasing in time. In some important practical cases, higher
moments of u also decrease in time [1] and in some well-known examples, the energy-norm decreases
in time. These equations arise in many applications such as thin film flow [2,3], metal surface
diffusion [4–6], flow in Hele–Shaw cells [7] and in phase field theory [8]. When they are restricted to
one space dimension, many fourth-order diffusion equations occurring in applications are conservation
equations of the general form

ut = −[G(u)uxxx + h(u, ux, uxx)]x (1)
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with G(u) > 0. This will be the general form considered at the outset here. In many applications, such
as when u represents a depth of fluid, a probability density or a temperature, relevant solutions must
maintain positivity. For second-order diffusion equations, positivity proofs follow from the maximum
principle. However, for fourth-order equations there is no maximum principle. Even for some boundary
value problems that result in increasing entropy, the number of relative maxima may change in time [9].
With the spatial domain taken to be the real line, positivity has been proven for some special classes
of diffusion equation, each of which require the existence of appropriate forms of Liapunov functional
[9–17]. Most results in this area apply to periodic solutions whose initial conditions are strictly positive.
When the spatial domain is the real line ℜ rather than the circle S1, positive solutions of finite mass must
have zero as the greatest lower bound. It is harder then to prove maintenance of positivity.

One of the key properties that is associated with standard diffusive behaviour is the monotonic-in-time
increasing nature of Shannon entropy. In this study, we concentrate mainly on Shannon entropy which
has roots in information theory. In the context of information theory, entropy is a measure of disorder,
or more precisely unpredictability associated with a random variable. In some modelling applications,
such as when u is a probability density or a temperature, increasing entropy is a constraint of the validity
of a physical solution. This is another feature that we have come to expect from generic behaviour of
second-order diffusion equations but which is not always valid for fourth-order equations [9,18]. There
are indeed many cases of dissipative fourth order equations that satisfy neither increasing entropy nor
maintenance of positivity [12]. Compared to positivity, monotonicity of entropy is a property that is
more easily predicted from the structure of the diffusion equation [1,18]. The best known fourth-order
diffusion equation with increasing Shannon entropy is the so-called Derrida–Lebowitz–Speer–Spohn
(DLSS) equation [9,10,15,16,19,20]

ut = −uxxxx + (
u2
x

u
)xx (2)

that arises as a scaling limit in the study of interface fluctuations in a certain spin system. It was first
studied in [9] for the local positive smooth solution and then in [16] for the global nonnegative weak
solutions. Entropy-monotonicity is still regarded as a special property, and it is the main reason that the
DLSS equation is well known. In fact, given a large class of nonlinear fourth-order diffusion equations
such as (1), the subclass with increasing Shannon entropy may, in principle, be fully determined and this
analysis readily generalizes to other Liapunov functionals [10]. An alternative approach to identify
such a subclass, based on preliminary reduction of the entropy source to irreducible form, will be
developed here.

The approach taken will be to first consider a local analysis of entropy density. For each diffusion
equation, one may explicitly construct the reaction-diffusion equation for the Shannon entropy density.
Then, we reduce the order of the entropy source term simply by absorbing its quasilinear components
in the flux-divergence term until the reaction term is fully nonlinear. A positive sign of the remaining
uniquely determined irreducible reaction term will immediately indicate that entropy is monotonic in
time in the local sense that the entropy production rate is positive everywhere. In Section 3, this is
carried through in a general setting to construct information-irreversible equations that have, for example,
an exponentially increasing diffusivity. Positivity of the irreducible source term is sufficient but not
necessary for entropy to be monotonic increasing in time. The form of the conservation equations that
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give rise to positive irreducible entropy source terms will indicate the target equations whose entropy
equations may be expressed as more than one alternative reaction-diffusion equations, one of which
has a reducible positive source term. In Section 4.1, we show how the known semi-linear fourth-order
equations, which give rise to a positive irreducible entropy source, may be extended parametrically to a
class of information-irreversible equations associated with an entropy equation with positive reducible
source. For the latter class, there are identified two alternative forms of the entropy reaction-diffusion
equation that have positive reducible source term.

