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Abstract:

 Graduation of data is of great importance in survival analysis. Smoothness and goodness of fit are two fundamental requirements in graduation. Based on the instinctive defining expression for entropy in terms of a probability distribution, two optimization models based on the Maximum Entropy Principle (MaxEnt) and Minimum Cross Entropy Principle (MinCEnt) to estimate mortality probability distributions are presented. The results demonstrate that the two approaches achieve the two basic requirements of data graduating, smoothness and goodness of fit respectively. Then, in order to achieve a compromise between these requirements, a new entropy optimization model is proposed by defining a hybrid objective function combining both principles of MaxEnt and MinCEnt models linked by a given adjustment factor which reflects the preference of smoothness and goodness of fit in the data graduation. The proposed approach is feasible and more reasonable in data graduation when both smoothness and goodness of fit are concerned.
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1. Introduction

Survival analysis is an important topic in actuarial science. Survival analysis has a long history and there are many kinds of approaches. The common approach to estimate the survival distribution is the parametric one, with which a theoretical survival distribution is specified and the parameters involved are determined by certain methods. There are a lot of different methods available in literatures, such as maximum likelihood estimators [1,2,3] and Bayesian estimators [4,5,6,7], etc. To our best knowledge, the choice of theoretical survival distributions or other prior distributions is difficult and critical for the implementation of these kinds of methods. In this paper, we will discuss how to utilize an entropy optimization approach to estimate mortality distribution based on the instinctive relationship between entropy and probability distribution.

Information-theoretic entropy, presented by Shannon in 1948 [8] and the entropy optimization principle was proposed by Jaynes in 1957 [9,10] and Kullback et al. (1951, 1959) [11,12], have widened the application area of entropy and transformed it from a measure of information into a tool of statistics inference. Generally speaking, entropy optimization includes the Maximum Entropy Principle (MaxEnt) and Minimum Cross Entropy Principle (MinCEnt). MaxEnt estimates a probability distribution based only on the known information, without adding any other subjective information. MinCEnt is used to estimate a probability distribution which is closest to the prior one by minimizing the cross entropy between the estimated and the prior one.

Based on the instinctive defining expression for entropy in terms of a probability distribution, this paper will first review the idea of the application of entropy optimization rules in mortality distribution estimation. Then, in consideration of the goodness of fit and smoothness requirements in data graduation, a new approach will be proposed, which tries to combine the MaxEnt and MinCEnt methods to assure the degree of goodness of fit and smoothness of the estimation by use of an adjustment factor.



2. Review of Entropy Optimization Principles

There are two basic approaches to estimate probability distributions by using the concept of entropy: Maximum Entropy Principle (MaxEnt) and Minimum Cross Entropy Principle (MinCEnt). MaxEnt was proposed by Jaynes in 1957 [9,10]. He thought that given just some mean values, there are usually an infinity of compatible distributions. MaxEnt encourages us to select the distribution that maximizes the Shannon entropy measure and is simultaneously consistent with the mean value constraints. This is a natural extension of Laplace's famous principle of insufficient reason, which postulates that the uniform distribution is the most satisfactory representation of our knowledge when we know nothing about the random variant except that each probability is non-negative and that the sum of the probabilities is unity.

Let Θ be a discrete random variable on the probability space  [image: Entropy 14 01306 i001], where  [image: Entropy 14 01306 i002] and [image: there is no content] which is unknown and need to be estimated by some known information denoted by [image: there is no content] such as mean value, variance, jth moment, etc. Mathematically, MaxEnt can be described as the following optimization model:



 [image: Entropy 14 01306 i003]



(1)




where H(P) is the entropy of a probability distribution P on Ω.
If there is a prior distribution of Θ, i.e., Q(Θ=θi)=qi, then MinCEnt can be used to get another estimated distribution which is statistically closest to the prior distribution under the same constraints as MaxEnt. MinCEnt can be modeled as:



 [image: Entropy 14 01306 i004]



(2)




where K(P,Q) is the cross entropy between the probability distribution P and Q.
The two model can be solved by Lagrangian approach [13]. The solutions are:



 [image: Entropy 14 01306 i005]



(3)




and:


 [image: Entropy 14 01306 i006]



(4)




where [image: there is no content] and [image: there is no content] are Lagrangian multipliers for each model above.


