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Abstract: Multivariate hydrologic frequency analysis has been widely studied using: (1) 

commonly known joint distributions or copula functions with the assumption of univariate 

variables being independently identically distributed (I.I.D.) random variables; or (2) 

directly applying the entropy theory-based framework. However, for the I.I.D. univariate 

random variable assumption, the univariate variable may be considered as independently 

distributed, but it may not be identically distributed; and secondly, the commonly applied 

Pearson’s coefficient of correlation () is not able to capture the nonlinear dependence 

structure that usually exists. Thus, this study attempts to combine the copula theory with the 

entropy theory for bivariate rainfall and runoff analysis. The entropy theory is applied to 

derive the univariate rainfall and runoff distributions. It permits the incorporation of given or 

known information, codified in the form of constraints and results in a universal solution of 

univariate probability distributions. The copula theory is applied to determine the joint 

rainfall-runoff distribution. Application of the copula theory results in: (i) the detection of 

the nonlinear dependence between the correlated random variables-rainfall and runoff, and 

(ii) capturing the tail dependence for risk analysis through joint return period and conditional 

return period of rainfall and runoff. The methodology is validated using annual daily 

maximum rainfall and the corresponding daily runoff (discharge) data collected from 

watersheds near Riesel, Texas (small agricultural experimental watersheds) and Cuyahoga 

River watershed, Ohio.  
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1. Introduction 

In multivariate hydrological frequency analysis, studies have been extensively carried out along three 

lines: (I) application of the covariance structure (i.e., Pearson’s linear covariance/correlation matrix) 

with known multivariate and univariate probability distributions [1–5]; (II) application of copula theory 

to the pseudo-observations (i.e., empirical probability distribution function) first and then study the risk 

with fitted univariate distributions [6–24]; and (III) application of linear covariance with the maximum 

entropy framework [25–29].  

In the above three types of applications, use of the copula theory separates approach II from 

approaches I and III with the capability of capturing the nonlinear dependence structure of studied 

variables, whereas the application of Pearson’s linear covariance in approaches I and III is not sensitive 

to the nonlinear dependence structure. The advantage of approach III is that by applying the maximum 

entropy theory, one may reach the universal solution and better capture the shape of probability density 

function (PDF) [30–36]. Considering approaches I and II, there exists one common assumption, i.e., the 

univariate hydrological variables are considered as independently identically distributed (I.I.D.) random 

variables. Although depending on how the data is collected, it may be valid to assume it as independently 

distributed random variables, the assumption of the variable being identically distributed may not be 

valid for the unviariate data with a mixed structure. The misidentification of univariate probability 

distribution may result in underestimation/overestimation of the joint and conditional return period in 

case of risk analysis. In addition, even if the I.I.D. random variable assumption is valid, the univariate 

distribution determined is usually not universal for the same datasets. Thus, it is important to re-evaluate 

the determination of univariate distributions. 

With the limitations of each approach discussed above, this study attempts to utilize the advantages 

held by approaches II and III and aims to provide a framework to link the maximum entropy and copula 

theories for the study of multivariate hydrological frequency analysis to avoid misusing the assumptions. 

Comparing to the existing frameworks, the proposed framework has the following advantages: (i) the 

universal probability distribution can be obtained from appropriately defined constraints; (ii) the 

multi-mode can be captured using the maximum entropy theory if the data show the multi-mode 

structure which may result in better estimation of multivariate/conditional return periods of given 

events; and (iii) the nonlinear dependence can be captured among the correlated random variables by 

applying the copula theory rather than applying the known or entropy-based multivariate probability 

distribution with the dependence captured by linear covariance. For illustration, the paper applies 

rainfall and runoff (discharge) data from: (1) watersheds near Riesel, Texas (the agricultural 

experimental watersheds maintained by the USA Department of Agriculture, Agricultural Research 

Service), and (2) the Cuyahoga River watershed in Ohio, collected by USGS and NOAA. The paper is 

organized as follows: after introducing the subject in this section, univariate rainfall and runoff 
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frequency distributions are derived using the entropy theory in Section 2. Section 3 discusses the joint 

probability distribution estimation using copula theory, tail dependence for extreme events and 

corresponding joint and conditional return period analysis. Section 4 discusses the goodness of fit 

statistics, and application of the methodology is presented in Section 5. The paper is concluded in Section 6.  

2. Determination of Maximum Entropy-Based Univariate Distributions 

Derivation of univariate distributions of rainfall and runoff using the entropy theory entails: (1) 

defining entropy and specifying the known information about the random variables in terms of 

constraints, and (2), maximizing entropy to obtain the probability density function using the method of 

Lagrange multipliers and determining these multipliers.  

2.1. Entropy and Specification of Constraints  

For a univariate random variable X with a continuous probability density function fX(x), the Shannon 

entropy [37], H(X) can be expressed as: 

ሺܺሻܪ ൌ െ න ௑݂ሺݔሻ ln ௑݂ሺݔሻ  (1) ݔ݀

In accordance with the principle of maximum entropy (POME) [38,39], one can obtain the most probable 

probability density function (PDF) for random variable X with the available information (i.e., constraints) by 

maximizing Equation (1). In this study, the sample statistical moments are used as constraints with two 

main advantages. First, it avoids assuming certain types of distributions from data based on a 

nonparametric approach (frequency histogram or kernel density function), and hence one may reach the 

universal PDF for the dataset analyzed. Second, the PDF so derived may capture the possible 

multi-modes embedded in the data.  

It is well known that annual maximum daily rainfall amount and corresponding daily discharge are 

skewed to the right. Thus, at least the first three non-central sample statistical moments need to be 

considered as constraints. According to the probability theory, it is also known that if the excess kurtosis 

is significantly different from 0, the probability density function of the random variable is heavily tailed 

and results in the necessity to include the fourth non-central statistical moment as a constraint. This 

necessity is determined based on the excess kurtosis as follows: 

ଶߛ
ᇱ ൌ

݊ ∑ ሺݔ௜ െ ҧሻସ௡ݔ
௜ୀଵ

ሾ∑ ሺݔ௜ െ ҧሻଶ௡ݔ
௜ୀଵ ሿଶ െ 3 (2)  

ଶܩ ൌ
ሺ݊ െ 1ሻ

ሺ݊ െ 2ሻሺ݊ െ 3ሻ
ሾሺ݊ ൅ 1ሻߛଶ

ᇱ ൅ 6ሿ (2a) 

In Equations (2), ߛଶ
ᇱ  stands for the excess kurtosis and G2 stands for the sample excess kurtosis. 

Then, whether G2 is significantly different from zero can be determined by statistic (T) as: 

ܶ ൌ
ଶܩ

ܭܧܵ
 (3)  

where SEK stands for the standard error of kurtosis as: 
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ܭܧܵ ൌ 2ඨ
6݊ሺ݊ െ 1ሻଶ

ሺ݊ െ 2ሻሺ݊ ൅ 5ሻሺ݊ଶ െ 9ሻ
 (3a) 

In Equations (2,3), n is the sample size. For statistics T: if |T| > 2, the excess kurtosis is significantly 

different from zero and the fourth non-central moment needs to be applied as a constraint, otherwise, the 

fourth non-central moments does not need to be applied. In addition, considering the rainfall and runoff 

data structure, the first moment in the logarithm domain may also contribute to the PDF. Hence, the 

constraints for the maximum entropy-based distributions are: 

න ௑݂ሺݔሻ݀ݔ ൌ 1
ஶ

଴
 (4)  

න lnሺݔሻ ௑݂ሺݔሻ݀ݔ ൌ lnሺݔሻതതതതതതത
ஶ

଴
 (5)  

if excess kurtosis is not significantly different from zero: 

න ௜ݔ
௑݂ሺݔሻ݀ݔ ൌ పഥݔ

ஶ

଴
, ݅ ൌ 1, … ,3 (6)  

otherwise: 

න ௜ݔ
௑݂ሺݔሻ݀ݔ ൌ

ஶ

଴
పഥݔ , ݅ ൌ 1, … 4 (6a) 

2.2. Entropy and Specification of Constraints  

With the constraints defined in Equations (4–6), the entropy function [Equation (1)] is maximized 

using the method of Lagrange multipliers with the resulting maximum entropy-based PDF expressed as: 

௑݂ሺݔሻ ൌ exp ൭െߣ଴ െ ଵߣ lnሺݔሻ െ ෍ ௜ݔ௜ାଵߣ

ே

௜ୀଵ

൱ , ܰ ൌ 3 ݎ݋ 4  (7)  

where ߣ௜ ′s are the Lagrange multipliers.  