2. Definitions and Basic Concepts

Diffusion equations commonly occur in the context of heat transport or mass transport. From the first
context, we borrow some terminology of temperature and thermodynamic entropy. From the second, we
borrow some terminology of diffusivity and chemical potential.

The Shannon entropy is the expected value of log2(1/p) [21], a functional of the probability density
function of a random variable. More generally, a function that has the characteristics of a probability
density may be constructed from a positive integrable solution u(x, t) of any nonlinear conservation
equation on Ω × ℜ+ (Ω a closed subset of ℜn), simply by defining p = u/U , where U =

∫
Ω
u dx.

Shannon entropy shares some similar features with thermodynamic entropy which, following the ideas
of Boltzmann and Gibbs, can be calculated from the phase space probability density of statistical
mechanics [21]. For convenience we consider the evolution of the entropy density

s = u log(1/u) (3)

whose integral is simply a linear function of Shannon entropy.
Consider an evolving system satisfying a reaction-diffusion equation

ut +∇ · J = R

on Ω × ℜ+, where J is the flux and R is the source term. This will be viewed as adiabatic if there are
zero-flux (or insulation) conditions, that is the component of J normal to the fixed boundary ∂Ω being
zero. Since s is a function of u(x, t), the reaction diffusion equation for u(x, t) implies another reaction
diffusion equation for s(x, t).
An isentropic solution u(x, t) is one for which entropy is constant in time.

An evolution PDE is information-irreversible if in any adiabatic evolution governed by that PDE, the
Shannon entropy increases monotonically in time and not all solutions are isentropic.

Analysis of the entropy is considerably simplified in a local formulation in which a reaction-diffusion
equation is derived for entropy density from which entropy monotonicity can be discerned directly from
the sign of the source term.

An n-th order evolution PDE is locally information-irreversible if the implied evolution equation
for entropy density is in conservation-plus-reaction form, with a non-negative reaction term that is not
identically zero.

This local definition still applies in function spaces on which the total entropy functional is not
necessarily finite. However, if the entropy is well defined, a local information-irreversible PDE must
be information-irreversible.
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Given a positive solution to a general conservation equation in one spatial dimension,

ut = [−J(u, ux)]x (4)

a direct change of dependent variable to s = −u log(u) yields the reaction-diffusion equation for entropy
density

st = ([1 + log(u)]) Jx

= ([1 + log(u)]J)x − J
ux

u
(5)

It is easy to see that a second order conservation equation is locally information-irreversible if and only
if the flux is of the form J = J0(u) plus an odd function of ux (possibly with u-dependent coefficients)
that is positive when ux is negative. This implies that every second-order nonlinear diffusion-convection
equation is locally information-irreversible, a strong form of the second law of thermodynamics for
nonlinear heat conduction and more generally, for any system governed by a nonlinear Fokker–Planck
equation [18]. From the above local entropy equation associated with second-order diffusion equations,
it is clear that “uniform-temperature” or “well-mixed” states with ux = 0 are equilibrium states, having
zero local entropy production. The entropy source is not merely positive but positive semi-definite,
taking the value zero for some special equilibrium states. It is useful in applications, consistent with the
concept of a Liapunov functional, and convenient in some following calculations, to restrict attention to
those higher-order information-irreversible equations that also have equilibrium states.

