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Abstract: This report reviews the conceptual and theoretical links between Granger
causality and directed information theory. We begin with a short historical tour of Granger
causality, concentrating on its closeness to information theory. The definitions of Granger
causality based on prediction are recalled, and the importance of the observation set is
discussed. We present the definitions based on conditional independence. The notion of
instantaneous coupling is included in the definitions. The concept of Granger causality
graphs is discussed. We present directed information theory from the perspective of studies
of causal influences between stochastic processes. Causal conditioning appears to be the
cornerstone for the relation between information theory and Granger causality. In the
bivariate case, the fundamental measure is the directed information, which decomposes
as the sum of the transfer entropies and a term quantifying instantaneous coupling. We
show the decomposition of the mutual information into the sums of the transfer entropies
and the instantaneous coupling measure, a relation known for the linear Gaussian case.
We study the multivariate case, showing that the useful decomposition is blurred by
instantaneous coupling. The links are further developed by studying how measures based on
directed information theory naturally emerge from Granger causality inference frameworks
as hypothesis testing.
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1. Introduction

This review deals with the analysis of influences that one system, be it physical, economical,
biological or social, for example, can exert over another. In several scientific fields, the finding of the
influence network between different systems is crucial. As examples, we can think of gene influence
networks [1,2], relations between economical variables [3,4], communication between neurons or the
flow of information between different brain regions [5], or the human influence on the Earth climate [6,7],
and many others.

The context studied in this report is illustrated in Figure 1. For a given system, we have at disposal
a number of different measurements. In neuroscience, these can be local field potentials recorded in
the brain of an animal. In solar physics, these can be solar indices measured by sensors onboard some
satellite. In the study of turbulent fluids, these can be the velocity measured at different scales in the
fluid (or can be as in Figure 1, the wavelet analysis of the velocity at different scales). For these different
examples, the aim is to find dependencies between the different measurements, and if possible, to give
a direction to the dependence. In neuroscience, this will allow to understand how information flows
between different areas of the brain. In solar physics, this will allow to understand the links between
indices and their influence on the total solar irradiance received on Earth. In the study of turbulence, this
can confirm the directional cascade of energy from large down to small scales.

Figure 1. Illustration of the problem of information flow in networks of stochastic processes.
Each node of the network is associated to a signal. Edges between nodes stand for
dependence (shared information) between the signals. The dependence can be directed or
not. This framework can be applied to different situations such as solar physics, neuroscience
or the study of turbulence in fluids, as illustrated by the three examples depicted here.
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In a graphical modeling approach, each signal is associated to a particular node of a graph, and
dependencies are represented by edges, directed if a directional dependence exists. The questions
addressed in this paper concern the assessment of directional dependence between signals, and thus
concern the inference problem of estimating the edge set in the graph of signals considered.

Climatology and neuroscience were already given as examples by Norbert Wiener in 1956 [8], a paper
which inspired econometrist Clive Granger to develop what is now termed Granger causality [9]. Wiener
proposed in this paper that a signal x causes another time series y, if the past of x has a strictly positive
influence on the quality of prediction of y. Let us quote Wiener [8]:

“As an application of this, let us consider the case where f1(α) represents the temperature
at 9 A.M. in Boston and f2(α) represents the temperature at the same time in Albany. We
generally suppose that weather moves from west to east with the rotation of the earth; the
two quantities 1 −C and its correlate in the other direction will enable us to make a precise
statement containing some if this content and then verify whether this statement is true or
not. Or again, in the study of brain waves we may be able to obtain electroencephalograms
more or less corresponding to electrical activity in different part of the brain. Here the study
of coefficients of causality running both ways and of their analogues for sets of more than
two functions f may be useful in determining what part of the brain is driving what other
part of the brain in its normal activity.”

In a wide sense, Granger causality can be summed up as a theoretical framework based on conditional
independence to assess directional dependencies between time series. It is interesting to note that Norbert
Wiener influenced Granger causality, as well as another field dedicated to the analysis of dependencies:
information theory. Information theory has led to the definition of quantities that measure the uncertainty
of variables using probabilistic concepts. Furthermore, this has led to the definition of measures of
dependence based on the decrease in uncertainty relating to one variable after observing another one.
Usual information theory is, however, symmetrical. For example, the well-known mutual information
rate between two stationary time series is symmetrical under an exchange of the two signals: the mutual
information assesses the undirectional dependence. Directional dependence analysis viewed as an
information-theoretic problem requires the breaking of the usual symmetry of information theory. This
was realized in the 1960s and early 1970s by Hans Marko, a German professor of communication. He
developed the bidirectional information theory in the Markov case [10]. This theory was later generalized
by James Massey and Gerhard Kramer, to what we may now call directed information theory [11,12].

It is the aim of this report to review the conceptual and theoretical links between Granger causality
and directed information theory.

Many information-theoretic tools have been designed for the practical implementation of Granger
causality ideas. We will not show all of the different measures proposed, because they are almost
always particular cases of the measures issued from directed information theory. Furthermore, some
measures might have been proposed in different fields (and/or at different periods of time) and have
received different names. We will only consider the well-accepted names. This is the case, for
example, of “transfer entropy”, as coined by Schreiber in 2000 [13], but which appeared earlier under
different names, in different fields, and might be considered under slightly different hypotheses. Prior to
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developing a unified view of the links between Granger causality and information theory, we will provide
a survey of the literature, concentrating on studies where information theory and Granger causality are
jointly presented.

Furthermore, we will not review any practical aspects, nor any detailed applications. In this spirit, this
report is different from [14], which concentrated on the estimation of information quantities, and where
the review is restricted to transfer entropy. For reviews on the analysis of dependencies between systems
and for applications of Granger causality in neuroscience, we refer to [15,16]. We will mention however
some important practical points in our conclusions, where we will also discuss some current and future
directions of research in the field.

1.1. What Is, and What Is Not, Granger Causality

We will not debate the meaning of causality or causation. We instead refer to [17]. However, we
must emphasize that Granger causality actually measures a statistical dependence between the past of a
process and the present of another. In this respect, the word causality in Granger causality takes on the
usual meaning that a cause occurs prior to its effect. However, nothing in the definitions that we will
recall precludes that signal x can simultaneously be Granger caused by y and be a cause of y! This lies
in the very close connection between Granger causality and the feedback between times series.

Granger causality is based on the usual concept of conditioning in probability theory, whereas
approaches developed for example in [17,18] relied on causal calculus and the concept of intervention.
In this spirit, intervention is closer to experimental sciences, where we imagine that we can really, for
example, freeze some system and measure the influence of this action on another process. It is now
well-known that causality in the sense of between random variables can be inferred unambiguously only
in restricted cases, such as directed acyclic graph models [17–20]. In the Granger causality context, there
is no such ambiguity and restriction.

1.2. A Historical Viewpoint

In his Nobel Prize lecture in 2003, Clive W. Granger mentioned that in 1959, Denis Gabor pointed
out the work of Wiener to him, as a hint to solve some of the difficulties he met in his work. Norbert
Wiener’s paper is about the theory of prediction [8]. At the end of his paper, Wiener proposed that
prediction theory could be used to define causality between time series. Granger further developed this
idea, and came up with a definition of causality and testing procedures [3,21].

In these studies, the essential stones were laid. Granger’s causality states that a cause must occur
before the effect, and that causality is relative to the knowledge that is available. This last statement
deserves some comment. When testing for causality of one variable on another, it is assumed that the
cause has information about the effect that is unique to it; i.e., this information is unknown to any other
variable. Obviously, this cannot be verified for variables that are not known. Therefore, the conclusion
drawn in a causal testing procedure is relative to the set of measurements that are available. A conclusion
reached based on a set of measurements can be altered if new measurements are taken into account.

