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Abstract: In recent decades, the approach known as Finite-Dimension Thermodynamics 

has provided a fruitful theoretical framework for the optimization of heat engines operating 

between a heat source (at temperature Ths) and a heat sink (at temperature Tcs). We will 

show in this paper that the approach detailed in a previous paper [1] can be used to 

analytically model irreversible heat engines (with an additional assumption on the linearity 

of the heat transfer laws). By defining two dimensionless parameters, the intensity of 

internal dissipation and heat leakage within a heat engine were quantified. We then 

established the analogy between an endoreversible heat engine and an irreversible heat 

engine by using the apparent temperatures (Tcs → T
λ,φ 

cs , Ths → T
λ,φ 

hs ) and apparent 

conductances (Kh → K
λ 

h , Kc → K
λ 

c ). We thus found the analytical expression of the 

maximum power of an irreversible heat engine. However, these apparent temperatures 

should not be used to calculate the conversion efficiency at the optimal operating point by 

analogy with the case of an endoreversible heat engine. 
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Nomenclature 

Variable Unit Description 

hsT  K Temperature of heat source 

csT  K Temperature of heat sink 

hT  K Hot side temperature of heat engine 

cT  K Cold side temperature of heat engine 

scT  K Cutoff temperature of heat engine 

hsS�  W/K Entropy flow rate transferred at heat source  

csS�  W/K Entropy flow rate transferred at heat sink 

S�  W/K Entropy flow rate involved in reversible energy conversion 

scS�  W/K Cutoff entropy flow rate 

oS�  W/K Optimal entropy flow rate 

λK  W/K Internal thermal conductance of heat engine 

lK  W/K Conductance of heat leakage between heat source and heat sink 

hK  W/K Global thermal conductance of heat exchanger at hot side 

cK  W/K Global thermal conductance of heat exchanger at cold side 

scK  W/K Equivalent thermal conductance 
exσ�  W/K Rate of total entropy generation within exo-reversible heat engine 
ex
λσ�  W/K Rate of entropy generation related to internal heat transfer 
ex
ϕσ�  W/K Rate of entropy generation related to internal dissipation 

hsQ�  W Thermal power supplied by heat source 

csQ�  W Thermal power received by heat link 

hQ�  W Thermal power exchanged between heat source and heat engine 

cQ�  W Thermal power exchanged between heat sink and heat engine 

λQ�  W Internal heat leakage  

lQ�  W External heat leakage between heat source and heat link 

scQ�  W Cutoff thermal power  

Φ  W Internal dissipation within heat engine 

hq�  W Input thermal power of converter 

cq�  W Output thermal power of converter 

W�  W Output mechanical power of heat engine 

oW�  W Maximum mechanical power of heat engine 

1η  -- Energy conversion efficiency  

oη  -- Energy conversion efficiency at optimal operating point of heat engine 

Cη  -- Carnot efficiency 
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Variable Unit Description 

CNCAη  -- Chambadal-Novikov-Curzon-Ahlborn efficiency 

ZT  -- Figure of merit of thermoelectric material at temperature T 
ϕ  -- dimensionless number of internal dissipation within heat engine 

λ  -- dimensionless number of internal heat loss within heat engine 

hf  -- Distribution parameter of internal dissipation at hot side  

cf  -- Distribution parameter of internal dissipation at cold side 
ϕF  WK /2  Internal “resistance” of heat engine 

F
φ 

load WK /2  External “resistance” of heat engine 

R Ω  Internal electric resistance of thermoelectric generator  

A 2
m  Heat exchange surface  

U 2// mKW  Heat exchange coefficient 

I A Electric current of thermoelectric generator 

α  V/K Coefficient of Seebeck 

0U  V Open circuit voltage of thermoelectric generator 

1. Introduction 

In recent decades, the approach known as Finite-Dimension Thermodynamics has provided a 

fruitful theoretical framework for the optimization of heat engines operating between a heat source  

(at temperature Ths) and a heat sink (at temperature Tcs) [2–15]. The main idea of this approach is the 

coupling of a converter with two heat exchangers of finite dimension which connect the converter to 

thermostats. In other words, in the framework of Finite-Dimension Thermodynamics, we take into 

account at least the external irreversibilities (Figure 1). This approach was initiated independently by 

Chambadal [16] and Novikov [17] in 1957 and then clarified by Feidt [18] and others [19–23]. The 

simple case where only the external irreversibilities related to external heat transfer between thermostats 

and converter are taken into account corresponds to the case that we call an “Endoreversible  

Heat Engine”. The most remarkable result of this theoretical case (with an additional assumption  

on the linearity of the laws of heat transfer) is the Chambadal–Novikov–Curzon–Ahlborn efficiency  

ηCNCA = 1 − √Tcs/Ths aobtained at the optimal operating point where the output mechanical power is 

maximized. This efficiency, like that of the ideal Carnot engine ηC = 1 − Tcs/Ths, depends only on the 

temperatures of heat source and heat sink.  