The nature of fourth-order diffusion equations is very much different from that of their second order
counterparts. There is no maximum principle for fourth-order equations, and new extrema may evolve
from initial conditions that are almost featureless. Unlike the behaviour of second order diffusion,
Shannon information need not be monotonic. This behavior is already apparent in the linear fourth
order equation with constant coefficients

ut = −uxxxx (6)

Diffusion equations cannot be generated directly from an action principle but it is common practice to
regard them as being generated indirectly from an energy functional (e.g., [11]). In the case of (6),
the energy functional is H =

∫ b

a
1
2
u2
x dx. The variational derivative δH/δu gives a notional chemical

potential µ = −uxx and the spatial gradient of −µ is a generalized force that would be balanced
by a linear mechanical resistance if the notional drift velocity were proportional to a flux of the form
J = G0uxxx, where G0 is a positive constant that may be conveniently scaled to 1. In this sense, the
appropriate energy-norm is the norm of the Hilbert space H1 that coincides with the Sobolev space W 1,2.
In [22], the existence and uniqueness of weak solutions of fourth order diffusion equations with initial
conditions in H1 is discussed. Equation (6) is dissipative with respect to the energy functional since

(u2
x)t + [(u2

x)xxx − 4(u2
xx)x]x = −2u2

xxx ≤ 0

d

dt

∫ b

a

u2
x dx = −2

∫ b

a

u2
xxx dx ≤ 0 (7)
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The positive sign of G0 or equivalently the minus sign in (6) also makes this a dissipative equation on
L2([a, b]),

(u2)t +
[
(u2)xxx − 4(u2

x)x
]
x
= −2u2

xx ≤ 0

d

dt

∫ b

a

u2dx = −2

∫ b

a

u2
xxdx ≤ 0 (8)

Inequalities (7) and (8) provide a direct estimate of the decreasing H1-norm for solutions with zero-flux
and zero-gradient boundary conditions. These boundary conditions applied on the domain [−c, c] with
c > 0 and with additional initial conditions in H1([−c, c]), represent the Cauchy problem on ℜ by
taking c unboundedly large and with initial conditions u0 in H1(ℜ), implying u0(x) → 0, as x → ±∞.
Solvability, stability and positivity results for nonlinear fourth-order diffusion equations generally rely
on Liapunov functionals or “entropy” estimates of various types [10–17].

Despite equation (6) being energy-dissipative, it is not information-irreversible:

st = [1 + log(u)]uxxxx

=

(
[1 + log(u)]uxxx − u−1uxuxx −

1

3
u−2u3

x

)
x

− 2

3
u−3u4

x + u−1u2
xx

The irreducible source term leads to a total entropy production rate

dS

dt
=

∫ b

a

−2

3
u−3u4

x + u−1u2
xx dx

that is indefinite in sign, so the fourth-order diffusion equation is not information-irreversible. For
equations such as (6), additional structure in the form of new extrema may evolve from simpler initial
conditions in a Cauchy initial problem. For example, from Gaussian initial conditions, the solution may
evolve towards a stable self-similar point source solution

u = t−1/4f(xt−1/4)

that has an infinite number of extrema [23]. This is shown in Figure 1.
Although many familiar fourth-order dissipative diffusion equations are not information-irreversible,

there is a subclass of such equations that do have this property.

3. Information-Irreversible Quasi-Linear Diffusion with Irreducible Source

In this section we will deal with the more general form of fourth order diffusion equation with variable
diffusion coefficient and an extra lower-order flux term that depends on u, ux and uxx. This equation is
quasi-linear in the sense that it is linear in the highest-order derivative.

Consider the equation
ut = −[G(u)uxxx + h(u, ux, uxx)]x (9)
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For positive solutions, one may derive the entropy equation

st = [1 + log(u)]

(
G(u)uxxx + h(u, ux, uxx)

)
x

=

(
[1 + log(u)]G(u)uxxx + [1 + log(u)]h

)
x

− G(u)

u
uxuxxx −

h

u
ux

=

(
[1 + log(u)]G(u)uxxx −

G(u)

u
uxuxx +

G′(u)

3u
u3
x −

G(u)

3u2
u3
x + [1 + log(u)]h

)
x

+
G(u)

u
u2
xx + u4

x

{
−G′′(u)