The PDF defined by Equation (7) will be able to preserve the most important statistical moments that 

dominate its shape. Following [40,41], the Lagrange multipliers can be estimated. In what follows, the 

estimation concept and procedure are described in detail. 

Substituting Equation (7) into Equation (4) one can obtain the partition function as: 

expሺߣ଴ሻ ൌ න exp ൭െߣଵ lnሺݔሻ െ ෍ ௜ݔ௜ାଵߣ

ே

௜ୀଵ

൱ ݔ݀
ஶ

଴
, ܰ ൌ 3   (8) 4 ݎ݋

or:  

଴ߣ ൌ ln ൥න exp ሺെߣଵ lnሺݔሻ െ ෍ ௜ݔ௜ାଵߣ

ே

௜ୀଵ

ሻ݀ݔ
ஶ

଴
൩ (8a) 

It is proved that λ0 is a strictly convex function of λ1, λ2, λ3, λN+1 [41]. Thus, one can write the objective 

function as: 
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ܼሺߣଵ, ,ଶߣ ,ଷߣ ସሻߣ ൌ ଴ߣ ൅ ෍ ܽ௜ߣ௜

ேାଵ

௜ୀଵ

ൌ ln ൥න exp ሺെߣଵ lnሺݔሻ െ ෍ ௜ݔ௜ାଵߣ

ே

௜ୀଵ

ሻ݀ݔ
ஶ

଴
൩ ൅ ෍ ܽ௜ߣ௜

ேାଵ

௜ୀଵ

 (9)  

where ai stands for the sample statistical moment of the constraint.  

It should be noted that the objective function Z so defined is a convex function of ߣ௜s , and 

minimizing the objective function Z will result in the maximum entropy. Now, the Lagrange parameters 

can be determined using Newton’s method as follows: 

Let:  

ଵ݃ሺݔሻ ൌ lnሺݔሻ , ݃௜ାଵሺݔሻ ൌ ,௜ݔ ݅ ൌ 1, … , ܰ. (10) 

Then the objective function [(Equation (9)] can be approximated with the second-order Taylor series 

around parameter vector λ = [ λ1, λ2,…, λN+1] as: 

ܼሺૃሻ ؆ ܼሺૃ଴ሻ െ ۵ሺૃ଴ሻሺૃ െ ૃ଴ሻ ൅
1
2

ሾૃ െ ૃ଴ሿ்۶ሺૃ଴ሻሾૃ െ ૃ଴ሿ (11) 

where the elements (ܩ௜) of gradient vector G and the element (ܪ௜,௝) of Hessian matrix H can be written as:  

௜ܩ ൌ
߲ܼ
௜ߣ߲

ൌ ܽ௜ െ ,ሻሿݔሾ݃௜ሺܧ ݅ ൌ 1, … , ܰ ൅ 1 (11a) 

 

௜,௝ܪ ൌ
߲ଶܼ

௝ߣ௜߲ߣ߲
ൌ covൣ݃௜ሺݔሻ݃௝ሺݔሻ൧, ݅, ݆ ൌ 1, … , ܰ ൅ 1 (11b) 

The Lagrange parameters can then be estimated using Newton’s method with the initial parameter set 

ૃேୀଷ
଴ ൌ ሾ0, 0, 0, 0ሿ and ૃேୀସ

଴ ൌ ሾ0, 0, 0, 0, 0ሿ and the corresponding constraints of gradient vector as G 

= 0. It is necessary to state that ߣேାଵ needs to be greater than 0 [42]. 

3. Bivariate Rainfall and Runoff Distribution Using Copula Theory 

Using the copula theory, one may successfully capture the nonlinear dependence between rainfall and 

runoff (discharge) variables. The copula concept was first introduced by Sklar [43]. For a bivariate case, 

let observations (x1, y1), (x2, y2),…, (xn, yn), be drawn from the bivariate population of (X,Y) with the 

marginal distributions as ܨ௑ሺݔሻ and ܨ௒ሺݕሻ. Then, the joint distribution, i.e., H(X,Y) or simply H can be 

expressed using the copula as: 

,ݔ௑,௒ሺܪ ሻݕ ൌ ,ሻݔ௑ሺܨሺܥ  ሻሻ (12)ݕ௒ሺܨ

where C is the copula. C is a unique mapping when ܨ௑ሺݔሻ and ܨ௒ሺݕሻ are continuous, and captures the 

dependence between random variable X and Y.  

In what follows, the topics essential to apply the copula theory for rainfall and runoff analysis are 

discussed, i.e., dependence measure, choice of copulas, parameter estimation, tail dependence, and 

joint/conditional return period determination.  
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3.1. Dependence Measure for Bivariate Random Variables and Choice of Copulas 

To apply the copula theory to investigate the bivariate random variables X and Y, the dependence 

structure can be examined using the rank-based coefficient of correlation, e.g., Kendall’s , Spearman’s 

, and Geni’s  [44]. The rank-based coefficient of correlation is distribution free and sensitive to the 

nonlinear dependence structure which makes it more robust than the commonly applied Pearson’s 

coefficient of correlation (only sensitive to linear dependence structure). In this study, the rank-based 

coefficients of correlation (i.e., Kendall’s , Spearman’s ) were applied to detect the dependence 

structure of rainfall and runoff variables.  

It is known that the dependence between rainfall and runoff are usually positive by nature. Thus, the 

copula models dealing with positive dependence are selected as the candidates to model the joint rainfall 

and runoff distribution. Appendix I lists the copula functions examined, including one- and 

two-parameter Archimedean copulas, extreme-value copulas, and Plackett copula.  

3.2. Estimation of Copula Parameters  

Parameters of a copula model can be estimated using nonparametric estimation through rank-based 

coefficient of correlation, i.e., Kendall’s , Spearman’s , and Geni’s . The parameters can also be 

estimated using the maximum likelihood estimation (MLE). In this study, MLE was applied for 

parameter estimation.  

Let the empirical probability distributions of rainfall (X) and runoff (discharge) (Y) random variables 

be ܨ௑ሺݔሻ and ܨ௒ሺݕሻ, then for a given copula model candidate ܥીሺݑ,  ሻ the maximum log-likelihoodݒ

function may be written as: 

݈ሺીሻ ൌ ෍ log ൫ܿીሺݑ௜, ௜ሻ൯ݒ

௡

௜ୀଵ

ൌ ෍ log ቀܿી൫ܨ௑ሺݔ௜ሻ, ௜ሻ൯ቁݕ௒ሺܨ

௡

௜ୀଵ

 (13) 

where θ represents the copula parameter vector, n is the sample size, and ܿીሺݑ,  ሻ represents the copulaݒ

density function as: 

ܿીሺݑ, ሻݒ ൌ
߲ଶܥીሺݑ, ሻݒ

ݒ߲ݑ߲
ൌ

߲ଶܥીሺݑ, ሻݒ
ሻݕ௒ሺܨሻ߲ݔ௑ሺܨ߲

 (13a) 

then, the copula parameter was optimized by maximizing the log-likelihood function or minimizing the 

negative log-likelihood function.  