Mention of information theory is also present in the studies of Granger. In the restricted case of two
Gaussian signals, Granger already noted the link between what he called the “causality indices” and the
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mutual information (Equation 5.4 in [21]). Furthermore, he already foresaw the generalization to the
multivariate case, as he wrote in the same paper:

“In the case of q variables, similar equations exist if coherence is replaced by partial
coherence, and a new concept of ‘partial information’ is introduced.”

Granger’s paper in 1969 does not contain much new information [3], but rather, it gives a refined
presentation of the concepts.

During the 1970’s, some studies, e.g., [4,22,23], appeared that generalized along some of the
directions Granger’s work, and related some of the applications to economics. In the early 1980’s, several
studies were published that established the now accepted definitions of Granger causality [24–27]. These
are natural extensions of the ideas built upon prediction, and they rely on conditional independence.
Finally, the recent studies of Dalhaus and Eichler allowed the definitions of Granger causality
graphs [28–30]. These studies provide a counterpart of graphical models of multivariate random
variables to multivariable stochastic processes.

In two studies published in 1982 and 1984 [31,32], Geweke, another econometrician, set up a
full treatment of Granger causality, which included the idea of feedback and instantaneous coupling.
In [31], the study was restricted to the link between two time series (possibly multidimensional). In
this study, Geweke defined an index of causality from x to y; It is the logarithm of the ratio of the
asymptotic mean square error when predicting y from its past only, to the asymptotic mean square
error when predicting y from its past and from the past of x. Geweke also defined the same kind of
index for instantaneous coupling. When the innovation sequence is Gaussian, the mutual information
rate between x and y decomposes as the sum of the indices of causality from x to y and from y to
x with the index of instantaneous coupling. This decomposition was shown in the Gaussian case,
and it remains valid in any case when the indices of causality are replaced by transfer entropy rates,
and the instantaneous coupling index is replaced by an instantaneous information exchange rate. This
link between Granger causality and directed information theory was further supported by [33–35]
(without mention of instantaneous coupling in [34,35]), and the generalization to the non-Gaussian case
by [36] (see also [37] for related results). However, prior to these recent studies, the generalization of
Geweke’s idea to some general setting was reported in 1987, in econometry by Gouriéroux et al. [38], and
in engineering by Rissannen&Wax [39]. Gouriéroux and his co-workers considered a joint Markovian
representation of the signals, and worked in a decision-theoretic framework. They defined a sequence of
nested hypotheses, whether causality was true or not, and whether instantaneous coupling was present
or not. They then worked out the decision statistics using the Kullback approach to decision theory [40],
in which discrepancies between hypotheses are measured according to the Kullback divergence between
the probability measures under the hypotheses involved. In this setting, the decomposition obtained
by Geweke in the Gaussian case was evidently generalised. In [39], the approach taken was closer
to Geweke’s study, and it relied on system identification, in which the complexity of the model was
taken into account. The probability measures were parameterized, and an information measure that
jointly assessed the estimation procedure and the complexity of the model was used when predicting a
signal. This allowed Geweke’s result to be extended to nonlinear modeling (and hence the non-Gaussian
case), and provided an information-theoretic interpretation of the tests. Once again, the same kind
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of decomposition of dependence was obtained by these authors. We will see in Section 3 that
the decomposition holds due to Kramers causal conditioning. These studies were limited to the
bivariate case [38,39].

In the late 1990s, some studies began to develop in the physics community on influences between
dynamical systems. A first route was taken that followed the ideas of dynamic system studies for
the prediction of chaotic systems. To determine if one signal influenced another, the idea was to
consider each of the signals as measured states of two different dynamic systems, and then to study
the master-slave relationships between these two systems (for examples, see [41–43]). The dynamics
of the systems was built using phase space reconstruction [44]. The influence of one system on another
was then defined by making a prediction of the dynamics in the reconstructed phase space of one of the
processes. To our knowledge, the setting was restricted to the bivariate case. A second route, which
was also restricted to the bivariate case, was taken and relied on information-theoretic tools. The main
contributions were from Paluš and Schreiber [13,45], with further developments appearing some years
later [46–49]. In these studies, the influence of one process on the other was measured by the discrepancy
between the probability measures under the hypotheses of influence or no influence. Naturally, the
measures defined very much resembled the measures proposed by Gouriéroux et. al [38], and used
the concept of conditional mutual information. The measure to assess whether one signal influences
the other was termed transfer entropy by Schreiber. Its definition was proposed under a Markovian
assumption, as was exactly done in [38]. The presentation by Paluš [45] was more direct and was not
based on a decision-theoretic idea. The measure defined is, however, equivalent to the transfer entropy.
Interestingly, Paluš noted in this 2001 paper the closeness of the approach to Granger causality, as per
the quotation:

“the latter measure can also be understood as an information theoretic formulation of the
Granger causality concept.”

Note that most of these studies considered bivariate analysis, with the notable exception of [46], in which
the presence of side information (other measured time series) was explicitely considered.

In parallel with these studies, many others were dedicated to the implementation of Granger causality
testing in fields as diverse as climatology (with applications to the controversial questions of global
warming) and neuroscience; see [6,7,15,30,50–54], to cite but a few.

In a very different field, information theory, the problem of feedback has lead to many questions
since the 1950s. We will not review or cite anything on the problem created by feedback in information
theory as this is not within the scope of the present study, but some information can be found in [55].
Instead, we will concentrate on studies that are directly related to the subject of this review. A major
breakthrough was achieved by James Massey in 1990 in a short conference paper [12]. Following the
ideas of Marko on bidirectional information theory that were developed in the Markovian case [10],
Massey re-examined the usual definition of what is called a discrete memoryless channel in information
theory, and he showed that the usual definition based on some probabilistic assumptions prohibited the
use of feedback. He then clarified the definition of memory and feedback in a communication channel.
As a consequence, he showed that in a general channel used with feedback, the usual definition of
capacity that relies on mutual information was not adequate. Instead, the right measure was shown to
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be directed information, an asymmetrical measure of the flow of information. These ideas were further
examined by Kramer, who introduced the concept of causal conditioning, and who developed the first
applications of directed information theory to communication in networks [11]. After some years, the
importance of causal conditioning for the analysis of communication in systems with feedback was
realized. Many studies were then dedicated to the analysis of the capacity of channels with feedback and
the dual problem of rate-distortion theory [56–59]. Due to the rapid development in the study of networks
(e.g., social networks, neural networks) and of the afferent connectivity problem, more recently many
authors made connections between information theory and Granger causality [33,34,36,37,60–62]. Some
of these studies were restricted to the Gaussian case, and to the bivariate case. Most of these studies did
not tackle the problem of instantaneous coupling. Furthermore, several authors realized the importance
of directed information theory to assess the circulation of information in networks [1,2,63,64].

1.3. Outline

Tools from directed information theory appear as natural measures to assess Granger causality.
Although Granger causality can be considered as a powerful theoretical framework to study influences
between signals mathematically, directed information theory provides the measures to test theoretical
assertions practically. As already mentioned, these measures are transfer entropy (and its conditional
versions), which assesses the dynamical part of Granger causality, and instantaneous information
exchange (and its conditional versions), which assesses instantaneous coupling.