3u
+

2G′(u)

3u2
− 2G(u)

3u3

}
− ux

u
h (10)

Note that in its irreducible form, the entropy source is at most, second-order. We may choose h so that
further terms are generated in the irreducible source to provide a direct positive counter-balance to the
source terms whose coefficients are possibly negative. The necessary components of h that can generate
such terms are of the general form

h = k(u)u3
x + ℓ(u)uxuxx, for some functions ℓ(u) and k(u) (11)

With h taking this general form, the entropy equation is modified to

st =

(
[1 + log(u)]G(u)uxxx −

G(u)

u
uxuxx +

G′(u)

3u
u3
x −

G(u)

3u2
u3
x + [1 + log(u)]h− ℓ(u)

u

u3
x

3

)
x

+u4
x

{
−G′′(u)

3u
+

2G′(u)

3u2
− 2G(u)

3u3
− k(u)

u
+

1

3

[
ℓ(u)

u

]′}
+

G(u)

u
u2
xx

Each of the remaining entropy source terms is fully nonlinear, as quasi-linear terms have been
incorporated in the flux divergence. In that sense, the reaction-diffusion equation has been reduced
to its unique irreducible form [18]. The irreducible source term is positive semi-definite if and only if
G(u) > 0 and

k(u) ≤ −G′′(u)

3
+

2G′(u)

3u
− 2G(u)

3u2
+

u

3

[
ℓ(u)

u

]′
(12)

Note that for any diffusivity function G(u), there are many possibilities for information-irreversible
conservation equations with

h = k(u)u3
x + ℓ(u)uxuxx (13)

k(u) = −G′′(u)

3
+

2G′(u)

3u
− 2G(u)

3u2
+

u

3

[
ℓ(u)

u

]′
− P (u) (14)

where ℓ(u) is an arbitrary differentiable function and P (u) is an arbitrary non-negative function on ℜ+.
For example, with G(u) = eu, the choice l(u) = u, P = 0 gives rise to, among others, the

information-irreversible equation

ut = −
[
euuxxx + uuxuxx − eu(u2 − 2u+ 2)

u3
x

3u2

]
x
+

eu

u
u2
xx (15)

In Figure 2, we plot the solution of (15) with Gaussian initial conditions and boundary conditions of
zero gradient and zero flux far from the origin. The solution evidences positivity and does not develop
new extrema. All numerical solutions shown here were obtained using the PDE solver of Matlab [24].
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Figure 1. Solution of fourth order fully linear diffusion equation with constant diffusion
coefficient (6) with Gaussian initial conditions and boundary conditions of zero gradient and
zero flux far from the origin. Profiles are plotted for times t = 0, 0.5, 1.0.
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Figure 2. Solution of fourth order semilinear diffusion equation with diffusion coefficient
eu (15) with Gaussian initial conditions and boundary conditions of zero gradient and zero
flux far from the origin. Profiles are plotted for times t = 0, 0.2, 1.0.
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By way of contrast, in Figure 1 we plot the solution with Gaussian initial conditions evolving with a
linear evolution (6), for which entropy is not monotonic. The solution develops additional local extrema
and at large times, it approaches the similarity solution that has an infinite number of extrema and is not
positive definite.
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4. The Standard Form for Entropy-Irreversible Equations

The published examples [10] of information-irreversible equations of which we are aware take a
simple form of the structure given in the previous section, namely (1) with (13),

G(u) = um , ℓ(u) = aum−1 , k(u) = bum−2

h = (au−1uxuxx + bu−2u3
x)u

m (16)

In practice, in order to ensure that the equations are information-irreversible, the parameters (a, b,m)

are specified to satisfy a suitable inequality. For purposes of classification, there is no extra difficulty in
allowing G(u) to be general at the outset,

h = (au−1uxuxx + bu−2u3
x)G(u) (17)

which arises from the choice

ℓ(u) = a
G(u)

u
; k(u) = b

G(u)

u2

where G is a free function and (a, b) are two free parameters (real constants). The modified entropy
equation is

st =

[
[1 + log(u)]G(u)uxxx −

G(u)

u
uxuxx +

G′(u)