3.3. Tail Dependence of Copula  

In rainfall and runoff analysis, one is usually interested in the extreme behavior of the rainfall and 

runoff (discharge) variables for risk analysis, i.e., ܲሺܺ ൒ ,்ݔ ܻ ൒  ,ሻ, and the conditional probability்ݕ

i.e., ܲሺܻ|ܺ ൐ ܺ|ሻ and (or) ܲሺ்ܻݔ ൌ  ሻ. However, the best-fitted copula may not be guaranteed to்ݔ

appropriately model the extreme behavior [45]. Thus, it is important to study the tail dependence of the 

bivariate rainfall and runoff data. The tail dependence may be studied either graphically using the 

Chi-plot [46] or numerically from an empirical copula, a given group of multivariate distributions, and a 

given group of copula functions [47]. In this study, the tail dependence was numerically investigated by 

nonparametric estimation.  
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Nonparametric estimation was based on the empirical copula with no assumption imposed on either 

copula or marginal distributions [47]. Let (Rx, Ry) be the paired rank of the bivariate random sample 
ሺݔ௜, ,௜ሻݕ ݅ ൌ 1, … , ݊, the empirical copula Cm is written as: 

௠ܥ ൌ
1
݊

෍ ૚ ቆ
ܴ௫ሺ݅ሻ

݉
൑ ,ݑ

ܴ௬ሺ݅ሻ
݉

൑ ቇݒ

௡

௜ୀଵ

 (14) 

then, the nonparametric upper-tail dependence coefficient may be estimated in three different forms as: 

መ௎ߣ
௟௢௚ ൌ 2 െ

log ௠ܥ ቀ݊ െ ݇
݊ , ݊ െ ݇

݊ ቁ

log ቀ݊ െ ݇
݊ ቁ

, 0 ൏ ݇ ൏ ݊ (14a) 

መ௎ߣ
ௌா஼ ൌ 2 െ

1 െ ௠ܥ ቀ݊ െ ݇
݊ , ݊ െ ݇

݊ ቁ

1 െ ݊ െ ݇
݊

, 0 ൏ ݇ ൑ ݊ (14b) 

መ௎ߣ 
஼ிீ ൌ 2 െ 2exp ൬

ଵ

௡
∑ log ൬ටlog ቀ ଵ

௎೔
ቁ log ቀ ଵ

௏೔
ቁ log ቀ ଵ

୫ୟ୶ ሺ௎೔,௏೔ሻమቁ൘ ൰௡
௜ୀଵ ൰ (14c) 

where ݊ is the sample size; ݇ is the chosen threshold for Equations (14a,b); and ܵܥܧ in Equation 

(14b) denotes the relationship to the scant of the copula’s diagonal.  

Equation (14a) was first proposed in [48], whereas Equation (14b) first appeared in [49] and it is 

sensitive when the extreme values are not along the diagonal as SEC stands for. The threshold ݇ in 

Equations (14a,b) can be estimated following the heuristic plateau-finding algorithm discussed in [47]. 

Equation (14c) was first proposed in [50] and may be appropriately applied only under the assumption 

that the empirical copula function approximates an extreme value (EV) copula. 

3.4. Return Period of Bivariate Variables Using the Copula Theory 

In rainfall and runoff analysis, the purpose of deriving the joint distribution and study of the tail 

dependence is to estimate the joint/conditional return period of extreme events. With the upper tail 

dependence appropriately assessed, the joint and conditional return period of extreme events may  

be studied.  

3.4.1. Joint Return Period “AND” Case Using Copula Theory 

Following [51], the joint return period can be determined with the appropriately selected copula 

function as follows. Considering the 2-dimensional continuous bivariate random variables ሼܺ, ܻሽ , 

ܲሺܺ ൒ ,כݔ ܻ ൒  ሻ, the “AND” case may be determined using Kendall distribution, component-wiseכݕ

and most-likely excess design realizations [51]. In this study, the most-likely design realization approach 

was adopted. For rainfall and runoff variables X and Y, the joint return period is written as: 

ߜ ൌ argmax ݓሺݔ, ሻݕ ൌ argmax ݂ሺݔ, ,ሻݕ ݔ א ࣦ௧
ி (15) 

where ࣦ௧
ி stands for the critical layer and t stands for the joint return period: 

ࣦ௧
ி ൌ ሼሺݔ, :ሻݕ ,ݔሺܨ ሻݕ ൌ  ሽ (15a)ݐ
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݂ሺݔ,  :ሻ is the joint probability density function derived from copula function asݕ

݂ሺݔ, ሻݕ ൌ ௑݂ሺݔሻ ௒݂ሺݕሻܿીሺܨ௑ሺݔሻ,  ሻሻ (15b)ݕ௒ሺܨ

where ܿી stands for the copula density function as Equation (13a); and ௑݂ሺݔሻ and ௒݂ሺݕሻ stand for the 

fitted univariate PDF. 

Then, the design event (x, y) can be estimated by finding the maximum of the joint density function in 

the logarithm domain over the critical layer with the corresponding (x*, y*) as the design event with 

T-year return period. The critical layer can be obtained using the Kendall distribution. 

3.4.2. Conditional Return Period of Runoff Events Given Rainfall Events 

Again, using X as rainfall random variable and Y as runoff random variable, the conditional return 

period of runoff events of given rainfall events can be written in two cases: 

Case I: Return period of runoff events conditioned on rainfall events greater than the given rainfall values: 

Applying the copula theory, the exceedance conditional distribution is written as: 

ݕሺܪ ൐ ݔ|כݕ ൐ ሻכݔ ൌ
,כݔഥሺܪ ሻכݕ

ሻכݔത௑ሺܨ
ൌ

1 െ ሻכݔ௑ሺܨ െ ሻכݕ௒ሺܨ ൅ ,ሻכݔ௑ሺܨሺܥ ሻሻכݕ௒ሺܨ
1 െ ሻכݔ௑ሺܨ

 (16) 

The corresponding conditional return period is written as: 

ሺܶ௬வ௬כ|௬வ௫כሻ ൌ
1

ܲሺݕ ൐ ݕ|כݕ ൐ ሻכݔ
 (16a) 

Case II: Return period of runoff events conditioned on rainfall events equal to the given rainfall values: 

similarly, the exceedance conditional probability is written as: 

ݕሺܪ ൐ ݔ|כݕ ൌ ሻכݔ ൌ 1 െ ሻݕ௒ሺܨሺܥ ൑ ሻݔ௑ሺܨ|ሻכݕ௒ሺܨ ൌ  ሻሻ (17)כݔ௑ሺܨ

Equation (16) can be also rewritten as: 

ݕሺܪ ൐ ݔ|כݕ ൌ ሻכݔ ൌ 1 െ
,ሻݔ௑ሺܨ൫ܥ߲ ሻ൯ݕ௒ሺܨ

ሻݔ௑ሺܨ߲
ቤ

௫ୀ௫כ

 (17a) 

The corresponding conditional return period is written as: 

ሺܶ௬வ௬כ|௫ୀ௫כሻ ൌ
1

ݕሺܪ ൐ ݔ|כݕ ൌ ሻכݔ
 (17b) 

In Equations (16,17), x* represents the rainfall events; T represents the conditional return period of 

runoff events; and y* represents the runoff events that need to be estimated based on T and x*. In addition, 

Equation (16) is right tail increasing (RTI) if it is a nondecreasing function of x for all y, and Equation 

(17) or (17a) is stochastic increasing (SI) if it is a nondecreasing function of x for all y.  

It should also be addressed that 1 in Equations (16a) and (17b) stands for the annual event. If one 

considers the partial duration time series (i.e., the events over a given threshold), 1 should be replaced 

with  (the expected number of event/year). 
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4. Goodness-of-Fit Statistics 

Before applying the copula-entropy framework to study the bivariate rainfall and runoff frequency 

and risk analysis, the goodness-of-fit statistic test need to be performed for both fitted univariate 

distribution and copula functions.  

4.1. Goodness-of-Fit Statistics for Univariate Distribution 

With the parametric univariate probability distribution fitted to the random variable X, the 

goodness-of-fit statistical tests need to be performed to assess whether the fitted probability distribution 

is valid. In the study, three goodness-of-fit statistics were considered.  