This review is structured here as follows. We will first give an overview of the definitions of Granger
causality. These are presented in a multivariate setting. We go gradually from weak definitions based
on prediction, to strong definitions based on conditional independence. The problem of instantaneous
coupling is then discussed, and we show that there are two possible definitions for it. Causality graphs
(after Eichler [28]) provide particular reasons to prefer one of these definitions. Section 3 introduces
an analysis of Granger causality from an information-theoretic perspective. We insist on the concept
of causal conditioning, which is at the root of the relationship studied. Section 4 then highlights the
links. Here, we first restate the definitions of Granger causality using concepts from directed information
theory. Then from a different point of view, we show how conceptual inference approaches lead to the
measures defined in directed information theory. The review then closes with a discussion of some of
the aspects that we do not present here intentionally, and on some lines for further research.

1.4. Notations

All of the random variables, vectors and signals considered here are defined in a common probability
space (Ω,B, P ). They take values either in R or Rd, d being some strictly positive integer, or they can
even take discrete values. As we concentrate on conceptual aspects rather than technical aspects, we
assume that the variables considered are “well behaved”. In particular, we assume finiteness of moments
of sufficient order. We assume that continuously valued variables have a measure that is absolutely
continuous with respect to the Lebesgue measure of the space considered. Hence, the existence of
probability density functions is assumed. Limits are supposed to exist when needed. All of the processes
considered in this report are assumed to be stationary.
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We work with discrete time. A signal will generically be denoted as x(k). This notation stands also
for the value of the signal at time k. The collection of successive samples of the signal, xk, xk+1, . . . , xk+n

will be denoted as xk+nk . Often, an initial time will be assumed. This can be 0, 1, or −∞. In any case, if
we collect all of the sample of the signals from the initial time up to time n, we will suppress the lower
index and write this collection as xn.

When dealing with multivariate signals, we use a graph-theoretic notation. This will simplify some
connections with graphical modeling. Let V be an index set of finite cardinality ∣V ∣. xV = {xV (k), k ∈ Z}
is a d-dimensional discrete time stationary multivariate process for the probability space considered. For
a ∈ V , xa is the corresponding component of xV . Likewise, for any subsetA ⊂ V , xA is the corresponding
multivariate process (xa1 , . . . , x∣A∣). We say that subsets A,B,C form a partition of V if they are disjoint
and if A ∪B ∪C = V . The information obtained by observing xA up to time k is given by the filtration
generated by {xA(l),∀l ≤ k}. This is denoted as xkA. Furthermore, we will often identify xA with A in
the discussion.

The probability density functions (p.d.f.) or probability mass functions (p.m.f) will be denoted by
the same notation as p(xnA). The conditional p.d.f. and p.m.f. are written as p(xnA∣xmB ). The expected
value is denoted as E[.],Ex[.] or Ep[.] if we want to specify which variable is averaged, or under which
probability measure the expected value is evaluated.

Independence between random variables and vectors x and y will be denoted as x á y, while
conditional independence given z will be written as x á y ∣ z.

2. Granger’s Causality

The early definitions followed the ideas of Wiener: A signal x causes a signal y if the past of x
helps in the prediction of y. Implementing this idea requires the performing of the prediction and the
quantification of its quality. This leads to a weak, but operational, form of the definitions of Granger
causality. The idea of improving a prediction is generalized by encoding it into conditional dependence
or independence.

2.1. From Prediction-Based Definitions. . .

Consider a cost function g ∶ Rk Ð→ R (k is some appropriate dimension), and the associated
risk E[g(e)], where e stands for an error term. Let a predictor of xB(n) be defined formally as
x̂B(n + 1) = f(xnA), where A and B are subsets of V , and f is a function between appropriate spaces,
chosen to minimize the risk with e(n) ∶= xB(n + 1) − x̂B(n + 1). Solvability may be granted if f is
restricted to an element of a given class of functions, such as the set of linear functions. Let F be such a
function class. Define:

RF(B(n + 1)∣An) = inf
f∈F

E[g(xB(n + 1) − f(xnA))] (1)

RF(B(n + 1)∣An) is therefore the optimal risk when making a one-step-ahead prediction of the
multivariate signal xB from the past samples of the multivariate signal xA. We are now ready to measure
the influence of the past of a process on the prediction of another. To be relatively general and to prepare
comments on the structure of the graph, this can be done for subsets of V . We thus choose A and B to
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be two disjoint subsets of V , and we define C ∶= V /(A ∪B) (we use / to mean subtraction of a set). We
study causality from xA to xB by measuring the decrease in the quality of the prediction of xB(n) when
excluding the past of xA.

Let RF(B(n + 1)∣V n) be the optimal risk obtained for the prediction of xB from the past of all of
the signals grouped in xV . This risk is compared with RF(B(n + 1)∣(V /A)n), where the past of xA is
omitted. Then, for the usual costs functions, we have necessarily:

RF(B(n + 1)∣V n) ≤ RF(B(n + 1)∣(V /A)n) (2)

A natural first definition for Granger causality is:

Definition 1. xA Granger does not cause xB relative to V if and only if RF(B(n + 1)∣V n) =
RF(B(n + 1)∣(V /A)n)

This definition of Granger causality depends on the cost g chosen as well as on the class F of the
functions considered. Usually, a quadratic cost function is chosen, for its simplicity and for its evident
physical interpretation (a measure of the power of the error). The choice of the class of functions F is
crucial. The result of the causality test in definition 1 can change when the class is changed. Consider the
very simple example of xn+1 = αxn + βy2

n + εn+1, where yn and εn are zero-mean Gaussian independent
and identically distributed (i.i.d.) sequences that are independent of each other. The covariance between
xn+1 and yn is zero, and using the quadratic loss and the class of linear functions, we conclude that
y does not Granger cause x, because using a linear function of xn, yn to predict x would lead to the
same minimal risk as using a linear function of xn only. However, yn obviously causes xn, but in a
nonlinear setting.

The definition is given using the negative of the proposition. If by using the positive way, i.e.,
RF(B(n + 1)∣V n) < RF(B(n + 1)∣(V /A)n), Granger proposes to say that xA is a prima facie cause
of xB relative to V , prima facie can be translated as “at a first glance”. This is used to insist that if V is
enlarged by including other measurements, then the conclusion might be changed. This can be seen as
redundant with the mention of the relativity to the observation set V , and we therefore do not use this
terminology. However, a mention of the relativity to V must be used, as modification of this set can alter
the conclusion. A very simple example of this situation is the chain xn → yn → zn, where, for example,
xn is an i.i.d. sequence, yn+1 = xn + εn+1, zn+1 = yn + ηn+1, εn, ηn being independent i.i.d. sequences.
Relative to V = {x, z}, x causes z if we use the quadratic loss and linear functions of the past samples
of x (note here that the predictor zn+1 must be a function of not only xn, but also of xn−1). However,
if we include the past samples of y and V = {x, y, z}, then the quality of the prediction of z does not
deteriorate if we do not use past samples of x. Therefore, x does not cause z relative to V = {x, y, z}.

The advantage of the prediction-based definition is that it leads to operational tests. If the quadratic
loss is chosen, working in a parameterized class of functions, such as linear filters or Volterra filters, or
even working in reproducing kernel Hilbert spaces, allows the implementation of the definition [65–67].
In such cases, the test can be evaluated efficiently from the data. From a theoretical point of view, the
quadratic loss can be used to find the optimal function in a much wider class of functions: the measurable
functions. In this class, the optimal function for the quadratic loss is widely known to be the conditional
expectation [68]. When predicting xB from the whole observation set V , the optimal predictor is written
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as x̂B(n+1) = E[xB(n+1)∣xnV ]. Likewise, elimination of A from V to study its influence on B leads to
the predictor x̂B(n+1) = E[xB(n+1)∣xnB, xnC], where V = C ∪A∪B. These estimators are of little use,
because they are too difficult, or even impossible, to compute. However, they highlight the importance
of conditional distributions p(xB(n+ 1)∣xnV ) and p(xB(n+ 1)∣xnB, xnC) in the problem of testing whether
xA Granger causes xB relative to V or not.