3u
u3
x −

G(u)

3u2
u3
x + [1 + log(u)]h

]
x

+
G(u)

u
u2
xx −

G′′(u)

3u
u4
x +

2G′(u)

3u2
u4
x −

2G(u)

3u3
u4
x −

ux

u
(au−1uxuxx + bu−2u3

x)G(u)

=

[
[1 + log(u)]G(u)uxxx −

G(u)

u
uxuxx +

G′(u)

3u
u3
x −

G(u)

3u2
u3
x + [1 + log(u)]h

− aG(u)

3u3
u4
x

]
x

+
G(u)

u
u2
xx −

G′′(u)

3u
u4
x +

2G′(u)

3u2
u4
x −

2G(u)

3u3
u4
x −

bG(u)

u3
u4
x

− 2aG(u)

3u3
u4
x +

aG′(u)

3u2
u4
x

=

[
[1 + log(u)]G(u)uxxx −

G(u)

u
uxuxx +

G′(u)

3u
u3
x −

G(u)

3u2
u3
x + [1 + log(u)]h

− aG(u)

3u3
u4
x

]
x

+
G(u)

u
u2
xx −

G′′(u)

3u
u4
x + (2 + a)

G′(u)

3u2
u4
x − (

2

3
(a+ 1) + b)

G(u)

u3
u4
x

At this stage, the reaction-diffusion equation for entropy density is in irreducible form since each
component of the source is fully nonlinear, not quasi-linear. The irreducible form is canonical in the sense
that it may always be achieved and it is unique [18]. Hence, for (9) to be locally information-irreversible,
it is sufficient that G(u) > 0, (2 + a)G′(u) ≥ 0, G′′(u) ≤ 0 and

b ≤ −2

3
(a+ 1) (18)

These are already elementary conditions for function behavior, allowing us to choose a variety of
functions G, for example power laws, a constant function, any linear function and tanh .

In Figures 3 and 4, we depict the solution of an information-irreversible fourth order semi-linear
diffusion equation with G(u) = 1, and G(u) = tanh(u), with Gaussian initial conditions and boundary
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conditions of zero gradient and zero flux far from the origin. The solution evidences positivity and does
not generate new extrema.

Figure 3. Solution of fourth order semi-linear diffusion equation with constant diffusion
coefficient with Gaussian initial conditions and boundary conditions of zero gradient and
zero flux far from the origin. Profiles are plotted for times t = 0, 0.8, 4.0.
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Figure 4. Solution of fourth order semi-linear diffusion equation with diffusion coefficient
tanh(u) with Gaussian initial conditions and boundary conditions of zero gradient and zero
flux far from the origin. Profiles are plotted for times t = 0, 0.8, 4.0.
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Note however, that this simple approach does not cover all possibilities of information-irreversible
equations that give rise to an irreducible entropy source term. For example, the DLSS equation takes the
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standard form (17) with G = 1, a = −2 and b = 1 but those parameters do not satisfy the inequality (18)
which is necessary for the entropy source to be locally information-irreversible. However, we make the
point that after identifying a class of diffusion equations that give rise to positive semi-definite irreducible
entropy source terms, from that class we may synthesize another class of information-irreversible
equations associated with reducible entropy source terms.