The goodness-of-fit statistics using the root mean square error (RMSE) may be expressed 

respectively as: 

ܧܵܯܴ ൌ ඨ∑ ൫ݔ௜
௘௦௧ െ ௜ݔ

௢௕௦൯
ଶ௡

௜ୀଵ

݊
 (18) 

where RMSE is root mean square error; ݔ௜
௘௦௧ is the estimated value from the fitted univariate probability 

distribution; ݔ௜
௢௕௦ is the corresponding observed value; and n is the sample size.  

The Kolmogorov-Smirnov (K-S) goodness-of-fit test is a nonparametric probability distribution free 

test. For continuous random variables, it quantifies the distance between the empirical distribution (F) and 

the specified distribution function ( ௑ܨ
௘௦௧ ). The null hypothesis (H0) is: X follows the specified 

distribution function . The alternative hypothesis (Ha) is: X does not follow the specified 

distribution function. The K-S goodness-of-fit statistics is defined as: 

ܦ ൌ sup
௫אԸ

หܨ൫ݔ ൑ ሺ௜ሻ൯ݔ െ ௑ܨ
௘௦௧ሺݔ ൑  ሺ௜ሻሻห (19)ݔ

where ݔሺ·ሻ: sample data sorted in increasing order.  

In Equation (19), the null hypothesis (H0) is rejected if ܦ ൐  ఈୀ଴.଴ହ can be estimatedܦ ఈୀ଴.଴ହ, andܦ

using Miller’s approximation [52]. 

The Anderson-Darling (A-D) goodness-of-fit test is the test to examine whether the sample data is 

drawn from a specific probability distribution. Comparing with the K-S goodness-of-fit test, the A-D 

goodness-of-fit test is not distribution free and gives more weight to tails than the K-S goodness-of-fit 

test [53]. The null hypothesis (H0) is: X follows the specified distribution. The alternative (Ha) is: X does 

not follow the specified distribution. The A-D goodness-of-fit test can be expressed as follows:  

ଶܣ ൌ െ݊ െ ܵ (20) 

ܵ ൌ ෍
2݅ െ 1

݊

௡

௜ୀଵ

ൣln ,ሺ௜ሻݔ௘௦௧൫ܨ ી൯ ൅ ln ൫1 െ ,ሺ௡ାଵି௜ሻݔ௘௦௧ሺܨ ીሻ൯൧ (20a) 

where ݊ is sample size;  is parameter vector of fitted probability distribution; and ݔሺ·ሻ is sample data 

sorted in increasing order.  

In Equation (20), the null hypothesis (H0) is rejected if ܣଶ ൐ ఈୀ଴.଴ହܣ
ଶ . The ܣఈୀ଴.଴ହ

ଶ  value is 

approximated using parametric bootstrap simulation for maximum entropy-based univariate distribution.  
  

FX
est
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4.2. Goodness-of-Fit statistics for Copula 

The formal goodness-of-fit statistics for multivariate distributions have been extensively discussed 

based on the copula theory [54,55]. Following their discussion, the goodness-of-fit test based on the 

probability integral transformation (i.e., Kendall’s univariate probability transformation) was employed 

in the study.  

For a given bivariate probability distribution function using a copula function [Equation (12)], the 

corresponding Kendall’s nonparametric univariate probability transformation can be written as: 

ሻݐ௡ሺܭ ൌ
1
݊

෍ ૚

௡

௜ୀଵ

ሺ ௜ܸ௡ ൑ ,ሻݐ ݐ א ሾ0, 1ሿ (21) 

where n is sample size and:  

௜ܸ௡ ൌ
1
݊

෍ ૚ሺݔ௞ ൑ ,௜ݔ ௞ݕ ൑ ௜ሻݕ

௡

௞ୀଵ

 (21a) 

The null hypothesis is H0: the bivariate random variable can be modeled by a given copula function 
through the measure of the distance between Kn and parametric estimation ܭી೙

using: 

ॶ௡ ൌ √݊൫ܭ௡ െ ી೙ܭ
൯ (22) 

Now the test statistic of rank-based Cramér-von Mises statistics ( ) can be written as: 

ܵ௡
ሺ௄ሻ ൌ න ॶ௡ሺݒሻଶ݀ܭી೙

ଵ

଴
 (23) 

The corresponding P-value of the statistic is then determined using the parametric bootstrap 

procedure proposed in [14] outlined as follows: 
(1) Estimate parameter vector for the copula function using MLE with pseudo-observations. 

(2) Calculate ܭ௡ሺ·ሻ from Equation (21). 

(3) Determine ܵ௡
ሺ௄ሻ and ܭી೙

ሺ·ሻ. The Archimedean copula family has the analytical formulation of 

ી೙ܭ
ሺ·ሻ, and thus the statistics defined in Equation (22) may be calculated directly. Otherwise the 

Monte Carlo simulation can be applied to approximate ܭી೙
ሺ·ሻ with the following steps: 

 Generate a random sample ሾ܃ଵ, ી೙ܥ ଶሿ௠ൈଶ from the fitted copula function܃
with the sample 

size at least as the same length of the observed data. 
 Calculate the approximated ܭી೙

ሺ·ሻ using an approach similar to Equation (21) as: 

௠ܤ
כ ሺݐሻ ൌ

1
݉

෍ ૚ሺ ௜ܸ
כ ൑ ሻݐ

௠

௜ୀଵ

, ݐ א ሾ0, 1ሿ (24) 

௜ܸ
כ ൌ

1
݉

෍൛૚൫ ௝ܷ,ଵ
כ ൑ ௜ܷ,ଵ

כ , ௝ܷ,ଶ
כ ൑ ௜ܷ,ଶ

כ ൯ൟ

௠

௝ୀଵ

 (24a) 

 Calculate the approximated ܵ௡
ሺ௄ሻas 

ܵ௡
ሺ௄ሻ ൌ

݊
݉

෍൫ܭ௡ሺ ௜ܸ
ሻכ െ ௠ܤ

כ ሺ ௜ܸ
ሻ൯כ

ଶ
௠

௜ୀଵ

 (25) 

Sn
(K )
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(4) Use parametric bootstrap procedure with a large number N to determine the associated P-value 

as follows: 

 Generate N bivariate random samples from the fitted copula function of the observed data. 

 Estimate the parameters for the fitted copula functions using the generated bivariate random 

samples. 
 Calculate ܭ௡,௞

כ , ݇ ൌ 1: ܰ for each bivariate samples using Equation (21). 

 Repeat step (3) to determine ܭી೙,ೖ
כ , ܵ௡,௞

ሺ௄ሻ for each sample. 

 Approximate the associated P-Value for the Cramér-von Mises statistic:  

P െ valueሾC୰ୟ୫ୣ୰ି୴୭୬ M୧ୱୣሿ ൌ
1
ܰ

෍ ቄ૚ቀܵ௡,௞
ሺ௄ሻ െ ܵ௡

ሺ௄ሻቁ ൒ 0ቅ

ே

௞ୀଵ

 (26) 

5. Results and Discussion 

5.1. Data  

In this study, four watersheds were selected for analysis (two agricultural experimental watersheds in 

Riesel, Texas, and two watersheds from th Cuyahoga River Watershed, Ohio). Two experimental 

watersheds are located near Riesel (Waco), Texas, and are maintained by Agricultural Research Service 

(ARS) of the U.S. department of Agriculture (USDA). In what follows, the procedure for selecting 

rainfall-runoff events from these watersheds is outlined: 

(1) Agricultural experimental watershed near Riesel (Waco), Texas: 

The experimental watersheds near Riesel (Waco) are, W1 and Y2 watersheds [Figure 1(a)] and these 

were selected based on the watershed area and the length of records maintained. There are multiple 

raingages in both watersheds, so the Thiessen polygon method was applied to determine daily areal 

rainfall depth. The Thiessen polygon weights and daily rainfall and corresponding runoff were obtained 

from the USDA-ARS data warehouse. Furthermore, annual maximum daily rainfall amounts and the 

resulting daily discharges were applied for rainfall and runoff analysis.  