There has been much discussion about the energy conversion efficiency at the optimal operating 

point of an endoreversible heat engine and an exo-reversible heat engine [24–35]. In particular, 

Apertet et al. [28] developed an empirical model of a thermoelectric generator and then compared the 

impact of internal and external irreversibilities on the conversion efficiency at the optimal point where 

the electrical power is maximized. They showed that the Chambadal–Novikov–Curzon–Ahlborn 

efficiency ηCNCA is only available for endoreversible heat engines, whereas the Schmiedl-Seifert efficiency 

ηSS [27] applies only to exo-reversible heat engines where the irreversibilities are fully internal. In 

another paper, Apertet et al. [29] studied the conversion efficiency at maximum power of a system 

composed of two thermoelectric generators thermally connected in series but electrically independent. 

By neglecting the heat loss within the thermoelectric generators, they showed that the optimum 
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condition for maximum power is not unique but depends on the combination of the electrical load 

resistances of each generator. 

Figure 1. Heat engine classification according to internal and external irreversibilities. 
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In this paper, we will firstly recall the notion of an Exo-reversible Heat Engine where only the 

internal irreversibilities are taken into account [36,37], and then by applying a new approach [1] based 

on the association of Finite-Dimension Thermodynamics and the Bond-Graph approach [38,39], we 

give the analytical expressions of the optimal operating point of an Irreversible Heat Engine where the 

energy conversion is accompanied by irreversibilities related to internal heat leakage and internal 

dissipation. An application of this approach to a thermoelectric generator [40,41] allows one to 

optimize the design of the machine and express the energy recovery potential based on the physical 

parameters of the system. 

We chose the optimization criterion based on the maximum mechanical power [11,42,43] as it is a 

relevant criterion for heat recovery systems in which the heat source is considered “free” such as the 

exhaust gas of a motor vehicle. These heat recovery systems (ORC system [44,45], thermoelectric 

generator [40,41]) are potentially interesting in view of the technical solutions designed to reduce the 

TCO (Total Cost of Ownership) of vehicles and greenhouse gas emissions. 

2. Modeling of Exo-Reversible Heat Engine at Steady State 

Figure 2 shows the Bond-Graph diagram of an exo-reversible heat engine where only the internal 

irreversibilities are taken into account. We consider two sources of irreversibilities here: internal 

dissipation and heat leakage.  

In the case of exo-reversible heat engine, we assume that there is no heat leakage between 

thermostats and that the thermal conductances between the heat engine and the thermostats are infinite. 

As a result, there is no thermal gradient between the machine and the thermostats (Th = Ths, Tc = Tcs), 

which means that the entropy generation in these conductances is zero. In fact, the rate of entropy 

generation by heat transfer is given by: 
2

21

KT

Q

T
Q

�
�� −=








∆⋅=σ . Since the thermal power transferred Q�  is 

finite and the thermal conductance K  is infinite, the rate of entropy generation is zero. 
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Figure 2. Bond-Graph diagram of an exo-reversible heat engine at steady state. 
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By convention, the arrows next to the flow variables indicate the positive direction of power 

transfer. For example, the entropy flow rate from the heat source to the exo-reversible heat engine is 
the term hsS�  while the entropy flow rate from the exo-reversible heat engine to the heat sink is the term 

csS�  (Figure 2). To remain consistent with the case of the endoreversible heat engine that we detailed in 

another article [1], we call S�  the entropy flow rate involved in reversible energy conversion and we 

use it as control variable of the exo-reversible heat engine. Similarly, we keep the same notation for the 
energy flow rates at the border of the machine: ch QQ �� ,  for the thermal powers at heat source and heat 

sink and ch QQW ��� −=  for the output mechanical power (Figure 3).  

To simplify the problem in order to obtain analytical solutions, we make the following assumptions: 

• The temperatures of heat source and heat sink are constant (Ths and Tcs). 

• The energy conversion is a reversible process (conservation of entropy flow rate  

S�  � ,
h hs c cs

q ST q ST= =� �� � ). 

• The law of heat transfer is linear (constant conductance Kλ). 
• The internal dissipation Φ depends only on the control variable S� : ( )S�Φ=Φ . This assumption 

can be justified when the entropy flow rate S�  involved in reversible energy conversion 

completely defines the operating point of the machine. Moreover, in the case of a 

thermoelectric generator where the internal dissipation is related to the Joule effect, we have: 
22 ,. SF

S
IIR �

�
ϕ=Φ⇒

α
−==Φ , 

2α
=ϕ R

F  where R is the electric resistance of the thermoelectric 

generator and α the Seebeck coefficient. 
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Figure 3. Power balance of an exo-reversible heat engine. 
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2.1. Energy Balance at Steady State 

With the assumptions of steady state and linearity of the laws of heat transfer, we obtain the 

following equations (cf. Figure 3): 

( )cshsλλ TTKQ −=�  (1)  

Φ−+= λ hhh fQqQ ���  (2)  

Φ++= λ ccc fQqQ ���  (3)  

( ) Φ−−=−= chch qqQQW �����  (4)  

where fc and fh are two coefficients which determine the distribution of the internal dissipated power Φ 

between the hot and cold sides (fc + fh = 1). To simplify our problem, we make an additional 

assumption that the internal dissipated power Φ  is proportional to the square of the entropy flow rate 