Synthesis of Entropy Equations with Positive Reducible Source

Every fourth-order conservation equation for u(x, t) implies a reaction diffusion equation for entropy
density s = u log(1/u). That entropy equation can be written uniquely as a reaction-diffusion equation
with irreducible source term,

st = −J (s)
x +R (19)

Even if R can take negative values, it is possible that s(x, t) satisfies another reaction diffusion equation

st = −J̄ (s)
x + R̄ (20)

with R̄ positive semi-definite and
R̄ = R + [J̄ − J ]x (21)

For the equations (17), with constant diffusivity G = 1,

R =
u2
xx

u
− (

2

3
(a+ 1) + b)

u4
x

u3
(22)

From (21), we are required to find a differentiable function p(u, ux) such that the following expression
is positive semi-definite:

R̄ =
u2
xx

u
− (

2

3
(a+ 1) + b)

u4
x

u3
+ puux + puxuxx ≥ 0 (23)

This expression is positive semi-definite if and only if it is a quadratic in uxx with zero discriminant,

(pux)
2 − 4

u

[
puux − (

2

3
[a+ 1] + b)

u4
x

u3

]
= 0 (24)

The second term above must be positive. This prompts us to first try a solution of the form

p =
−c

2

u3
x

u2
(25)

This is consistent with (24) provided

c =
8±

√
64− 144(2

3
[a+ 1] + b)

9
(26)

Hence we can re-express the entropy equation in two alternative ways with a positive semi-definite
reducible source term whenever c is real-valued, that is whenever

2

3
[a+ 1] + b <

4

9
(27)
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This includes the DLSS equation (2) which is given by (a, b) = (−2, 1).

The reducible source term for (2) is

R̄ =
u2
xx

u
− (

2

3
(a+ 1) + b)

u4
x

u3
− 3c

2

u2
xuxx

u
+ c

u4
x

u3
(28)

For a = −2, and b = 1 Equation (26) implies c = 4
3
, or 4

9
. The two choices for c lead to two alternative

formulations for the entropy equation, each with positive semi-definite source term. The inequality (27)
covers all the known cases of information-irreversible fourth-order diffusion equations with constant
diffusivity. It is a weaker condition than (18) that applies only when the irreducible entropy source is
positive semi-definite.

5. Conclusions

Although all second-order nonlinear diffusion equations imply monotonically increasing Shannon
entropy, this is the exception rather than the rule for fourth-order diffusion equations. By a simple
local analysis of the reaction-diffusion equation for entropy, we have found a class of such
information-irreversible equations with nonlinear diffusivity and for which entropy density increases
everywhere on the real line, except in special equilibrium states. The Shannon entropy reaction-diffusion
equation can always be written in an irreducible form. It is straightforward to analyze when the
irreducible entropy source term is positive semi-definite. At that point, we already expose a wide variety
of information-irreversible diffusion equations. These do not tell the whole story, as other diffusion
equations allow the entropy equation to be expressed in an alternative reaction-diffusion form with
reducible but positive source. This occurs for a class of semi-linear equations that includes the DLSS
equation. Although the DLSS equation does not give rise to a positive entropy source in irreducible
form, there are two alternative ways of expressing the entropy reaction-diffusion equation with a positive
reducible source term.

The main deficiency of these formal calculations is that the results are suggested to apply to positive
solutions on the real line when it is still not known in general, which initial conditions guarantee
positivity over some extended period of time. For this reason, entropy calculations are more often
applied on a circular domain, on which a finite-mass initial condition may have an infimum that is
strictly positive. It is at first tempting to extend the definition of entropy by replacing u by |u| in the
definition (3). However, the evolution equation for |u| would no longer satisfy a conservation equation
when u takes negative values. At this stage, we have concentrated on the entropy of probability densities
constructed from conservation equations.

Second-order nonlinear diffusion equations must have positive diffusivity in order to be
information-irreversible [18]. This is in accord with non-invertible evolution being the basis of the
second law of thermodynamics [25]. However, it is evident from (13) that some fourth-order diffusion
equations are information-irreversible even though they have negative fourth-order diffusivity G. It
is an interesting question, raised by a reviewer, of whether information-irreversibility of higher-order
equations is associated with well-posedness, as it is for second-order equations. This question is beyond
the scope of the present paper but it is worthy of future study.
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