(2) Cuyahoga River Watershed, Ohio: 

The discharge gages at Old Portage (USGS 04206000) and Independence (USGS 04208000) were 

selected for analysis. The digital terrain model (DTM) flow lines were obtained from USGS. The 

watersheds contributing to Old Portage and Independence are delineated in the Geographical 

Information System (GIS), as shown in Figure 1(b). The raingages within the watersheds were identified 

from the raingage information maintained by National Oceanic and Atmospheric Administration 

(NOAA). Again, the Thiessen polygon method was applied to determine the daily areal rainfall. The 

annual maximum daily rainfall amount and the resulting daily discharge were applied for rainfall and 

runoff analysis. 
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Figure 1. Riesel experimental watershed and Cuyahoga river watershed maps. 

 
（a） （b） 

Table 1 lists the pertinent information of the selected watersheds (i.e., drainage area, raingages and 

length of the record for each watershed). Table 2 lists the Thiessen polygon weight for Old Portage and 

Independence determined in GIS. This information is further applied to determine the areal rainfall 

amount at Old Portage and Independence.  

Table 1. Watershed Information. 

Watersheds  Area (km2)  Rain gauge Duration 

Riesel 
TX 

W1 0.72 
Rgs: 75a, 89, w1b, w2, 
w2a, w3, w4, w5a 

1940–2011 

Y2 0.53 
Rgs: 69, 69b, 70,  
75a, 84a 

1940–2011 

Cuyahoga 
OH 

Old Portage 
(04206000) 

1,046 
Rgs: 330058, 336949, 
333780, 331458 

1953–2011 

Independence 
(04208000) 

1,831 Rgs: 331657, 330058,  
336949, 333780, 331458 

1953–2011 

Table 2. Thiessen polygon weight for Old Portage and Independence. 

Raingages 
Thiessen Polygon Weight 

Old Portage Independence 

330058 12.18% 9.82% 
336949 48.99% 52.00% 
333780 4.61% 2.58% 
331458 34.22% 19.16% 
331657 N/A 16.44% 
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5.2. Entropy-Based Univariate Rainfall and Runoff Distributions 

As discussed in Section 2, the first moment in the logarithm domain and at least first three non-central 

moments (Table 3) are needed as constraints to derive the maximum entropy-based univariate 

distribution for rainfall and runoff random variables with the necessity of fourth non-central moment 

based on the study of excess kurtosis [Equations (2,3)]. The study of excess kurtosis for rainfall and 

runoff variables indicates that the fourth non-central moment needs to be considered, except for daily 

rainfall of Old Portage watershed and daily runoff (discharge) of Independence watershed.  

Table 3. Sample statistics for each watershed. 

Variables Watershed E[ln(X)]   E[X]   E[X2] E[X3]    E[X4]   1 2 

 
Rainfall 

(mm) 
 

W1 4.40 86.02 8217.74 8.73E+05 1.03E+08 1.09 4.51 
Y2 4.41 86.96 8557.03 9.58E+05 1.21E+08 1.30 4.83 

Old Portage 3.77 45.71 2294.86 1.26E+05 7.46E+06 0.72 3.30 
Independence 3.73 43.71 2107.30 1.12E+05 6.55E+06 0.98 4.24 

Runoff 
(m3/s) 

 
 

W1 −1.51 0.34 0.18 0.13 0.11 1.15 4.58 
Y2 −2.14 0.23 0.10 0.06 0.04 1.43 5.64 

Old Portage 3.52 44.08 3146.42 3.17E+05 3.93E+07 1.74 5.99 
Independence 4.58 134.27 2.88E+04 8.02E+06 2.61E+09 1.16 3.76 

Note: 1: skewness, 2: kurtosis. 

With the number of the non-central moments identified, the Lagrange multipliers of the PDF defined 

in Equation (7) were estimated by finding the minimum of the objective function defined in Equation (9) 

with the constraints and Hessian matrix given by Equations (11a,b). Table 4 lists the parameters 

estimated for each watershed. Table 5 lists the relative differences between sample moments and those 

calculated from entropy-based distributions. Table 5 indicates that the sample moments were well 

preserved.  

Table 4. Lagrange multipliers for univariate rainfall and discharge distribution. 

Variables Watershed 0 1 2 3 4 5 

Rainfall 
(mm) 

W1 18.36 0.46 −0.58 0.007 −3.77E-05 7.09E-08 

Y2 18.08 0.89 −0.64 0.008 −4.15E-05 7.71E-08 

Old portage 8.60 0 −0.22 0.002 1.38E-07 N/A 

Independence 19.28 −0.57 −1.01 0.026 −2.60E-04 9.69E-07 

Runoff 
(m3/s) 

W1 −0.74 0 0.61 2.37 −0.19 0.004 

Y2 0.60 0.46 −3.29 7.2 −0.63 0.014 

Old portage 10.00 −3.24 0.19 −0.001 7.37E-07 6.49E-09 

Independence 5.31 0 0.001 1.58E-05 1.67E-10 N/A 

Note: 1 parameter for ln(X); 2 parameter for X; 3 parameter for X2; 4 parameter for X3; and 5 
parameter for X4. 
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Table 5. Relative differences between sample moments and those obtained from 

entropy-based distribution. 

Variables Watersheds E[ln(X)] E[X] E[X2] E[X3] E[X4]

Rainfall 

(mm) 

W1 −2.39E-05 −8.79E-07 −8.61E-09 −5.84E-08 3.09E-07

Y2 −6.33E-05 −4.51E-06 −7.51E-08 −6.13E-08 −1.97E-08

Old portage −6.75E-03 −9.34E-03 −1.74E-02 −4.17E-02 N/A

Independence −4.39E-05 2.01E-06 −8.16E-08 −5.30E-09 −4.05E-08

Runoff 

(m3/s) 

W1 −8.07E-03 2.88E-04 5.36E-07 2.98E-04 7.06E-03

Y2 5.62E-02 −3.02E-03 −1.64E-03 −3.07E-03 −2.00E-02

Old Portage −9.47E-10 1.50E-11 5.98E-09 1.34E-08 2.07E-08

Independence −2.34E-02 −3.57E-03 −8.31E-03 −2.90E-02 N/A

Further, the goodness-of-fit, i.e., RMSE [Equation (18)], the K-S goodness-of-fit test [Equation (19)], 

and the A-D goodness-of-fit test [Equation (20)] were applied to examine whether the maximum 

entropy-based probability distribution may appropriately represent the underlining univariate rainfall 

and runoff probability distributions. The P-value was approximated using Miller’s approximation for the 

K-S goodness-of-fit test and Monte Carlo simulation with parametric bootstrap resampling procedure 

(10,000 parametric bootstrap samples) for the A-D goodness of fit test. The test results in Table 6 

indicate that the P-value calculated from both the K-S and A-D goodness-of-fit tests was much higher 

than the critical level  = 0.05. So the null hypothesis cannot be rejected, that is, the maximum 

entropy-based probability distribution can appropriately represent the univariate rainfall/runoff 

probability distributions. The RMSE results in Table 6 show that the corresponding error is also small. In 

addition, to compare graphically, the maximum entropy-based PDF is compared with the frequency 

histograms (Figures 2 and 3), which indicate the proposed maximum entropy-based probability density 

function is able to capture the shape of the frequency histogram.  

Table 6. Goodness-of-fit statistics for univariate rainfall and discharge analysis. 

Variables Watersheds 
K-S Statistics AD statistics RMSE 

 H* Statistics P-value H* Statistics P-Value 

Rainfall 
(mm) 

W1 0 0.07 0.92 0 0.19 0.99 3.49 
Y2 0 0.07 0.89 0 0.23 0.98 3.62 

Old portage 0 0.10 0.64 0 0.66 0.60 2.99 
Independence 0 0.08 0.81 0 0.37 0.88 2.03 

Runoff 
(m3/s) 

W1 0 0.08 0.77 0 0.53 0.71 6.22 
Y2 0 0.06 0.97 0 0.61 0.64 6.84 

Old portage 0 0.08 0.78 0 0.39 0.86 4.70 
Independence 0 0.08 0.79 0 0.57 0.67 15.83 

* The null hypothesis cannot be rejected if H = 1. 
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Figure 2. Rainfall depth probability density function. 