S�  (Joule friction): 

2SF �ϕ=Φ  (5)  

where Fφ is the internal “resistance” assumed constant. We then obtain the expressions of the thermal 
powers ch QQ �� , , the output mechanical power W�  and the energy conversion efficiency η1 of the  

exo-reversible heat engine in terms of entropy flow rate S�  (cf. Figure 2): 

( ) 2SFfTSTTKQ hhscshsh
��� ϕ

λ −+−=  (6) 
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( ) 2SFfTSTTKQ ccscshsc

��� ϕ
λ ++−=  

( ) 2SFTTSW cshs
��� ϕ−−=  

(7) ( )
( ) 2

2

1
SFfTSTTK

SFSTT

Q

W

hhscshs

cshs

h
��

��

�

�

ϕ
λ

ϕ

−+−

−−
==η  

When we vary the entropy flow rate S� , the operating point of the machine moves. Relation (7) 

forms the parametric equations of the operating curve of the exo-reversible heat engine that we are 
going to study in the [W� , 1η ] diagram (cf. Figure 4). 

Figure 4. Operating curve of an exo-reversible heat engine.  

 

2.2. Determination of the Maximum Mechanical Power and the Associated Efficiency 

The range of variation of the entropy flow rate S�  is implicitly defined by the inequality ( ) 0W S ≥�� . 

We immediately obtain the cutoff entropy flow rate ex
scS� , a nontrivial solution of ( ) 0W S =�� : 

ex hs cs
sc

T T
S

F
φ

−
=�  (8)  

By deriving the mechanical power given by Equation (7) with regard to the entropy flow rate 

involved in the energy conversion S� , we easily deduce the expression of the optimal entropy flow rate 
ex

o
S�  for which we obtain the maximum power of the machine: 

SFTT
Sd

Wd
cshs

�

�

�
ϕ−−= 2  �

22

ex
ex sccshs
o

S

F

TT
S

�
� =

⋅

−
=

ϕ
 (9)  

we note that the optimal entropy flow rate ex
oS�  is equal to half of the cutoff entropy flow rate ex

sc
S�  in 

the case of an exo-reversible heat engine which recalls a well-known result in the field of 

thermoelectric conversion [46]. By injecting the optimal entropy flow rate in (7), we obtain the 

expression of maximum output power of the exo-reversible heat engine: 

( )
2

ex 2

4
hs cs ex

o o

T T
W F S

F

φ

φ

−
= =

⋅
��  (10)  
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Equation (10) shows that the optimal operating point corresponds to the case where the load 

resistance defined by 
2load

W
F

S

φ =
�

�
 is equal to the internal resistance Fφ. This is again a well-known result 

in the field of thermoelectric conversion [46]. The optimal electric current is defined by: 
α

=
ex

ex o
o

S
I

�

 

where α is the Seebeck coefficient. 

The energy conversion efficiency of the exo-reversible heat engine at the optimal operating point is 

lower than the Carnot efficiency: 

( )
c

hs
hcc

c
o

T

FK
ff

η<

+η−++

η
=η

ϕ
λ

ex

411

 
(11)  

It should be noted that in the case of an exo-reversible heat engine, the internal thermal conductance 

Kλ does not affect the maximum output power but the associated energy conversion efficiency  

(cf. right-hand diagram on Figure 4). 

From Figure 2, we can deduce the expressions of the rate of entropy generation related to internal 
dissipation ex

ϕσ�  and heat leakage ex
λσ�  in terms of entropy flow rate S� : 

2SF
T

f

T

f

T

f

T

f
SS

cs

c

hs

h

cs

c

hs

h
ch

ex ����
ϕ

ϕϕϕ 









+=

Φ
+

Φ
=+=σ  

(12)  
( )

hscs

cshs

hscs
hc

ex

TT

TT
K

T

Q

T

Q
SS

2−
=−=−=σ λ

λλ
λλλ

��
���  

The rate of entropy generation related to internal dissipation ex
ϕσ�  is proportional to the square of the 

entropy flow rate involved in the energy conversion S� . At point (A) defined by a zero entropy flow 

rate, this term is thus zero (cf. Figure 5). The rate of entropy generation related to heat leakage ex
λσ�  is 

constant. We can then express the rate of total entropy generation exσ�  within the exo-reversible heat 

engine in the form:  

( )ξ+σ=σ+σ=σ λϕλ 1exexexex
����  with ( )

( )
2

2
S

TTK

FTfTf

cshs

hsccsh
ex

ex

�

�

�

−

+
=

σ

σ
=ξ

λ

ϕ

λ

ϕ  (13)  

Figure 5. Rates of entropy generation within an exo-reversible heat engine. 
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At point (O), the ratio ξo is equal to ( )
ϕ

λ

+
⋅

FK

TfTf hsccsh

4

1  which in the case of a thermoelectric 

conversion, represents a quarter of the figure of merit ZT at temperature (fhTcs + fcThs). 