2.2. . . . To a Probabilistic Definition

The optimal predictors studied above are equal if the conditional probability distributions
p(xB(n + 1)∣xnV ) and p(xB(n + 1)∣xnB, xnC) are equal. These distributions are identical if and only if
xB(n + 1) and xnA are independent conditionally to xnB, x

n
C . A natural extension of definition 1 relies on

the use of conditional independence. Once again, let A ∪B ∪C be a partition of V .

Definition 2. xA does not Granger cause xB relative to V if and only if xB(n+1) á xnA ∣ xnB, xnC , ∀n ∈ Z

This definition means that conditionally to the past of xC , the past of xA does not bring more information
about xB(n + 1) than is contained in the past of xB.

Definition 2 is far more general than definition 1. If xA does not Granger cause xB relatively to V in
the sense of definition 1, it also does not in the sense of definition 2. Then, definition 2 does not rely on
any function class and on any cost function. However, it lacks an inherent operational character: the tools
to evaluate conditional independence remain to be defined. The assessment of conditional independence
can be achieved using measures of conditional independence, and some of these measures will be the
cornerstone to link directed information theory and Granger causality.

Note also that the concept of causality in this definition is again a relative concept, and that adding or
deleting data from the observation set V might modify the conclusions.

2.3. Instantaneous Coupling

The definitions given so far concern the influence of the past of one process on the present of another.
This is one reason that justifies the use of the term “causality”, when the definitions are actually based on
statistical dependence. For an extensive discussion on the differences between causality and statistical
dependence, we refer to [17].

There is another influence between the processes that is not taken into account by definitions 1 and 2.
This influence is referred to as “instantaneous causality” [21,27]. However, we will prefer the term
“instantaneous coupling”, specifically to insist that it is not equivalent to a causal link per se, but actually
a statistical dependence relationship. The term “contemporaneous conditional independence” that is used
in [28] could also be chosen.

Instantaneous coupling measures the common information between xA(n+1) and xB(n+1) that is not
shared with their past. A definition of instantaneous coupling might then be that xA(n+1) and xB(n+1)
are not instantaneously coupled if xA(n + 1) á xB(n + 1) ∣ xnA, xnB, ∀n. This definition makes perfect
sense if the observation set is reduced to A and B, a situation we refer to as the bivariate case. However,
in general, there is also side information C, and the definition must include this knowledge. However,
this presence of side information then leads to two possible definitions of instantaneous coupling.
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Definition 3. xA and xB are not conditionally instantaneously coupled relative to V if and only if
xA(n + 1) á xB(n + 1) ∣ xnA, xnB, xn+1

C , ∀n ∈ Z, where A ∪B ∪C is a partition of V .

The second possibility is the following:

Definition 4. xA and xB are not instantaneously coupled relative to V if and only if xA(n + 1) á
xB(n + 1) ∣ xnA, xnB, xnC , ∀n ∈ Z

Note that definitions 3 and 4 are symmetrical in A and B (the application of Bayes theorem). The
difference between definitions 3 and 4 resides in the conditioning on xn+1

C instead of xnC . If the
side information up to time n is considered only as in definition 4, the instantaneous dependence or
independence is not conditional on the presence of the remaining nodes in C. Thus, this coupling is a
bivariate instantaneous coupling: it does measure instantaneous dependence (or independence between
A and B) without considering the possible instantaneous coupling between either A and C or B and C.
Thus, instantaneous coupling found with definition 4 between A and B does not preclude the possibility
that the coupling is actually due to couplings between A and C and/or B and C.

Inclusion of all of the information up to time n+1 in the conditioning variables allows the dependence
or independence to be tested between xA(n + 1) and xB(n + 1) conditionally to xC(n + 1).

We end up here with the same differences as those between correlation and partial correlation,
or dependence and conditional independence for random variables. In graphical modeling, the
usual graphs are based on conditional independence between variables [19,20]. These conditional
independence graphs are preferred to independence graphs because of their geometrical properties
( e.g., d-separation [17]), which match the Markov properties possibly present in the multivariate
distribution they represent. From a physical point of view, conditional independence might be preferable,
specifically to eliminate “false” coupling due to third parties. In this respect, conditional independence
is not the panacea, as independent variables can be conditionally dependent. The well-known example
is the conditional coupling of independent x and y by their addition. Indeed, even if independent, x and
y are conditionally dependent to z = x + y.

2.4. More on Graphs

Granger causality graphs were defined and studied in [28]. A causality graph is a mixed graph
(V,Ed,Eu) that encodes Granger causality relationships between the components of xV . The vertex set
V stores the indices of the components of xV . Ed is a set of directed edges between vertices. A directed
edge from a to b is equivalent to “xa Granger causes xb relatively to V ”. Eu is a set of undirected edges.
An undirected edge between xa and xb is equivalent to “xa and xb are (conditionally if def.4 adopted)
instantaneously coupled”. Interestingly, a Granger causality graph may have Markov properties (as in
usual graphical models) reflecting a particular (spatial) structure of the joint probability distribution
of the whole process {xtV } [28]. A taxonomy of Markov properties (local, global, block recursive)
is studied in [28], and equivalence between these properties is put forward. More interestingly, these
properties are linked with topological properties of the graph. Therefore, structural properties of the
graphs are equivalent to a particular factorization of the joint probability of the multivariate process.
We will not continue on this subject here, but this must be known since it paves the way to more
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efficient inference methods for Granger graphical modeling of multivariate processes (see first steps
in this direction in [69,70]).

3. Directed Information Theory and Directional Dependence

Directed information theory is a recent extension of information theory, even if its roots go back to
the 1960s and 1970s and the studies of Marko [10]. The developments began in the late 1990s, after
the impetus given by James Massey in 1990 [12]. The basic theory was then extended by Gerhard
Kramer [11], and then further developed by many authors [56–59,71] to cite a few. We provide here a
short review of the essentials of directed information theory. We will, moreover, adopt a presentation
close to the spirit of Granger causality to highlight the links between Granger causality and information
theory. We begin by recalling some basics from information theory. Then, we describe the information-
theoretic approach to study directional dependence between stochastic processes, first in the bivariate
case, and then, from Section 3.5, for networks, i.e., the multivariate case.

3.1. Notation and Basics

Let H(xnA) = −E[log p(xnA)] be the entropy of a random vector xnA, the density of which is p. Let the
conditional entropy be defined as H(xnA∣xnB) = −E[log p(xnA∣xnB)]. The mutual information I(xnA; ynB)
between xnA and xnB is defined as [55]:

I(xnA;xnB) = H(xnB) −H(xnB ∣xnA)
= DKL (p(xnA, xnB)∥p(xnA)p(xnB)) (3)

where DKL(p∣∣q) = Ep[log p(x)/q(x)] is the Kulback–Leibler divergence. DKL(p∣∣q) is 0 if and only
if p = q, and it is positive otherwise. The mutual information effectively measures independence since
it is 0 if and only if xnA and xnB are independent random vectors. As I(xnA;xnB) = I(xnB;xnA), mutual
information cannot handle directional dependence.