3. Data Graduating with Entropy Optimization Principles

Assume that there is a living group whose original population is l0. At time x(x > 0), the living population is denoted as [image: there is no content]. And we assume that lT = 0. Let [image: there is no content] be the death population from time x to x + 1, then:



[image: there is no content]



(5)




The value of dx usually can be obtained from observation. In survival analysis, qx is usually used to denote the mortality probability which means the probability for an individual not to live another year. The mortality probability is a basic parameter to construct a life table and has very important function in life insurance actuarial science. In real situations, it can be obtained from sample data and denoted as  [image: Entropy 14 01306 i007], which is:



 [image: Entropy 14 01306 i008]








It is easy to find that  [image: Entropy 14 01306 i009]. However,  [image: Entropy 14 01306 i007] is just an estimation of qx which has to be graduated to approximate the real mortality probability as closely as possible. This process is called graduation of data in life insurance.

Furthermore, the estimation of qx is based on the sample information, so we must utilize the information in sample fully and try our best to add as little extra information as possible. This may provide a reasonable foundation to use MaxEnt and MinCEnt. It should note that the mortality distribution does not meet the requirement of unity. Hence, in order to use MaxEnt and MinCEnt, let:



 [image: Entropy 14 01306 i010]



(6)




and we define it as death probability, which is the ratio of the death population in different age groups to the original population. It is easy to find that  [image: Entropy 14 01306 i011] can meet requirements of probability distribution, and it may be stated that:


 [image: Entropy 14 01306 i012]








Hence,  [image: Entropy 14 01306 i007], the estimation of qx, can achieved once  [image: Entropy 14 01306 i011] is determined.
Based on the sample information, the estimation of  [image: Entropy 14 01306 i011] can be described as:



 [image: Entropy 14 01306 i013]



(7)




where  [image: Entropy 14 01306 i007] is the estimation of  [image: Entropy 14 01306 i011], E1 is the mean value of sample data and Ej is the jth moment.
On the other hand,  [image: Entropy 14 01306 i011] can be viewed as a prior distribution of death probability, then a MinCEnt model can be established to estimation of  [image: Entropy 14 01306 i011] as:



 [image: Entropy 14 01306 i014]



(8)




The solution of Equations (7) and (8) can be achieved by using Lagrangian approaches [13]. The results are:



 [image: Entropy 14 01306 i015]



(9)




and:


 [image: Entropy 14 01306 i016]



(10)




where [image: there is no content] are Lagrangian multipliers.
To clarify the feasibility and properties of the above estimation methods, the above models will be applied to estimate the mortality distribution on experimental data taken from Ananda et al. [5].

Example: The following data (Table 1) are death times for 208 mice, which were exposed to gamma radiation. The data are divided into 14 groups by the time interval given in [5] and then we calculate the mortality distribution by the MaxEnt and MinCEnt model.

Table 1. Experimental data.


	Time Interval(x)
	Death Population (dx)
	Death Probability (  [image: Entropy 14 01306 i011])





	1
	3
	0.0144



	2
	3
	0.0144



	3
	6
	0.0288



	4
	6
	0.0288



	5
	16
	0.0769



	6
	14
	0.0673



	7
	25
	0.1202



	8
	20
	0.0962



	9
	32
	0.1530



	10
	25
	0.1202



	11
	27
	0.1298



	12
	13
	0.0625



	13
	11
	0.0529



	14
	7
	0.0337










With the MaxEnt and MinCEnt approach, Table 2 shows the data graduation results under different moment constraints (up to 5th), and they are plotted in Figure 1 and Figure 2 too.