 

Figure 3. Discharge probability density function.  
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Thus, from both the formal goodness-of-fit statistics and graphical comparison for univariate rainfall 

and runoff random variables, the univariate entropy-based distribution derived represents the PDF of 

rainfall and runoff variables well. It is worth stating that the appropriate identification of univariate 

rainfall and runoff distribution plays an important role in the study of joint and conditional return period 

in case of extreme behavior of rainfall and runoff variables.  

5.3. Bivariate Rainfall and Runoff Distribution 

Considering rainfall and runoff as continuous random variables, the copula theory was applied to 

capture the dependence with a unique copula function C [Equation (12)]. Table 7 lists sample Kendall’s 

τ and Spearman’s ρ rank coefficients of correlation. Results showed that overall there existed positive 

dependence structure for all the watersheds studied. It is therefore appropriate to apply the copula 

functions listed in Appendix I. The parameters of the copula function were estimated using the 

Pseudo-Maximum Likelihood method in which the empirical marginal distribution was applied. Table 8 

lists the parameters estimated and the corresponding maximum Log-Likelihood (LL). Table 8 indicates 

that Galambos copula, belonging to the extreme value copula family, reached the largest maximum LL 

for watersheds W1, Y2 and Old Portage. However, the Frank copula reached the largest maximum LL 

for Independence watershed. 

Table 7. Rank correlation of coefficients for rainfall and discharge variables. 

Watersheds Kendall’s tau Spearman’s rho 
W1 0.454 0.632 
Y2 0.475 0.646 

Old Portage 0.276 0.394 
Independence 0.397 0.564 

Table 8. Estimated copula parameters for bivariate rainfall and discharge analysis. 

Copula 
Estimated 

parameters 
Likelihood 

Estimated 
parameters 

Likelihood 

W1 Y2 
Clayton 0.85 7.10 0.88 6.93 

Gumbel-Hougaard 1.73 13.98 1.86 17.16 

Frank 4.40 12.26 4.55 12.92 

Joe 2.10 13.56 2.42 17.02 

A12 1.17 8.44 1.24 9.38 

BB1[a] (8.65E-6, 1.73) 13.98 (2.03E-4, 1.86) 17.15 

BB5[b] (1.21, 0.73) 14.52 (1.47, 0.54) 17.21 

BB7[c] (1, 0.85) 7.10 (1, 0.88) 6.93 

Galambos 1.04 14.54 1.16 17.30 

Plackett 6.03 11.38 7.08 12.72 
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Table 8. Cont. 

Copula 
Estimated 

parameters 
Likelihood 

Estimated 
parameters 

Likelihood 

Old Portage Independence 

Clayton 0.62 4.30 0.96 8.55 

Gumbel-Hougaard 1.39 5.64 1.52 7.79 

Frank 2.64 4.92 4.15 10.71 

Joe 1.53 4.83 1.63 5.29 

A12 1 2.97 1.05 8.65 

BB1 (0.20, 1.29) 5.89 (0.57, 1.24) 9.20 

BB5 (1.06, 0.60) 6 (1.19, 0.53) 8.22 

BB7 (1, 0.62) 4.30 (1, 0.96) 8.55 

Glambos 0.67 6.02 0.80 8.22 

Plackett 3.28 4.81 5.83 10.23 

Note: [a] when θ1 → 0 converge to Gumbel-Hougaard copula; [b] when θ1 = 1 BB5 copula is Galambos 
copula; [c] whenθ1 = 1 BB7 copula is the Clayton copula.  

In order to better assess the copula functions estimated using the Pseudo-Maximum Likelihood 

method, the formal goodness-of-fit analysis was performed to test whether the given copula function 

may appropriately model the joint distribution using the goodness-of-fit test based on the integral 

probability transformation discussed in Section 4. The Cramér-von Mises test statistic was calculated 

using Equations (21–23). The corresponding P-value was approximated using Equations (24–26) with 

10,000 parametric bootstrap samples. Table 9 lists the test statistics and the corresponding P-values 

forall the copula functions studied. It indicates: (i) the copula functions, reaching the maximum LL, can 

appropriately measure the full dependence of the rainfall and runoff variables, (ii) for the Independence 

watershed, the Plackett copula reached a much higher P-value than did the Frank copula, and there exists 

minimal differences for the maximum LL calculated from the Frank and Plackett copulas (4.5%). Thus, 

the Galambos copula can be applied to represent the joint distribution for W1, Y2 and Old Portage 

watersheds, and the Plackett copula can be applied to represent the joint distribution for Independence 

watershed. Figures 4–5 compare the empirical PDF (CDF) and the parametric PDF (CDF) determined 

from the fitted copula function for experimental watersheds, i.e., W1 and Y2, and Cuyahoga River 

watershed, i.e., Old Portage and Independence. The figures indicate that: (i) there clearly exists an upper 

tail dependence for experimental watersheds W1 and Y2 (joint PDF in Figure 4), (ii) the upper tail 

dependence for Old portage is not as significant as that of experimental watersheds, and (iii) there is no 

clear evidence of upper tail dependence for Independence which is an interesting finding through the 

study of the annual maximum daily rainfall amount and corresponding daily discharge. The findings for 

watersheds at Old Portage and Independence may be explained by the natural flow of the stream affected 

by flow diversion, storage reservoirs, and power plants located in the watersheds (USGS).  
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Table 9. Goodness-of-fit statistics for copulas. 

Copula 
Goodness-of-fit statistics 

Sn P-value Sn P-value 
 W1 Y2 

Clayton 0.19 0.05 0.21 0.04 
Gumbel-Hougaard 8.57 0.59 8.72 0.52 

Frank 0.05 0.63 0.08 0.33 
Joe 0.07 0.50 0.03 0.93 
A12 0.15 0.07 0.20 0.02 
BB1 0.05 0.78 0.06 0.52 
BB5 7.74 0.44 7.71 0.54 
BB7 8.48 0 8.40 0 

Galambos 7.70 0.52 7.64 0.72 
Plackett 8.10 0.05 8.03 0.10 

Old Portage Independence 

Clayton 0.06 0.75 0.14 0.15 
Gumbel-Hougaard 5.49 0.45 5.49 0.45 

Frank 0.06 0.64 0.07 0.42 
Joe 0.12 0.26 0.30 0.01 
A12 0.13 0.22 0.11 0.23 
BB1 0.05 0.80 0.10 0.19 
BB5 8.15 0.06 7.89 0.24 
BB7 8.96 0 7.92 0 

Galambos 7.52 0.81 7.95 0.19 
Plackett 7.83 0.30 7.51 0.82 

Figure 4. Comparison of empirical PDF and CDF versus parametric PDF and CDF of the 

best fitted copula function for experimental watersheds: W1 and Y2. 

 

0.
00

01

0.0001

0.
00

01

0.
00

05

0.0005

0.
00

05 0.
00

2

0.0
02

0.
00

4

0.
00

4

0.
00

8

0.02

Rainfall (mm)

D
is

ch
ar

ge
 (

m
3 /s

)

Joint PDF: W1

50 100 150

0.5

1

1.5

0.2

0.2

0.5

0.5

0.8

0.8

0.9

0.99

Rainfall (mm)

D
is

ch
ar

ge
 (

m
3 /s

)

Joint CDF: W1

50 100 150

0.5

1

1.5

4e
�0

5

4e�
05

4e
�0

5 0.
00

01

0.00
01

0.
00

01

0.
00

1

0.001

0.005
0.02

0.04
0 080 1

Rainfall (mm)

D
is

ch
ar

ge
 (

m
3 /s

)

Joint PDF: Y2

50 100 150 200

0.5

1

1.5

2

0.2

0.2

0.5

0.5

0.8

0.8

0.9

0.9

0.99

Rainfall (mm)

D
is

ch
ar

ge
 (

m
3 /s

)

Joint CDF: Y2

 

 

50 100 150 200

0.5

1

1.5

2

Parametric Empirical



Entropy 2012, 14   

 

1802

Figure 5. Comparison of empirical PDF and CDF versus parametric PDF and CDF of the 

best fitted copula function for Cuyahoga River watershed: Old Portage and Independence.  