Let xnC be a third time series. It might be a multivariate process that accounts for side information (all
of the available observations, but xnA and xnB). To account for xnC , the conditional mutual information
is introduced:

I(xnA;xnB ∣xnC) = E[DKL(p(xnA, xnB ∣xnC)∣∣p(xnA∣xnC)p(xmB ∣xnC))] (4)

= DKL(p(xnA, xnB, xnC)∣∣p(xnA∣xnC)p(xnB ∣xnC)p(xnC)) (5)

I(xnA;xnB ∣xnC) is zero if and only if xnA and xnB are independent conditionally to xnC . Stated differently,
conditional mutual information measures the divergence between the actual observations and those that
would be observed under the Markov assumption (x → z → y). Arrows can be misleading here, as by
reversibility of Markov chains, the equality above holds also for (y → z → x). This emphasizes how
mutual information cannot provide answers to the information flow directivity problem.

3.2. Directional Dependence between Stochastic Processes; Causal Conditioning

The dependence between the components of the stochastic process xV is encoded in the full
generality by the joint probability distributions p(xnV ). If V is partitioned into subsets A,B,C, studying
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dependencies between A and B then requires that p(xnV ) is factorized into terms where xA and xB

appear. For example, as p(xnV ) = p(xnA, xnB, xnC), we can factorize the probability distribution as
p(xnB ∣xnA, xnC)p(xnA, xnC), which appears to emphasize a link from A to B. Two problems appear,
however: first, the presence of C perturbs the analysis (more than this, A and C have a symmetrical
role here); secondly, the factorization does not take into account the arrow of time, as the conditioning is
considered over the whole observations up to time n.

Marginalizing xC out makes it possible to work directly on p(xnA, xnB). However, this eliminates all
of the dependence between A and B that might exist via C, and therefore this might lead to an incorrect
assessment of the dependence. As for Granger causality, this means that dependence analysis is relative
to the observation set. Restricting the study to A and B is what we referred to as the bivariate case,
and this allows the basic ideas to be studied. We will therefore present directed information first in the
bivariate case, and then turn to the full multivariate case.

The second problem is at the root of the measure of directional dependence between stochastic
processes. Assuming that xA(n) and xB(n) are linked by some physical (e.g., biological, economical)
system, it is natural to postulate that their dependence is constrained by causality: if A → B, then an
event occurring at some time in A will influence B later on. Let us come back to the simple factorization
above for the bivariate case. We have p(xnA, xnB) = p(xnB ∣xnA)p(xnA), and furthermore (We implicitly
choose 1 here as the initial time):

p(xnB ∣xnA) =
n

∏
i=1

p(xB(i)∣xi−1
B , xnA) (6)

where for i = 1, the first term is p(xB(1)∣xA(1)). The conditional distribution quantifies a directional
dependence from A to B, but it lacks the causality property mentioned above, as p(xB(i)∣xi−1

B , xnA)
quantifies the influence of the whole observation xnA (past and future of i) on the present xB(i) knowing
its past xi−1

B . The causality principle would require the restriction of the prior time i to the past ofA only.
Kramer defined “causal conditioning” precisely in this sense [11]. Modifying Equation (6) accordingly,
we end up with the definition of the causal conditional probability distribution:

p(xnB∥xnA) ∶=
n

∏
i=1

p(xB(i)∣xi−1
B , xiA) (7)

Remarkably this provides an alternative factorization of the joint probability. As noted by Massey [12],
p(xnA, ynB) can then be factorized as (xn−1

B stands for the delayed collections of samples of xB. If the time
origin is finite, 0 or 1, the first element of the list xn−1

B should be understood as a wild card ∅, which does
not influence the conditioning.):

p(xnA, xnB) = p(xnB∥xnA)p(xnA∥xn−1
B ) (8)

Assuming that xA is the input of a system that creates xB, p(xnA∥xn−1
B ) = ∏i p(xA(i)∣xi−1

A , xi−1
B )

characterizes the feedback in the system: each of the factors controls the probability of the input
xA at time i conditionally to its past and to the past values of the output xB. Likewise, the term
p(xnB∥xnA) =∏i p(xB(i)∣xi−1

B , xiA) characterizes the direct (or feedforward) link in the system.
Several interesting simple cases occur:
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• In the absence of feedback in the link from A to B, there is the following:

p(xA(i)∣xi−1
A , xi−1

B ) = p(xA(i)∣xi−1
A ), ∀i ≥ 2 (9)

or equivalently, in terms of entropies,

H(xA(i)∣xi−1
A , xi−1

B ) =H(xA(i)∣xi−1
A ), ∀i ≥ 2 (10)

and as a consequence:

p(xnA∥xn−1
B ) = p(xnA) (11)

• Likewise, if there is only a feedback term, then p(xB(i)∣xi−1
B , xiA) = p(xB(i)∣xi−1

B ) and then:

p(xnB∥xnA) = p(xnB) (12)

• If the link is memoryless, i.e., the output xB does not depend on the past, then:

p(xB(i)∣xiA, yi−1
B ) = p(xB(i)∣xA(i)) ∀i ≥ 1 (13)

These results allow the question of whether xA influences xB to be addressed. If it does, then
the joint distribution has the factorization of Equation (8). However, if xA does not influence xB,
then p(xnB∥xnA) = p(xnB), and the factorization of the joint probability distribution simplifies to
p(xnA∥xn−1

B )p(xnB). Kullback divergence between the probability distributions for each case generalizes
the definition of mutual information to the directional mutual information:

I(xnA → xnB) =DKL (p(xnA, xnB)∥p(xnA∥xn−1
B )p(xnB)) (14)

This quantity measures the loss of information when it is incorrectly assumed that xA does not influence
xB. This was called directed information by Massey [12]. Expanding the Kullback divergence allows
different forms for the directed information to be obtained:

I(xnA → xnB) =
n

∑
i=1

I(xiA;xB(i)∣xi−1
B ) (15)

= H(xnB) −H(xnB∥xnA) (16)

where we define the “causal conditional entropy”:

H(xnB∥xnA) = −E[ log p(xnB∥xnA)] (17)

=
n

∑
i=1

H(xB(i)∣xi−1
B , xiA) (18)

Note that causal conditioning might involve more than one process. This leads to define the causal
conditional directed information as:

I(xnA → xnB∥xnC) ∶= H(xnB∥xnC) −H(xnB∥xnA, xnC)

=
n

∑
i=1

I(xiA;xB(i)∣xi−1
B , xiC) (19)
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The basic properties of the directed information were studied by Massey and Kramer [11,12,72], and
some are recalled below. As a Kullback divergence, the directed information is always positive or zero.
Then, simple algebraic manipulation allows the decomposition to be obtained:

I(xnA → xnB) + I(xn−1
B → xnA) = I(xnA;xnB) (20)

Equation (20) is fundamental, as it shows how mutual information splits into the sum of a feedforward
information flow I(xnA → xnB) and a feedback information flow I(xn−1

B → xnA). In the absence of
feedback, p(xnA∥xn−1

B ) = p(xnA) and I(xnA;xnB) = I(xnA → xnB). Equation (20) allows the conclusion
that the mutual information is always greater than the directed information, as I(xn−1

B → xnA) is always
positive or zero (as directed information). It is zero if and only if:

I(xA(i);xi−1
B ∣xi−1

A ) = 0 ∀i = 2, . . . , n (21)

or equivalently:

H(xA(i)∣xi−1
A , xi−1

B ) =H(xA(i)∣xi−1
A ) ∀i = 2, . . . , n (22)

This situation corresponds to the absence of feedback in the link A→ B, whence the fundamental result
that the directed information and the mutual information are equal if the channel is free of feedback. This
result implies that mutual information over-estimates the directed information between two processes in
the presence of feedback. This was thoroughly studied in [11,57–59], in a communication-theoretic
framework.