3. Modeling of an Irreversible Heat Engine at Steady State 

Figure 6 shows the Bond-Graph diagram at steady state of an irreversible heat engine which is built 

from the exo-reversible heat engine detailed in the previous section, by adding the finite constraint of 

the conductances connecting the heat engine to heat source and heat sink. As above, we assume that 

the overall conductances of the heat exchangers Kh and Kc are constant. 

Figure 6. Bond-Graph diagram of an irreversible heat engine at steady state. 

 
 

3.1. Power Balance at Steady State 

From Figures 6 and 7, the power balance can be written as: 

2SFfQTSfQqQ hhhhh
������ ϕ

λλ −+=Φ−+=  
(14)  

2SFfQTSfQqQ ccccc
������ ϕ

λλ ++=Φ++=  

with the laws of heat transfer: 

( )hhshh TTKQ −=� , ( )csccc TTKQ −=� , ( )ch TTKQ −= λλ
�  (15)  
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The output mechanical power can thus be written as (Figure 6):  

( ) ( ) 2SFTTSqqQQW chchch
������� ϕ−−=Φ−−=−=  (16)  

note that the expression (16) does not enable to give the function ( )SW ��  which is requisite to plot the 

operating curve of the heat engine, because the temperatures Th and Tc depend implicitly on the 

operating point, as we shall see below. 

Figure 7. Energy balance of an irreversible heat engine. 

 
 

3.2. Analytical Expressions of the Operating Point 

By eliminating the thermal powers hQ� , cQ�  and λQ� , between the laws of heat transfer (15) and the 

thermal energy balances (14), we obtain a linear system of two equations with temperatures Tc and Th 

as unknowns and the entropy flow rate S�  as a parameter which is similar to that in [47]: 

( ) ( )SBTSA �� =⋅ , with 







=

c

h

T

T
T  

and ( ) 








−+−

−++
=

λλ

λλ

SKKK

KSKK
SA

c

h

�

�
� , ( )













+

+
=

ϕ

ϕ

2

2

SFfTK

SFfTK
SB

ccsc

hhsh

�

�
�  

(17)  

from the solution of the linear system (17) which expresses the temperatures Tc and Th as a function of 

the entropy flow rate S� , we can calculate all the thermal powers from the laws of heat transfer (15), 

which allows us to express the output mechanical power based on the entropy flow rate (16). 
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3.3. Analysis of Effects of Internal Dissipation 

We assume here that the internal thermal conductance Kλ is zero (no heat leakage within the heat 

engine). In this case, the matrix of the linear system (17) is diagonal. The solution is immediate: 

( )
SK

SFfTK
ST

h

hhsh
h �

�
�

+

+
=

ϕ 2
, ( )

SK

SFfTK
ST

c

ccsc
c �

�
�

−

+
=

ϕ 2
 (18)  

by injecting the expressions of (18) in Equations (15) and (16), we obtain the expressions of the 
thermal powers hQ� , cQ�  and the output mechanical power W� as a function of the entropy flow rate S� : 

( )
SK

SFfKSTK
SQ

h

hhhsh
h �

��
��

+

−
=

ϕ 2
, ( )

SK

SFfKSTK
SQ

c

cccsc
c �

��
��

−

+
=

ϕ 2
 

( ) ( ) ( ) ( ) SFfKfKS
SK

FfKTK

SK

FfKTK
SW cchh

c

cccsc

h

hhhsh ��

��

�� ϕ
ϕϕ

−−














−

+
−

+

+
=  

(19)  

The nodal approach used here does not enable the distribution of the internal dissipated power Φ 

between the hot side (fh) and the cold side (fc) to be determined. The simplest hypothesis (and also the 

most widely used) is to divide this dissipated power equally between the hot side and the cold side  

«
2

1
== ch ff ». However, given the arbitrary nature of this hypothesis, we prefer another hypothesis 

which allows us to cancel the last term in expression (19). Given the implicit relation « 1=+ hc ff »,  

we obtain: 

sccchh KfKfK ==  with 
hc

hc
sc

KK

KK
K

+
=  (20)  

The conductance Ksc of Equation (20) corresponds to the configuration where the two resistances 

1/Kh and 1/Kc are arranged in series. In the particular case where the two conductances Kc and Kh are 

equal, we have Kc = Kh = 2Ksc which leads to «
2

1
== ch ff ». Finally, we obtain an expression of the 

output mechanical power similar to that of the case of an endoreversible heat engine [1] where the 

temperatures of the heat source and the heat sink are virtually increased by the same amount  

[Equation (22)]: 

( ) S
SK

TK

SK

TK
SW

c

csc

h

hsh �

��

��















−
−

+
=

ϕϕ

 with: (21)  

schshs
TTT ⋅ϕ+=ϕ  and sccscs TTT ⋅ϕ+=ϕ  

with 
sc

sc

T

FK ϕ

=ϕ  (dimensionless number) 
(22)  

The expression of the output mechanical power (21) is analogous to the case of an endoreversible 

heat engine on condition that we work with the “apparent” temperatures of heat source and heat sink 
given by (22). In this case, it concerns an upward translation of these temperatures ( hshs

TT ≥ϕ , cscs TT ≥ϕ  

and cshscshs
TTTT −=− ϕϕ ). 
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We immediately obtain the cutoff entropy flow rate ϕ

scS� , a nontrivial solution of ( ) 0=SW �� : 

ϕ
ϕ =

sc

sc
sc

T

Q
S

�
�  

with ( )cshsscsc TTKQ −=� , 
hc

hshcsc
sc

KK

TKTK
T

+

+
=  and ( ) scsc TT ⋅ϕ+=ϕ 1  

(23)  

The internal dissipation increases the cutoff temperature compared to the case of the endoreversible 

heat engine but does not modify the heat flow rate [cf. Equation (23)]. As a result, the internal 

dissipation reduces the range of variation of the entropy flow rate S�  (cf. Figure 8). 