 

To further assess the above findings numerically, the upper tail dependence coefficient was 

calculated from both the empirical copula and the copula function candidates (Appendix II). Equations 

(14a–c) were applied to determine the upper tail dependence coefficient nonparametrically from the 

empirical copula where the thresholds k in Equations (14a,b) were determined by applying the 

plateau-finding algorithm [10]. The equations listed in Appendix II were applied to determine the upper 

tail dependence coefficient for the copula functions. Table 10 lists the results of the upper tail 

dependence coefficient. It shows that the differences are relatively small from the nonparametric 

estimation (the maximum relative difference being around 10% comparing Equations (14a,b) with 

Equation (14c) for W1, Y2 and Old Portage watersheds. For Independence watershed, the upper tail 

dependence coefficient was estimated to be close to 0 from Equations (14a,b), however it reached 

around 0.43 if Equation (14c) was applied. Again comparing with the graphical finding (Figure 5), 

Equation (14c) cannot be applied to estimate the upper tail dependence coefficient for Independence 

watershed, due to the strong underlining assumption of empirical copula approximating the extreme 

value copula.  

To this end, the conclusion is that the extreme value copula can be applied to assess the upper tail 

dependence for W1, Y2 and Old Portage watersheds uwing the Galambos copula. No upper tail 

dependence was found for Independence watershed and the Plackett copula can be reasonably applied. 

Thus, in what follows, the Galambos and Plackett copula were applied to study the joint (and 

conditional) return periods. 
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Table 10. Estimated upper tail dependence coefficient. 

Tail dependence LOG [a] SEC[a] CFG[b] LOG SEC CFG 

W1 Y2 
Empirical 0.53 0.56 0.50 0.58 0.58 0.56 
Clayton 0 0 

Gumbel-Hougaard 0.51 0.55 
Frank 0 0 

Joe 0.61 0.67 
A12 0.19 0.25 
BB1 0.51 0.55 
BB5 0.51 0.55 
BB7 0 0 

Galambos 0.51 0.55 
Placektt 0 0 

 Old Portage Independence 
Empirical 0.36 0.32 0.35 −0.01 0.02 0.43 
Clayton 0 0 

Gumbel-Hougaard 0.35 0.42 
Frank 0 0 

Joe 0.43 0.47 
A12 0 0.07 
BB1 0.29 0.25 
BB5 0.36 0.42 
BB7 0 0 

Galambos 0.36 0.42 
Plackett 0 0 

Note: [a] with b = 1 with threshold; [b] no threshold needed.  

5.4. Return Period of Rainfall and Runoff Events 

In rainfall and runoff frequency analysis as well as other multivariate hydrologic frequency analyses, 

the purpose is to estimate the joint and conditional return period (joint and conditional exceedance 

probabilities) of the extreme events for risk analysis and to provide a framework for engineering design. 

Following the discussion in Section 3.4, the rainfall and runoff events with given joint and conditional 

return periods were studied. 

5.4.1. Joint Return Period of Rainfall and Runoff Events 

The joint return period (i.e., 25-, 50-, and 100-yr) for the “AND” case was determined following [32] 

using the most-likely design realization [Equation (15)] discussed in Section 3.4.1. Using Old Portage 

watershed as an example, Figure 6 shows the procedure for the identification of critical layer and the 

corresponding rainfall and runoff event (x*, y*). Considering the Galambos copula belonging to the 

extreme value copula family, the parametric Kendall distribution is given as:  
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ሻݐሺܭ ൌ ݐ െ ሺ1 െ ሻࣂ lnሺݐሻ (27) 

where  is the parameter, i.e., Kendall correlation of coefficient.  

Graphically, it is seen that the empirical Kendall distribution matches the parametric Kendall 

distribution function for the Galambos copula fairly well especially for the upper tail (Figure 6a). Figure 6b 

provides the graphical link for the identification of t which results in the joint K(t) being equal to the 

nonexceedance probability of 25-, 50-, and 100-year joint return periods. The identified t’s are the 

cumulative probability for the identified critical layer shown in Figure 6c. Using 100-year joint return 

period as an example, Figure 6d plots the negative log-likelihood of function ݂ሺݔ,  .ሻ [Equation (15b)]ݕ

The critical event is then estimated by finding the minimum of the negative log-likelihood function. It is 

worth noting that in case of the Plackett copula applied to the Independence watershed, the Kendall 

distribution of the Plackett copula needs to be estimated using Monte Carlo simulation with the 

parametric bootstrap sampling technique as discussed in Section 4.2.  

Table 11 lists the critical rainfall and runoff events with joint return period of 25-, 50-, and 100-year. 

The joint return period study indicates that the rainfall and runoff variables for all four watersheds are 

positively quadrant dependent (PQD) [28] as: 

ሺܺܪ ൑ ,ݔ ܻ ൑ ሻݕ ൒ ௑ሺܺܨ ൑ ௒ሺܻܨሻݔ ൑  ሻ (28)ݕ

or equivalently: 

ሺܺܪ ൐ ,ݔ ܻ ൐ ሻݕ ൒ ௑ሺܺܨ ൐ ௒ሺܻܨሻݔ ൐  ሻ (28a)ݕ

and for illustration purposes, for Old Portage watershed, the exceedance probabilities for rainfall events 

with joint return periods of 25-, 50-, and 100-year are 0.05, 0.02, and 0.01; the right side of Equation (28a) is 

calculated as: 0.023, 0.004 and 0.001, respectively.  

Figure 6. (a) Kendall distribution plot, (b,c) critical layer identification for 50- and 100-year 

event, (d) critical rainfall and runoff event for return period = 100-year as example. 
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Table 11. Rainfall (mm) and runoff (m3/s) estimated for ‘AND’ case for the return period of 

25-, 50-, and 100-year. 

Joint return period 
25-year 50-year 100-year 

Rainfall Runoff Rainfall Runoff Rainfall Runoff 
W1 122.13 0.69 145.79 0.88 161.27 1.01 
Y2 126.06 0.51 157.31 0.66 176.19 0.84 

Old Portage 60.09 74.75 66.75 111.8 71.25 135.94 
Independence 54.59 237.13 60.84 296.35 64.38 329.38 

5.4.2. Conditional Return Period of Runoff Events of Given Rainfall Events 

As discussed in Section 3.4.2, both cases were studied for conditional return period analysis. The 

critical runoff events (y*) of given conditional return periods are estimated from daily rainfall amount. 

Table 12 lists the daily rainfall amount with univariate return period of 25-, 50-, and 100-year estimated 

from fitted entropy-based univariate distribution. Then the conditional return period of Case I (i.e., 

ሺܻܪ ൐ ܺ|כݕ ൐ ሺܻܪ ,.ሻ was estimated using Equation (16) and that of Case II (i.eכݔ ൐ ܺ|כݕ ൌ  ሻ isכݔ

estimated using Equation (17). Table 13 lists the runoff events obtained for Cases I and II with the 

conditional return periods of 25-, 50-, and 100-year.  

Table 12. 25-, 50-, and 100-year daily rainfall amount (mm) from univariate frequency analysis. 

Watersheds 
Return period 

25-year 50-year 100-year 
W1 142.87 163.59 174.83 
Y2 155.04 178.58 189.97 

Old Portage 68.75 74.57 78.44 
Independence 64.72 69.37 71.31 

Table 13. Daily Runoff (m3/s) estimated based on Cases I and II for the return period of 50- 

and 100-year with 50- and 100-year daily rainfall amount (mm). 