Figure 1. Results of MaxEnt.



[image: Entropy 14 01306 g001 1024]





Figure 2. Results of MinCEnt.
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Table 2. Results of MaxEnt and MinCEnt.



	
Experiment Data

	
Results of MaxEnt(up to Ej)

	
Results of MinCEnt(up to Ej)




	
x

	
 [image: Entropy 14 01306 i011]

	
E1

	
E2

	
E3

	
E4

	
E5

	
E1

	
E2

	
E3

	
E4

	
E5






	
1

	
0.0144

	
0.0447

	
0.0074

	
0.0115

	
0.0131

	
0.0126

	
0.0144

	
0.0144

	
0.0144

	
0.0144

	
0.0144




	
2

	
0.0144

	
0.0478

	
0.0147

	
0.0177

	
0.0177

	
0.0180

	
0.0144

	
0.0144

	
0.0144

	
0.0144

	
0.0144




	
3

	
0.0288

	
0.0511

	
0.0264

	
0.0271

	
0.0258

	
0.0263

	
0.0288

	
0.0288

	
0.0288

	
0.0288

	
0.0288




	
4

	
0.0288

	
0.0546

	
0.0434

	
0.0407

	
0.0386

	
0.0389

	
0.0288

	
0.0288

	
0.0288

	
0.0288

	
0.0288




	
5

	
0.0769

	
0.0583

	
0.0648

	
0.0587

	
0.0570

	
0.0567

	
0.0769

	
0.0769

	
0.0770

	
0.0769

	
0.0770




	
6

	
0.0673

	
0.0624

	
0.0882

	
0.0806

	
0.0805

	
0.0797

	
0.0673

	
0.0673

	
0.0674

	
0.0674

	
0.0674




	
7

	
0.1202

	
0.0667

	
0.1094

	
0.1036

	
0.1058

	
0.1050

	
0.1202

	
0.1202

	
0.1203

	
0.1203

	
0.1204




	
8

	
0.0962

	
0.0712

	
0.1237

	
0.1230

	
0.1264

	
0.1265

	
0.0962

	
0.0962

	
0.0962

	
0.0963

	
0.0963




	
9

	
0.1538

	
0.0762

	
0.1274

	
0.1329

	
0.1353

	
0.1363

	
0.1538

	
0.1538

	
0.1538

	
0.1538

	
0.1538




	
10

	
0.1202

	
0.0814

	
0.1195

	
0.1288

	
0.1284

	
0.1293

	
0.1202

	
0.1202

	
0.1202

	
0.1202

	
0.1201




	
11

	
0.1298

	
0.0870

	
0.1022

	
0.1105

	
0.1076

	
0.1076

	
0.1298

	
0.1298

	
0.1297

	
0.1297

	
0.1297




	
12

	
0.0625

	
0.0930

	
0.0796

	
0.0827

	
0.0797

	
0.0789

	
0.0625

	
0.0625

	
0.0625

	
0.0624

	
0.0625




	
13

	
0.0529

	
0.0994

	
0.0565

	
0.0532

	
0.0527

	
0.0520

	
0.0529

	
0.0529

	
0.0529

	
0.0529

	
0.0529




	
14

	
0.0337

	
0.1063

	
0.0366

	
0.0290

	
0.0315

	
0.0321

	
0.0337

	
0.0337

	
0.0337

	
0.0337

	
0.0337




	
[image: there is no content]

	
0.3237

	
0.0432

	
0.0342

	
0.0334

	
0.0334

	
0.0000

	
0.0000

	
0.0000

	
0.0000

	
0.0000




	
 [image: Entropy 14 01306 i017]

	
0.0000

	
0.0000

	
0.0001

	
0.0001

	
0.0001

	
0.6184

	
0.6184

	
0.6184

	
0.6184

	
0.6184















Table 3 and Figure 3 are the comparison of results of MaxEnt (up to 5th moment) with results of maximum likelihood estimation (MLE) and Bayesian estimation (BE) method from [5].