Figure 8. Deformation of the operating curve of heat engine in the presence of  

internal dissipation. 

 

By deriving the expression (21) regarding the entropy flow rate S� , we obtain an expression similar 

to that obtained in the case of an endoreversible heat engine [1] where the temperatures of the heat 

source and the heat sink have been replaced by their apparent values [cf. Equation (22)]: 

22

















−
−

















+
=

ϕϕ

SK

TK

SK

TK

Sd

Wd

c

csc

h

hsh

���

�

 (24)  

we immediately deduce the expression of the optimal entropy flow rate: 

ϕϕ

ϕϕ

ϕ

+









−

=

hshcsc

cshshc

o

TKTK

TTKK

S�  (25)  

Finally, by injecting ϕ
oS�  in (21), we obtain the expression of the maximum output mechanical 

power by using the apparent temperatures ϕ
hs

T  and ϕ
csT : 

2








 −= ϕϕϕ
cshssco TTKW�  (26)  
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we can show that despite the conservation of the difference of temperatures ( cshscshs

TTTT −=− ϕϕ ), the 

“thermal potential” 
2








 −=Θ ϕϕϕ
cshs

TT  involved in the expression of the maximum power (26) is lower 

than that of the endoreversible heat engine ( )2cshs TT −=Θ . In fact, by making a first-order Taylor 

expansion of ϕΘ  with respect to the term scTϕ , we obtain the following expression: 
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T  (27)  

By studying the direction of the variation of the function ( ) 2
1

−+=
x

xxf  where 
hs

cs

T

T
x = in the range 

[0, 1], we can easily demonstrate the inequality 02 ≥−+
cs

hs

hs

cs

T

T

T

T . 

Moreover, the derivative of the output mechanical power (24) at the origin point is equal to the 

difference of temperatures of thermostats. According to the expressions of (22), we obtain the 
following relationship: cshscshs

TTTT −=− ϕϕ  which shows that the slope at the origin of mechanical power 

is not affected by the internal dissipation. Similarly, one can demonstrate that the slope at the origin of 

the thermal power hss
h T

S

Q
=

∂

∂
=0��

�

 [Equation (19)] is not affected by the dissipation either. This explains 

why the energy conversion efficiency of the machine at 0=S�  is equal to the Carnot efficiency 
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(cf. Figure 8).  

It remains to study the impact of the internal dissipation on the energy conversion efficiency. From 

Equation (19), we obtain the energy conversion efficiency as a function of the entropy flow rate S� : 

( ) 
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SK
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schsh
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�
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�
� 11  (28)  

At point (A) of zero entropy flow rate, the energy conversion efficiency is equal to the Carnot 

efficiency, as shown above. Therefore, one should not use the apparent Carnot efficiency 
ϕ

ϕ

−

hs

cs

T

T
1  to 

calculate the energy conversion efficiency at point (A). 
At point (B) where the entropy flow rate is equal to the cutoff entropy flow rate ϕ

scS�  given by the 

expression of (23), the conversion efficiency is naturally zero. For the optimal point (O), by injecting 
the optimal entropy flow rate ϕ

oS�  in the expression (28), we obtain: 

ϕϕ

ϕ
ϕϕ

−
η=η

GT

T

hs

hs
CNCAo  with 

ϕ

ϕ
ϕ −=η

hs

cs
CNCA

T

T
1 and 

ϕϕ

ϕ
ϕ

+
=

hshcsc

hc

TKTK

FKK
G  (29)  

It may be noted that this associated efficiency differs from the apparent CNCA efficiency obtained 
by using the apparent temperatures of heat source ϕ

hs
T  and heat sink ϕ

csT  ( ϕϕ η≥η
CNCAo ).  

In addition, one should note that contrary to the endoreversible heat engine, the optimal efficiency 
ϕηo  associated to the maximum power depends not only on the temperatures of heat source and heat 

sink but also the conductances Kc, Kh and the internal “resistance” Fφ.  
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Finally the operating curve of the heat engine in the presence of internal dissipation in the [W� , 1η ] 

diagram deforms according to the diagram on the right of Figure 8. 

3.4. Analysis of Effects of Internal Heat Leakage 

We will now analyze the effect of the internal heat transfer on the performance of the machine (Kλ > 0). 