Watersheds 
Return period 

25-year 50-year 100-year 
Case I 

W1 1.37 1.64 1.8 
Y2 1.1 1.32 1.46 

Old Portage 183.09 202.49 212.28 
Independence 429.12 481.02 508.52 

Case II 
W1 1.14 1.36 1.51 
Y2 0.89 1.08 1.21 

Old Portage 164.54 186.32 198.06 
Independence 417.64 477.16 507.03 

Using Old Portage as an example, Figure 7 plots the conditional exceedance probabilities for both 

cases. Figure 7 indicates that Equation (16) and Equations (17) are nondecreasing functions of given 
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rainfall event for all runoff events. It further indicates that rainfall and runoff variables hold right tail 

increasing (RTI, for case I) and stochastic increasing (SI, for case II) properties. The same results are 

reached for the other two watersheds modeled by the Galambos copula as well (i.e., W1, Y2).  

Figure 7. Conditional exceedance probability estimated for Cases I and II with watershed 

Old Portage as an example. 

 

On the other hand, Figure 8 plots the conditional exceedance probabilities for Independence 

watershed. One may note the minimal difference in exceedance probabilities (return periods) obtained 

by conditioning on the rainfall events of different return periods for cases I and II. This finding again 

indicates the RTI and SI properties do not hold for Independence watershed.  

Figure 8. Conditional exceedance probability for Cases I and II with watershed 

Independence as an example. 
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6. Conclusions 

This study investigates the relationship between annual maximum daily rainfall amount and the 

corresponding daily runoff (discharge) using maximum entropy and copula theories to address the 

questions arising from the assumptions in the commonly applied approaches and to better estimate risk. 

The maximum entropy theory is applied to derive the univariate rainfall and runoff distributions. The 

joint distribution of rainfall and runoff is studied using the copula method. The following conclusions 

are drawn from the study: 

(1) The rainfall and runoff variables are fat tailed except for rainfall variable at Old Portage and runoff 

variable at Independence. Thus, except for these two cases, the fourth non-central moment is 

necessary to be considered as one of the constraints for the derivation of maximum entropy-based 

distribution. The maximum entropy-based univariate distribution can successfully model the 

rainfall and runoff variables, and it also provides the universal solution for the univariate rainfall 

and runoff frequency analysis.  

(2) The copula functions capturing the positive dependence structure may appropriately model the 

bivariate rainfall and runoff distribution. The Galambos copula (belonging to extreme value 

copula family) appropriately models the dependence between rainfall and runoff variables for 

watersheds W1, Y2 and Old Portage based on the MLE and formal goodness-of-fit statistics. 

Similarly, the Plackett copula appropriately models the dependence for watershed Independence.  

(3) Upper tail dependence is found for watersheds W1, Y2, and Old Portage, and the 

nonparametric/parametric estimation of upper tail dependence coefficient indicates that the 

Galambos copula may again model the extreme events which in turn can be applied to study the 

joint and conditional return periods for these 3 watersheds.  

(4) No upper tail dependence is found for watershed Independence. It may be explained by the natural 

flow of the stream affected by diversion, storage reservoirs and power plants located in the 

watersheds. The fitted Plackett copula can be applied to study the joint and conditional return 

periods for watershed Independence.  

(5) The positive dependence structure and joint return period (“AND” case) study of the rainfall and 

runoff variables show that rainfall and runoff are positive quadrant dependent.  

(6) For watersheds W1, Y2, and Old Portage, Case I conditional return period indicates the right tail 

increasing (RTI) property, and Case II conditional return period indicates the stochastic increasing 

(SI) property. These findings are in agreement with the upper tail dependence identified for the 

above three watersheds. 

(7) For watershed Independence, Case I and II conditional return periods indicate that there does not 

exist RTI or SI (i.e., with given rainfall events of different return periods, the conditional 

exceedance probability exhibits minimal difference). This finding is in agreement with no upper 

tail dependence found for the watershed.  

In summary, the study provides an appropriate framework to link the maximum entropy theory and 

copula theory in multivariate frequency analysis. This framework may lead to a better study of both 

univariate and multivariate studies and permit a better estimation of risk and better engineering design 

(e.g., runoff of a given rainfall event in this study). With different types of watersheds, the study shows 
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that for experimental watersheds (well maintained and minimal human activity induced changes), the 

dependence and tail dependence structure between rainfall and runoff variables tend to follow the law of 

natural rainfall and runoff process. For the watersheds Old Portage and Independence belonging to 

Cuyahoga River basin, even though the positive dependence structure still holds for the whole dataset 

analyzed, the upper tail dependence is significantly lower. In case of watershed Old Portage, the upper 

tail dependence is in the range of [0.3, 0.4], and for Independence, there is no upper tail dependence 

existing. This may be explained by the intensity of human activity induced hydrological response 

changes. This finding provides an insight that one needs to pay attention to the real world situation when 

applying the copulas belonging to extreme value copula family (e.g., commonly applied Gumbel-Houggard 

copula as an example) to study the annual maximum multivariate hydrological time series.  

Appendix I 

Table S1. Selected copula family for analysis. 

Copulas ܥીሺݑ,  ሻ Parametersݒ

One-parameter  

Archimedean  

Copula[b] 

Clayton ൫ିݑఏ ൅ ఏିݒ െ 1൯
ିଵ/ఏ

ߠ  ൐ 0 

Gumbel-Hougaar

d[a] 
exp ቀെൣሺെ ln ሻఏݑ ൅ ሺെ ln ሻఏ൧ݒ

ଵ/ఏ
ቁ ߠ ൒ 1 

Frank െ
1
ߠ

ln ቈ1 ൅
൫݁ିఏ௨ െ 1൯൫݁ିఏ௩ െ 1൯

݁ିఏ െ 1
቉ ߠ ് 0 

Joe[c] 1 െ ൣሺ1 െ ሻఏݑ ൅ ሺ1 െ ሻఏݒ െ ሺ1 െ ሻఏሺ1ݑ െ ሻఏ൧ݒ
ଵ/ఏ

ߠ  ൒ 1 

A12 ቄ1 ൅ ൣሺିݑଵ െ 1ሻఏ ൅ ሺିݒଵ െ 1ሻఏ൧
ଵ/ఏ

ቅ
ିଵ

ߠ  ൒ 1 

Two-parameter 

Archimedean 

Copula[c] 

BB1 ൜1 ൅ ቂ൫ିݑఏభ െ 1൯
ఏమ ൅ ൫ିݒఏభ െ 1൯

ఏమቃ
ଵ/ఏమ

ൠ
ିଵ/ఏభ

 
ଵߠ ൐ 0 

ଶߠ ൒ 1 

BB5 

exp ൜െ ቂሺെ ln ሻఏభݑ ൅ ሺെ ln ሻఏభݒ

െ ൫ሺെ ln ሻିఏభఏమݑ ൅ ሺെ ln ሻିఏభఏమ൯ݒ
ିଵ/ఏమቃ

ଵ/ఏభ
ൠ 

ଵߠ ൒ 1  

ଶߠ ൐ 0 

BB7 

1 െ ൬1 െ ቂ൫1 െ ሺ1 െ ሻఏభ൯ݑ
ିఏమ ൅ ൫1 െ ሺ1 െ ሻఏభ൯ݒ

ିఏమ

െ 1ቃ
ଵ/ఏమ

ቁ
ଵ/ఏభ

 

ଵߠ ൒ 1  

ଶߠ ൐ 0 

Extreme 

value Copula  
Galambos ݒݑexp ቄെൣሺെ ln ሻିఏݑ ൅ ሺെ ln ሻିఏ൧ݒ

ିଵ/ఏ
ቅ ߠ ൒ 0 

Others Plackett 
1/ሺ2ሺߠ െ 1ሻሻ ሼ1 ൅ ሺߠ െ 1ሻሺݑ ൅ ሻݒ െ ሾሺ1 ൅ ሺߠ െ 1ሻሺݑ

൅ 1ሻ ሻ^2 െ ߠሺߠ4 െ 1ሻݒݑሿ^ሺ1/2ሻ ሽ 
ߠ ൒ 0 

Note: [a] also belongs to the extreme value copula; [b] refer to [44]; [c] refer to [49]. 
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Appendix II 

Table S2. Tail dependence coefficient for different copulas. 
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