The decomposition of Equation (20) is surprising, as it shows that the mutual information is not the
sum of the directed information flowing in both directions. Instead, the following decomposition holds:

I(xnA → xnB) + I(xnB → xnA) = I(xnA;xnB) + I(xnA → xnB∥xn−1
A ) (23)

where:

I(xnA → xnB ∣∣xn−1
A ) = ∑

i

I(xiA;xB(i)∣xi−1
B , xi−1

A )

= ∑
i

I(xA(i);xB(i)∣xi−1
B , xi−1

A ) (24)

This demonstrates that I(xnA → xnB)+I(xnB → xnA) is symmetrical, but is in general not equal to the mutual
information, except if and only if I(xA(i);xB(i)∣xi−1

B , xi−1
A ) = 0,∀i = 1, . . . , n. As the term in the sum

is the mutual information between the present samples of the two processes conditioned on their joint
past values, this measure is a measure of instantaneous dependence. It is indeed symmetrical in A and
B. The term I(xnA → xnB ∣∣xn−1

A ) = I(xnB → xnA∣∣xn−1
B ) will thus be named the instantaneous information

exchange between xA and xB, and will hereafter be denoted as I(xnA ↔ xnB). Like directed information,
conditional forms of the instantaneous information exchange can be defined, as for example:

I(xnA↔ xnB∥xnC) ∶= I(xnA → xnB ∣∣xn−1
A , xnC) (25)

which quantifies an instantaneous information exchange between A and B causally conditionally to C.
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3.3. Directed Information Rates

Entropy and mutual information in general increase linearly with the length n of the recorded time
series. Shannon’s information rate for stochastic processes compensates for the linear growth by
considering A∞(x) = limn→+∞A(xn)/n ( if the limit exists), where A(xn) denotes any information
measure on the sample xn of length n. For the important class of stationary processes (see e.g., [55]),
the entropy rate turns out to be the limit of the conditional entropy:

lim
n→+∞

1

n
H(xnA) = lim

n→+∞
H(xA(n)∣xn−1

A ) (26)

Kramer generalized this result for causal conditional entropies [11], thus defining the directed
information rate for stationary processes as:

I∞(xA → xB) = lim
n→+∞

1

n

n

∑
i=1

I(xiA;xB(i)∣xi−1
B )

= lim
n→+∞

I(xnA;xB(n)∣xn−1
B ) (27)

This result holds also for the instantaneous information exchange rate. Note that the proof of the result
relies on the positivity of the entropy for discrete valued stochastic processes. For continuously valued
processes, for which the entropy can be negative, the proof is more involved and requires the methods
developed in [73–75], and see also [58].

3.4. Transfer Entropy and Instantaneous Information Exchange

As introduced by Schreiber in [13,47], transfer entropy evaluates the deviation of the observed data
from a model, assuming the following joint Markov property:

p(xB(n)∣x n−1
Bn−k+1, x

n−1
An−l+1) = p(xB(n)∣x n−1

Bn−k+1) (28)

This leads to the following definition:

T (x n−1
An−l+1 → x n

B n−k+1) = E [log
p(xB(n)∣x n−1

Bn−k+1, x
n−1

An−l+1)
p(xB(n)∣x n−1

Bn−k+1)
] (29)

Then T (x n−1
An−l+1 → x n

B n−k+1) = 0 if and only if Equation (28) is satisfied. Although in the original
definition, the past of x in the conditioning might begin at a different time m /= n, for practical reasons
m = n is considered. Actually, no a priori information is available about possible delays, and setting
m = n allows the transfer entropy to be compared with the directed information.

By expressing the transfer entropy as a difference of conditional entropies, we get:

T (x n−1
An−l+1 → x n

B n−k+1) = H(xB(n)∣x n−1
Bn−k+1) −H(xB(n)∣x n−1

Bn−k+1, x
n−1

An−l+1)
= I(x n−1

An−l+1;xB(n)∣x n−1
Bn−k+1) (30)

For l = n = k and choosing 1 as the time origin, the identity I(x, y; z∣w) = I(x; z∣w) + I(y; z∣x,w)
leads to:

I(xnA;xB(n)∣xn−1
B ) = I(xn−1

A ;xB(n)∣xn−1
B ) + I(xA(n);xB(n)∣xn−1

A , xn−1
B )

= T (xn−1
A → xnB) + I(xA(n);xB(n)∣xn−1

A , xn−1
B ) (31)
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For stationary processes, letting n→∞ and provided the limits exist, for the rates, we obtain:

I∞(xA → xB) = T∞(xA → xB) + I∞(xA↔ xB) (32)

Transfer entropy is the part of the directed information that measures the influence of the past of xA on
the present of xB. However it does not take into account the possible instantaneous dependence of one
time series on another, which is handled by directed information.

Moreover, as defined by Schreiber in [13,47], only I(xi−1
A ;xB(i)∣xi−1

B ) is considered in T , instead
of its sum over i in the directed information. Thus stationarity is implicitly assumed and the transfer
entropy has the same meaning as a rate. A sum over delays was considered by Paluš as a means of
reducing errors when estimating the measure [48]. Summing over n in Equation (31), the following
decomposition of the directed information is obtained:

I(xnA → xnB) = I(xn−1
A → xnB) + I(xnA↔ xnB) (33)

Equation (33) establishes that the influence of one process on another can be decomposed into two terms
that account for the past and for the instantaneous contributions. Moreover, this explains the presence
of the term I(xnA ↔ xnB) in the r.h.s. of Equation (23): Instantaneous information exchange is counted
twice in the l.h.s. terms I(xnA → xnB) + I(xnB → xnA), but only once in the mutual information I(xnA;xnB).
This allows Equation (23) to be written in a slightly different form, as:

I(xn−1
A → xnB) + I(xn−1

B → xnA) + I(xnA↔ xnB) = I(xnA;xnB) (34)

which is very appealing, as it shows how dependence as measured by mutual information decomposes
as the sum of the measures of directional dependences and the measure of instantaneous coupling.

3.5. Accounting for Side Information

The preceding developments aimed at the proposing of definitions of the information flow between xA
and xB; however, whenever A and B are connected to other parts of the network, the flow of information
between A and B might be mediated by other members of the network. Time series observed on nodes
other than A and B are hereafter referred to as side information. The available side information at time
n is denoted as xnC , with A,B,C forming a partition of V . Then, depending on the type of conditioning
(usual or causal) two approaches are possible. Usual conditioning considers directed information from
A to B that is conditioned on the whole observation xnC . However, this leads to the consideration of
causal flows from A to B that possibly include a flow that goes from A to B via C in the future! Thus,
an alternate definition for conditioning is required. This is given by the definition of Equation (19) of the
causal conditional directed information:

I(xnA → xnB∥xnC) ∶= H(xnB∥xnC) −H(xnB∥xnA, xnC)

=
n

∑
i=1

I(xiA;xB(i)∣xi−1
B , xiC) (35)

Does the causal conditional directed information decompose as the sum of a causal conditional
transfer entropy and a causal conditional instantaneous information exchange, as it does in the bivariate
case? Applying twice the chain rule for conditional mutual information, we obtain:

I(xnA → xnB∥xnC) = I(xn−1
A → xnB∥xn−1

C ) + I(xnA↔ xnB∥xnC) +∆I(xnC ↔ xnB) (36)
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In this equation, I(xn−1
A → xnB∥xn−1

C ) is termed the “causal conditional transfer entropy”. This measures
the flow of information from A to B by taking into account a possible route via C. If the flow of
information from A to B is entirely relayed by C, the “causal conditional transfer entropy” is zero. In
this situation, the usual transfer entropy is not zero, indicating the existence of a flow from A to B.
Conditioning on C allows the examination of whether the route goes through C. The term:

I(xnA↔ xnB∥xnC) ∶= I(xnA → xnB∥xn−1
A , xnC) (37)

=
n

∑
i=1

I(xA(i);xB(i)∣xi−1
B , xi−1

A , xiC) (38)

is the “causal conditional information exchange”. It measures the conditional instantaneous coupling
between A and B. The term ∆I(xnC ↔ xnB) emphasizes the difference between the bivariate and the
multivariate cases. This extra term measures an instantaneous coupling and is defined by:

∆I(xnC ↔ xnB) = I(xnC ↔ xnB∥xn−1
A ) − I(xnC ↔ xnB) (39)

An alternate decomposition to Equation (36) is:

I(xnA → xnB∥xnC) = I(xn−1
A → xnB∥xnC) + I(xnA↔ xnB∥xnC) (40)

which emphasizes that the extra term comes from:

I(xn−1
A → xnB∥xnC) = I(xn−1

A → xnB∥xn−1
C ) +∆I(xnC ↔ xnB) (41)

This demonstrates that the definition of the conditional transfer entropy requires conditioning on the past
of C. If not, the extra term appears and accounts for instantaneous information exchanges between C
andB, due to the addition of the term xC(i) in the conditioning. This extra term highlights the difference
between the two different natures of instantaneous coupling. The first term,

I(xnC ↔ xnB∥xn−1
A ) =∑

i

I(xC(i);xB(i)∣xi−1
A , xi−1

B , xi−1
C ) (42)

describes the intrinsic coupling in the sense that it does not depend on parties other than C and B. The
second coupling term,

I(xnC ↔ xnB) =∑
i

I(xC(i);xB(i)∣xi−1
B , xi−1

C )

is relative to the extrinsic coupling, as it measures the instantaneous coupling at time i that is created by
variables other than B and C.

As discussed in Section 2.3, the second definition for instantaneous coupling considers conditioning
on the past of the side information only. Causally conditioning on xn−1

C does not modify the results of
the bivariate case. In particular, we still get the elegant decomposition:

I(xnA → xnB∥xn−1
C ) = I(xn−1

A → xnB∥xn−1
C ) + I(xnA↔ xnB∥xn−1

C ) (43)

and therefore, the decomposition of Equation (34) is generalized to:

I(xn−1
A → xnB∥xn−1

C ) + I(xn−1
B → xnA∥xn−1

C ) + I(xnA↔ xnB∥xn−1
C ) = I(xnA;xnB∥xn−1

C ) (44)
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where:

I(xnA;xnB∥xn−1
C ) =∑

i

I(xnA;xB(i)∣xi−1
B , xi−1

C ) (45)

is the causally conditioned mutual information.
Finally, let us consider that for jointly stationary time series, the causal directed information rate is

defined similarly to the bivariate case as:

I∞(xA → xB∥xC) = lim
n→+∞

1

n

n

∑
i=1

I(xiA;xB(i)∣xi−1
B , xiC) (46)

= lim
n→+∞

I(xnA;xB(n)∣xn−1
B , xnC) (47)

In this section we have emphasized on Kramer’s causal conditioning, both for the definition of directed
information and for taking into account side information. We have also shown that Schreiber’s transfer
entropy is the part of the directed information that is dedicated to the strict sense of causal information
flow (not accounting for simultaneous coupling). The next section more explicitly revisits the links
between Granger causality and directed information theory.

4. Inferring Granger Causality and Instantaneous Coupling

Granger causality in its probabilistic form is not operational. In practical situations, for assessing
Granger causality between time series, we cannot use the definition directly. We have to define dedicated
tools to assess the conditional independence. We use this inference framework to show the links between
information theory and Granger causality. We begin by re-expressing Granger causality definitions in
terms of some measures that arise from directed information theory. Therefore, in an inference problem,
these measures can be used as tools for inference. However, we show in the following sections that these
measures naturally emerge from the more usual statistical inference strategies. In the following, and as
above, we use the same partitioning of V into the union of disjoint subsets of A, B and C.

4.1. Information-theoretic Measures and Granger Causality

As anticipated in the presentation of directed information, there are profound links between Granger
causality and directed information measures. Granger causality relies on conditional independence,
and it can also be defined using measures of conditional independence. Information-theoretic measures
appear as natural candidates. Recall that two random elements are independent if and only if their mutual
information is zero. Moreover, two random elements are independent conditionally to a third one if and
only if the conditional mutual information is zero. We can reconsider definitions 2, 3 and 4 and recast
them in terms of information-theoretic measures.

Definition 2 stated that xA does not Granger cause xB relative to V if and only if xB(n + 1) á xnA ∣
xnB, x

n
C , ∀n ≥ 1. This can be alternatively rephrased into:

Definition 5. xA does not Granger cause xB relative to V if and only if I(xn−1
A → xnB∥xn−1

C ) = 0 ∀n ≥ 1

since xB(i) á xiA ∣ xi−1
A , xi−1

C , ∀1 ≤ i ≤ n is equivalent to I(xB(i);xiA ∣ xi−1
A , xi−1

C ) = 0 ∀1 ≤ i ≤ n.
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Otherwise stated, the transfer entropy from A to B causally conditioned on C is zero if and only if A
does not Granger cause B relative to V . This shows that causal conditional transfer entropy can be used
to assess Granger causality.

Likewise, we can give alternative definitions of instantaneous coupling.

Definition 6. xA and xB are not conditionally instantaneously coupled relative to V if and only if
I(xnA↔ xnB∥xnC)∀n ≥ 1,

or if and only if the instantaneous information exchange causally conditioned on C is zero. The second
possible definition of instantaneous coupling is equivalent to:

Definition 7. xA and xB are not instantaneously coupled relative to V if and only if
I(xnA↔ xnB∥xn−1

C )∀n ≥ 1,

or if and only if the instantaneous information exchange causally conditioned on the past of C is zero.
Note that in the bivariate case only (when C is not taken into account), the directed information

I(xnA → xnB) summarizes both the Granger causality and the coupling, as it decomposes as the sum of
the transfer entropy I(xn−1

A → xnB) and the instantaneous information exchange I(xn−1
A ↔ xnB).

4.2. Granger Causality Inference

We consider the practical problem of inferring the graph of dependence between the components of a
multivariate process. Let us assume that we have measured a multivariate process xV (n) for n ≤ T . We
want to study the dependence between each pair of components (Granger causality and instantaneous
coupling between any pair of components relative to V ).

We can use the result of the preceding section to evaluate the directed information measures on the
data. When studying the influence from any subset A to any subset B, if the measures are zero, then
there is no causality (or no coupling); if they are strictly positive, then A Granger causes B relative to
V (or A and B are coupled relative to V ). This point of view has been adopted in many of the studies
that we have already referred to (e.g., [14,16,37,47,76]), and it relies on estimating the measures from
the data. We will not review the estimation problem here.

However, it is interesting to examine more traditional frameworks for testing Granger causality, and
to examine how directed information theory naturally emerges from these frameworks. To begin with,
we show how the measures defined emerge from a binary hypothesis-testing view of Granger causality
inference. We then turn to prediction and model-based approaches. We will review how Geweke’s
measures of Granger causality in the Gaussian case are equivalent to directed information measures. We
will then present a more general case adopted by [37–39,77–79] and based on a model of the data.

4.2.1. Directed Information Emerges from a Hypotheses-testing Framework

In the inference problem, we want to determine whether or not xA Granger causes (is coupled with) xB
relative to V . This can be formulated as a binary hypothesis testing problem. For inferring dependencies
between A and B relative to V , we can state the problem as follows.