We assume here that there is no internal dissipation (Fφ = 0). According to the linear system (17), the 

internal heat transfer creates a coupling term between the temperatures Tc and Th [non-zero terms on 

the diagonal of matrix A (17)]. To solve this system, we will first simplify the matrix and calculate the 

determinant of the matrix in the form: 

( ) ( )( )SKSKS ch
��� -λλ +=∆  (30)  

A simple calculation gives us the apparent conductances λ
cK  and λ

hK by reference to the 

endoreversible heat engine [1]: 

λ
λh

λ
h KKK += , λ

λc
λ
c KKK += , with [ ]1λ21

2

KK
K hcλ
λ −+

+
=  and 

hc

λ

KK

K2
λ

+
=  (31)  

The inversion of the linear system (17) then makes it possible to express the temperatures Tc and Th 

in terms of S� : 

( ) ( ) ( )
( )( )

( ) ( ) ( )
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 (32)  

We can now express the output mechanical power as a function of the entropy flow rate S�  from the 

relations (32) and (16) which becomes here ( )STTW ch
�� −= (under the assumption Fφ = 0): 
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with: 
λ
λ

λ
λλ

+

+
=

KK

TKTK
T

h

schsh
hs , 

λ
λ

λ
λλ

+

+
=

KK

TKTK
T

c

sccsc
cs  (34)  

As in the previous case, we again obtain the apparent temperatures of heat source and heat sink, 

which brings us back to the case of the endoreversible heat engine. However, it should be noted that 

the expression (33) has a factor 
λ+ 21

1  which is equal to 1 in the case of the endoreversible heat engine.  

Unlike the previous case (analysis of effects of internal dissipation), we observe here an “apparent” 

increase in the temperature of the heat sink and an “apparent” decrease in the temperature of the heat 

source and finally an “apparent” decrease in the pinch between heat source and heat sink: 

cscs TT ≥λ  hshs TT ≤λ , � cshscshs TTTT −≤− λλ  (35)  

which reflects a predictable degradation of the output mechanical power compared to the case of an 

endoreversible heat engine.  

From the expression of (33), one can determine the operating range of the machine by calculating 
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the cutoff entropy flow rate λ

scS� , a nontrivial solution of the equation ( ) 0=SW �� : 

λ

λ
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(36)  

We can easily demonstrate the following equalities from (31): 
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=

λ+
= λλ

21
,

21
sc

sc
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Q
Q

T
T

�
� � scsc SS �� =λ  (37)  

We conclude that the cutoff entropy flow rate is not affected by the internal heat leakage even 
though it corresponds to a smaller cutoff thermal power ( scsc QQ �� ≤λ ). This confirms the interest of 

selecting the entropy flow rate S�  involved in reversible energy conversion as the control variable of 

the heat engine. 

By deriving the mechanical power (33) regarding the entropy flow rate S� , we again obtain an 

analogous expression by reference to the case of an endoreversible heat engine by using apparent 

conductances and apparent temperatures (with a factor 
λ+ 21

1 ): 
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 (38)  

which makes it possible to calculate the optimal entropy flow rate λ
oS�  [solution of (38)]:  
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TKTK

TTKK

S�  (39)  

The expression of the optimal entropy flow rate is perfectly analogous to the case of an 

endoreversible heat engine when we use the “apparent” conductances and temperatures. 
Finally, by injecting the optimal entropy flow rate λ

oS�  in the expression of (33), we obtain the 

expression of the maximum output mechanical power λ
oW�  as a function of different physical parameters: 

2








 −= λλλλ
cshssco TTKW�  with 
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Given the inequality (35), we immediately deduce the following inequality Θλ ≤ Θ where Θλ is 

defined by 
2








 −=Θ λλλ
cshs TT . Finally, we have two contradictory effects: a dominant effect related to 

the temperatures Θλ which degrades the mechanical power and a second effect of the overall thermal 
conductance which reduces the degradation « scsc KK ≥λ ». In fact, from Equation (38) we prove that the 

slope at the origin point of the curve of mechanical power ( ) cshs
cshs TT

TT
S

Sd

Wd
−≤

λ+

−
==

λλ

21
0�

�

�

 is lower than 

that of the endoreversible heat engine λ = 0. And as the cutoff entropy flow rate is not modified by the 

internal heat leakage, the curve of mechanical power is reduced by the heat leakage (cf. Figure 9), as is 
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the maximum power ( oo WW �� ≤λ ). 

By using the laws of heat transfer, we can express the energy conversion efficiency as a function of 
the temperatures ( )STc

�  and ( )STh
�  given by (32): 

( ) ( ) ( )
( ) hhhs

ch

h K

S

STT
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Q
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S

�

�

��

�

�
� ⋅

−

−
==η1  (41)  

Figure 9. Deformation of the operating curve of heat engine in presence of internal heat 

leakage in the case where Kh ≥ Kc. 

 

At point (A) defined by a zero entropy flow rate, the thermal power received by the engine from the 
heat source is equal to the internal heat loss: λ= QQh

��  [cf. Equation (14)]. We can thus write at the point 

(A) the following relationship with the assumption 0>λK : ( ) ( )
( ) λλλ

=
−

−
=≈≈η

K

S

TTK

TTS

Q

W
S

ch

ch
��

�

�
� 01 . As a result, 

unlike the case of an endoreversible heat engine, even the case including internal dissipation, the 

energy conversion efficiency at point (A) in presence of internal heat leakage is zero. The heat engine 

behaves at this point as three thermal resistances in series with the only effect that the thermal power 

λch QQQ ��� ==  is transferred from heat source to heat sink without any production of mechanical power. 