Figure 3. Results of Different Graduation Approaches.



[image: Entropy 14 01306 g003 1024]






Table 3. Results of Different Graduation Approaches.



	
x

	
 [image: Entropy 14 01306 i011]

	
MaxEnt

	
MLE

	
BE






	
1

	
0.0144

	
0.0126

	
0.0311

	
0.0321




	
2

	
0.0144

	
0.0180

	
0.0168

	
0.0173




	
3

	
0.0288

	
0.0263

	
0.0244

	
0.0249




	
4

	
0.0288

	
0.0389

	
0.0349

	
0.0354




	
5

	
0.0769

	
0.0567

	
0.0491

	
0.0496




	
6

	
0.0673

	
0.0797

	
0.0676

	
0.0680




	
7

	
0.1202

	
0.1050

	
0.0901

	
0.0902




	
8

	
0.0962

	
0.1265

	
0.1144

	
0.1140




	
9

	
0.1538

	
0.1363

	
0.1351

	
0.1342




	
10

	
0.1202

	
0.1293

	
0.1437

	
0.1423




	
11

	
0.1298

	
0.1076

	
0.1310

	
0.1297




	
12

	
0.0625

	
0.0789

	
0.0953

	
0.0948




	
13

	
0.0529

	
0.0520

	
0.0501

	
0.0505




	
14

	
0.0337

	
0.0321

	
0.0165

	
0.0170




	
[image: there is no content]

	
0.0334

	
0.0756

	
0.0737




	
 [image: Entropy 14 01306 i018]

	
0.0001

	
0.0008

	
0.0007













From above results, it can be found that:


	(1)

	From Table 3, results of MaxEnt have smaller [image: there is no content] value(a measure of goodness of fit to original data and calculated by Euclidean distance) and  [image: Entropy 14 01306 i017] (a measure of smoothness by using 4th-moment of difference) than the results of MLE and BE approach. Hence, MaxEnt method of data graduating can be thought as a better method.



	(2)

	From Table 2, results of the MinCEnt approach are the same as the prior distribution, and the reason is that  [image: Entropy 14 01306 i011] and Ej are calculated from the experimental data. If  [image: Entropy 14 01306 i011] or Ej is given by other information, the results will be different from the prior distribution. However, from this extreme situation we can find that MinCEnt focuses on the goodness of fit in data graduation.



	(3)

	Comparing with the MinCEnt approach, the MaxEnt approach is better from the viewpoint of the smoothness of data graduation and is worse from the point of view of goodness of fit.







4. Data Graduating by Combining MaxEnt and MinCEnt

Smoothness and goodness of fit always are the most important consideration in graduation of data though many techniques have been developed. For example, the most widely used method until now, especially by North American actuaries for the construction of life tables, is the Whittaker-Henderson method of graduation. This method originates in the work of Bohlmann (1899) [14] and Whittaker (1923) [15], and contributions to the theory were made by Henderson (1924, 1925) [16,17], and others. The Whittaker-Henderson method gives the graduated values by minimizing the quantity:



 [image: Entropy 14 01306 i019]



(11)




where F and S are the weighted measure of goodness of fit to the original data and smoothness receptively.  [image: Entropy 14 01306 i020] is the prior of mortality,  [image: Entropy 14 01306 i021] is the estimated mortality, i.e., result of data graduation, and  [image: Entropy 14 01306 i022] is the  [image: Entropy 14 01306 i023] difference of  [image: Entropy 14 01306 i021] (usually  [image: Entropy 14 01306 i024] or higher).  [image: Entropy 14 01306 i025] is a weight coefficient and h is a positive adjustment factor between goodness of fit and smoothness. This method is widely used and has become a basic logic in graduation of data and many other approaches currently follow this lead. Generally speaking, the characteristics of different data graduation methods may lie on two sides, putting different emphasis on the goodness of fit and smoothness, and on how to measure smoothness and goodness of fit. Therefore, graduation of data can be looked as a bi-objective question. On one hand, the graduation results should be smooth and on the other hand they should be close to the original data. From the above section, it has shown that results of MaxEnt data graduation is smoother while those of MinCEnt is closer to the original data, so we propose a new approach of data graduation which can combine the both methods as in the following model:


 [image: Entropy 14 01306 i026]



(12)




where [image: there is no content] is a given adjustment factor between smoothness and goodness of fit. When [image: there is no content], it is the MinCEnt approach, and when [image: there is no content] it is the MaxEnt approach. Because Equations (7) and (8) are solvable, it is easy to conclude that Equation (12) is solvable too.
In the above model, MaxEnt is proposed as a measure of smoothness and MinCEnt is proposed as a measure of goodness of fit. These two measures are integrated with a linear coefficient [image: there is no content] to reflect different weights on smoothness and goodness of fit. The reason to adopt a convex combination of smoothness and goodness of fit is to assure convexity of the objective function G and solvability of the proposed model. In reality, how to decide the appropriate weight between smoothness and goodness of fit is a highly controversial topic. We propose that the value of [image: there is no content] can be determined as h determined in Equation (11), which is usually determined by experimental approaches.

Based on the data of above Example, we calculate the estimated mortality distribution by this model. Table 4 and Figure 4 are results of this approach when taking 5th moment as constraints.

Figure 4. Combination Method Results.
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Table 4. Combination Method Results.



	
Experimental Data

	
Combination Method




	
x

	
 [image: Entropy 14 01306 i011]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
1

	
0.0144

	
0.0142

	
0.0139

	
0.0135

	
0.0132

	
0.0128




	
2

	
0.0144

	
0.0147

	
0.0154

	
0.0162

	
0.0169

	
0.0176




	
3

	
0.0288

	
0.0286

	
0.0282

	
0.0277

	
0.0272

	
0.0266




	
4

	
0.0288

	
0.0298

	
0.0317

	
0.0337

	
0.0358

	
0.0378




	
5

	
0.0769

	
0.0749

	
0.0707

	
0.0666

	
0.0626

	
0.0586




	
6

	
0.0673

	
0.0687

	
0.0713

	
0.0738

	
0.0762

	
0.0786




	
7

	
0.1202

	
0.1189

	
0.116

	
0.113

	
0.1099

	
0.1067




	
8

	
0.0962

	
0.0991

	
0.1048

	
0.1108

	
0.1169

	
0.1233




	
9

	
0.1538

	
0.1521

	
0.1487

	
0.1452

	
0.1416

	
0.1381




	
10

	
0.1202

	
0.1211

	
0.1231

	
0.125

	
0.1268

	
0.1285




	
11

	
0.1298

	
0.1274

	
0.123

	
0.1185

	
0.1141

	
0.1097




	
12

	
0.0625

	
0.064

	
0.0672

	
0.0705

	
0.0738

	
0.0772




	
13

	
0.0529

	
0.0529

	
0.0528

	
0.0527

	
0.0525

	
0.0522




	
14

	
0.0337

	
0.0335

	
0.0332

	
0.0329

	
0.0326

	
0.0323













From the above results, it can be concluded that the proposed method is feasible and the adjustment factor plays an important role in trading off smoothness and goodness of fit, which provides flexibility in graduation of data.



5. Conclusions

In this paper, based on the instinctive defining expression for entropy in terms of a probability distribution, the methods of application of entropy optimization in survival analysis were discussed. It was found that the results of the MaxEnt model focus on the smoothness of data graduation, while results of the MinCEnt model focus on the goodness of fit to the original data, so in consideration of the requirements of smoothness and goodness of fit in data graduation, a new approach was proposed to combine the results of MaxEnt and MinCEnt, which could provide a trade-off between smoothness and goodness of fit in data graduation by use of a given adjustment factor.
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