The right-hand diagram on Figure 9 shows the deformation of the operating curve of the heat 
engine in presence of internal heat leakage in ],[ 1ηW� . As the energy conversion efficiency is zero at 

point (A), there exists a point (R) between (A) and (O) for which the energy conversion efficiency is 

maximum. As a result, the optimum operating range is limited by the portion [R, O] [48,49]. 

3.5. Analysis of Combined Effects of Internal Dissipation and Heat Leakage 

Here we have a nonzero leakage conductance λK  and a nonzero dissipation coefficient F
φ. By 

applying the same approach as for the previous two cases, we again obtain an expression of the output 

mechanical power similar to the case of the endoreversible heat engine: 
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( ) schshs

TTT ϕλλϕλ ξ+ϕ+= ,, , ( ) sccscs TTT ϕλλφλ ξ+ϕ+= ,,  

with: 
scT

FK ϕ
λϕλ =ξ ,  (dimensionless number) 

(43)  

We see here that the apparent temperatures depend on the two parameters λ  and ϕ  with a coupling 

term given by the dimensionless number ϕλξ , ( )
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, . In the case of a thermoelectric 

conversion, we have 
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=ξ λϕλ which is the inverse of figure of merit of thermoelectric 

material at temperature Tsc. 
The cutoff entropy flow rate ϕλ,

scS�  is the nontrivial solution of (42): 
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we can easily demonstrate the following relationship: 

( ) λϕλλϕλ ≥ξ+ϕ+= scscscsc TTTT ,,,  and λϕλ = scsc QQ �� ,   

� scscsc SSS ��� =≤ λϕλ,  
(45)  

finally, by deriving expression (42) regarding the entropy flow rate S� , we obtain: 
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we then have the expression of the optimal entropy flow rate ϕλ,
oS�  which is strictly analogous to the 

previous cases: 
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Finally, by injecting this optimal entropy flow rate ϕλ,
oS�  in (42), we obtain the maximum output 

mechanical power ϕλ,
oW�  in terms of different physical parameters: 

2
,,,







 −= ϕλϕλλϕλ
cshssco TTKW�  (48)  

here we have also an analogous expression compared with the endoreversible heat engine provided 
that the apparent temperatures and the apparent overall conductance λ

scK  given by Equation (40) are 

used. Regarding the energy conversion efficiency, we combine the two effects of internal dissipation 

and heat transfer, and in particular a zero efficiency at point (A) as shown in Figure 10.  

Figure 10 illustrates the separate and combined effects of internal dissipation and heat leakage on 

the operating curve of the irreversible heat engine. In particular, on the right-hand figure, we plotted 

the « CNCA » efficiencies obtained by using the apparent temperatures of heat source and heat sink 
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(horizontal curves). In conclusion, these CNCA efficiencies are not comparable to the real optimal 

efficiencies except in the case of endoreversible heat engines. 

Figure 10. Deformation of operating curves of heat engine in presence of internal 

dissipation alone (red); heat leakage alone (green) and combined effects (purple). 
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The parameter ξλ,φ alone cannot be used to characterize the performance of a heat engine. For a 

given ξλ,φ, the maximum output power may be different according to the values of λ and φ 

(cf. Figure 11). As a result, in the case of thermoelectric conversion, we should not base all the 

research of thermoelectric materials only on the figure of merit ZT. 

Figure 11. Deformation of operating curves for one given ξλ,φ. 

 

Starting from the irreversible heat engine detailed above (cf. Figure 7), we add an external thermal 
conductance lK  assumed constant to represent the heat leakage between heat source and heat  

sink (cf. Figure 12). 
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Figure 12. Irreversible heat engine with external heat leakage between thermostats. 
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According to Figure 12, the power balance can be written as: 

lhhs QQQ ��� += , lccs QQQ ��� +=  

���� chcshs QQQQW ����� −=−=  
(46)  

we note that the external heat leakage does not affect the mechanical power. The results obtained 
above concerning the expressions of optimal entropy flow rate ϕλ,

oS� , cutoff entropy flow rate ϕλ,
scS�  and 

maximum output power ϕλ,
oW�  remain valid [cf. Equations (44), (47), (48)]. However, the external  

heat leakage reduces the overall energy conversion efficiency of the system defined as 

( ) ( )
( )

( )
( ) lhhs

sy

QSQ

SW

SQ

SW
S

���

��

��

��
�

+
==η1 (cf. Figure 13).  

Figure 13. Operating curves of irreversible heat engine. 
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3.6. Optimal Allocation of Conductances 

The maximum output mechanical power in the case of an Endoreversible Heat Engine is given by 

the following expression which is a product of two terms. The first term Ksc is a function of the 

conductances Kh and Kc, and the second term Θ is a function of temperatures: 

Θ= sco KW� , 
hc

hc
sc

KK

KK
K

+
= , ( )2cshs TT −=Θ  (50)  

The term ( )2cshs TT −=Θ  represents the effect of the temperatures of heat source and heat sink on 

the maximum output power. This term is considerably lower than the difference of temperatures  

∆T = Ths − Tcs. For example, for Tcs = 300 K and Ths = 900 K, we have ∆T = 600 K and Θ = 161 K only! 

We can explain the disparity between the factor Θ and the difference of temperatures ∆T by noting 

that the first one is proportional to the difference between the arithmetic average and the geometric 

average of the temperatures Ths and Tcs: 









−

+
=Θ hscs

hscs TT
TT

2
2  (51)  

For fixed temperatures Ths and Tcs, the single degree of freedom to increase the maximum output 

power is the constrained allocation of conductances Kh and Kc. One can imagine different types of 

constraints such as the total heat exchange area allocated [23]. By designating the overall heat transfer 

coefficients Uh and Uc, the total heat exchange area is given by: 

h

h
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c
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U

K

U

K
AAA +=+=  (52)  

to obtain the optimal allocation of conductances, we can use the method of Lagrange multipliers: 
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(53)  

In particular, if the heat exchange coefficients Uh and Uc are equal, the optimal allocation 

corresponds to the case of equipartition of conductances (cf. Figure 14). 

In presence of internal dissipation, the maximum output power is: 

ϕϕ Θ= sco KW� , ( )2sccsschs TTTT ⋅ϕ+−⋅ϕ+=Θϕ  (54)  

In the special case where the optimization constraint is the total conductance Kc + Kh = cst, we 

prove analytically (the calculations are heavy) that the internal dissipation has no effect on the optimal 

allocation of conductances by applying the method of Lagrange multipliers:  

( )hcsc KKKL +β+Θ= ϕ , 0=
∂

∂

cK

L , 0=
∂

∂

hK

L  � hc KK =  (55)  
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In presence of internal heat leakage, the maximum output power becomes: 

λλλ Θ= sco KW� , 
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Figure 14. Optimal allocation of conductances. 
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In the special case where the optimization constraint is the total conductance Kc + Kh = cst, the 
parameter λ and the conductance λ

λK  are constant. As a result, the conductance λ
scK  is maximum when 

the conductances Kc and Kh are equal. Finally, by taking into account the term Θλ (the calculations are 
heavy), it is shown that the output power λ

oW�  is maximized for a Kh slightly smaller than Kc. In the 

presence of internal dissipation and heat transfer, the result is intermediate, as shown in Figure 14.  

4. Conclusions and Perspectives 

The choice of selecting the entropy flow rate S�  involved in reversible energy conversion as the 

control variable of a heat engine has several advantages. We obtain, with a minimum of assumptions, a 

system of linear equations whose solution allows us to express all the variables (temperatures, thermal 

powers, mechanical power, etc.) as a function of the entropy flow rate S� . These analytical expressions 

associated with the analytical expression of the cutoff entropy flow rate enable the classical operating 

curves of the heat engine in 1[ , ]W η�  to be plotted. 

By defining two dimensionless parameters 
hc

λ

KK

K2
λ

+
=  and 

sc

sc

T

FK ϕ

=ϕ  where 
hc

hc
sc

KK

KK
K

+
= and 

hc

hshcsc
sc

KK

TKTK
T

+

+
= , we quantified the intensity of internal dissipation and heat leakage within a heat 

engine, and we then established the analogy between an endoreversible heat engine and an irreversible 
heat engine by using the apparent temperatures ( ϕλ→ ,

cscs TT , ϕλ→ ,
hshs TT ) and apparent conductances 

( λ→ hh KK , λ→ cc KK , λ→ scsc KK ) (cf. Table 1). We note that the apparent conductances are only affected 

by the internal heat leakage while the apparent temperatures are affected by both the internal 

dissipation and heat leakage. 



Entropy 2012, 14 1255 

 

Table 1. Analogy between endoreversible heat engine and irreversible heat engine. 

Heat Engine Classification Endoreversible Heat Engine Irreversible Heat Engine 

Cutoff entropy flow rate: 
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The analytical expression of cutoff entropy flow rate is very important for engineers seeking to 

define the operating range of the machine, and the optimal entropy flow rate indicates the operating 

point where we obtain the maximum potential of the system specified by the expression of the 

maximum output power. In the application of a thermoelectric generator, we deduced easily the 

optimal electric current 
α

=
ϕλ

ϕλ
,

, o
o

S
I

�

 for which the output electric power is maximized [50].  

However, these apparent temperatures should not be used to calculate the optimal energy 

conversion efficiency by analogy with the case of the endoreversible heat engine: 

ϕλ

ϕλ
ϕλϕλ −=η≠η

,

,
,, 1

hs

cs
CNCAo

T

T
. 

In addition, the analytical expression of the maximum output power makes it possible to calculate 

without difficulty, at least numerically, the optimal allocation of conductances depending on the 

chosen optimization constraint. The application of our approach to a thermoelectric generator shows 

that the figure of merit ZT alone should not be used to characterize the performance of the system. 
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