Assume we observe xV (n),∀n ≤ T . Then, we want to test: “xA does not Granger cause xB”, against
“xA causes xB”; and “xA and xB are instantaneously coupled” against “xA are xB not instantaneously
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coupled”. We will refer to the first test as the Granger causality test, and to the second one, as the
instantaneous coupling test.

In the bivariate case, for which the Granger causality test indicates:

⎧⎪⎪⎨⎪⎪⎩

H0 ∶ p0(xB(i) ∣ xi−1
A , xi−1

B ) = p(xB(i) ∣ xi−1
B ),∀i ≤ T

H1 ∶ p1(xB(i) ∣ xi−1
A , xi−1

B ) = p(xB(i) ∣ xi−1
A , xi−1

B ),∀i ≤ T
(48)

this leads to the testing of different functional forms of the conditional densities of xB(i)
given the past of xA. The likelihood of the observation under H1 is the full joint probability
p(xTA, xTB) = p(xTA∥xTB)p(xTB∥xT−1

A ). Under H0 we have p(xTB∥xT−1
A ) = p(xTB) and the likelihood reduces

to p(xTA∥xTB)p(xTB∥xT−1
A ) = p(xTA∥xTB)p(xTB). The log likelihood ratio for the test is:

l(xTA, xTB) ∶= log
p(xTA, xTB ∣H1)
p(xTA, xTB ∣H0)

= log
p(xTB∥xT−1

A )
p(xTB)

(49)

=
T

∑
i=1

log
p(xB(i) ∣ xi−1

A , xi−1
B )

p(xB(i) ∣ xi−1
B ) (50)

For example, in the case where the multivariate process is a positive Harris recurrent Markov chain [80],
the law of large numbers applies and we have under hypothesis H1:

1

T
l(xTA, xTB)

T→+∞ÐÐÐ→ T∞(xA → xB) a.s. (51)

where T∞(xA → xB) is the transfer entropy rate. Thus from a practical point of view, as the amount of
data increases, we expect the log likelihood ratio to be close to the transfer entropy rate (underH1). Turn-
ing the point of view, this can justify the use of an estimated transfer entropy to assess Granger causality.
Under H0, 1

T l(xTA, xTB) converges to limT→+∞(1/T )DKL(p(xTA∥xTB)p(xTB)∥p(xTA∥xTB)p(xTB∥xT−1
A )),

which can be termed “the Lautum transfer entropy rate” that extends the “Lautum directed information”
defined in [71]. Directed information can be viewed as a measure of the loss of information when
assuming xA does not causally influence xB when it actually does. Likewise, “Lautum directed
information” measures the loss of information when assuming xA does causally influence xB, when
actually it does not.

For testing instantaneous coupling, we will use the following:

⎧⎪⎪⎨⎪⎪⎩

H0 ∶ p0(xA(i), xB(i) ∣ xi−1
A , xi−1

B ) = p(xA(i) ∣ xi−1
A , xi−1

B )p(xB(i) ∣ xi−1
A , xi−1

B ),∀i ≤ T
H1 ∶ p1(xA(i), xB(i) ∣ xi−1

A , xi−1
B ) = p(xA(i), xB(i) ∣ xi−1

A , xi−1
B ),∀i ≤ T

(52)

where under H0, there is no coupling. Then, under H1 and some hypothesis on the data, the likelihood
ratio converges almost surely to the information exchange rate I∞(xA↔ xB).

A related encouraging result due to [71] is the emergence of the directed information in the false-alarm
probability error rate. Merging the two tests Equations (48) and (52), i.e., testing both for causality and
coupling, or neither, the test is written as:

⎧⎪⎪⎨⎪⎪⎩

H0 ∶ p0(xB(i) ∣ xiA, xi−1
B ) = p(xB(i) ∣ xi−1

B ),∀i ≤ T
H1 ∶ p1(xB(i) ∣ xiA, xi−1

B ) = p(xB(i) ∣ xiA, xi−1
B ),∀i ≤ T

(53)
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Among the tests with a probability of miss PM that is lower than some positive value ε > 0, the best
probability of false alarm PFA follows exp (−TI(xA → xB)) when T is large. For the case studied here,
this is the so-called Stein lemma [55]. In the multivariate case, there is no such result in the literature.
An extension is proposed here. However, this is restricted to the case of instantaneously uncoupled time
series. Thus, we assume for the end of this subsection that:

p(xA(i), xB(i), xC(i) ∣ xi−1
A , xi−1

B , xi−1
C ) = ∏

α=A,B,C

p(xα(i) ∣ xi−1
A , xi−1

B , xi−1
C ), ∀i ≤ T (54)

which means that there is no instantaneous exchange of information between the three subsets that form a
partition of V . This assumption has held in most of the recent studies that have applied Granger causality
tests. It is, however, unrealistic in applications where the dynamics of the processes involved are faster
than the sampling period adopted (see [27] for a discussion in econometry). Consider now the problem
of testing Granger causality of A on B relative to V . The binary hypothesis test is given by:

⎧⎪⎪⎨⎪⎪⎩

H0 ∶ p0(xB(i) ∣ xi−1
A , xi−1

B , xi−1
C ) = p(xB(i) ∣ xi−1

B , xi−1
C ),∀i ≤ T

H1 ∶ p1(xB(i) ∣ xi−1
A , xi−1

B , xi−1
C ) = p(xB(i) ∣ xi−1

A , xi−1
B , xi−1

C ),∀i ≤ T
(55)

The log likelihood ratio reads as:

l(xTA, xTB, xTC) =
T

∑
i=1

log
p(xB(i) ∣ xi−1

A , xi−1
B , xi−1

C )
p(xB(i) ∣ xi−1

B , xi−1
C ) (56)

Again, by assuming that the law of large numbers applies, we can conclude that under H1

1

T
l(xTA, xTB, xTC)

T→+∞ÐÐÐ→ T∞(xA → xB∥xC) a.s. (57)

This means that the causal conditional transfer entropy rate is the limit of the log likelihood ratio as the
amount of data increases.

4.2.2. Linear Prediction based Approach and the Gaussian Case

Following definition 1 and focusing on linear models and the quadratic risk R(e) = E[e2], Geweke
introduced the following indices for the study of stationary processes [31,32]:

FxA↔xB = lim
n→+∞

R(xB(n)∣xn−1
B , xn−1

A )
R(xB(n)∣xn−1

B , xnA)
(58)

FxA↔xB∥xC = lim
n→+∞

R(xB(n)∣xn−1
B , xn−1

A , xnC)
R(xB(n)∣xn−1

B , xn−1
A , xnC)

(59)

FxA→xB = lim
n→+∞

R(xB(n)∣xn−1
B )

R(xB(n)∣xn−1
B , xn−1

A ) (60)

FxA→xB∥xC = lim
n→+∞

R(xB(n)∣xn−1
B , xn−1

C )
R(xB(n)∣xn−1

B , xn−1
A , xn−1

C ) (61)

Geweke demonstrated the efficiency of these indices for testing Granger causality and instantaneous
coupling (bivariate and multivariate cases). In the particular Gaussian and bivariate case, he gave explicit
results for the statistics of the tests, and furthermore he showed that:

FxA→xB + FxB→xA + FxA↔xB = I∞(xA;xB) (62)
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where I∞(xA;xB) is the mutual information rate. This relationship, which was already sketched out
in [21], is nothing but Equation (34). Indeed, in the Gaussian case, FxA↔xB = I∞(xA ↔ xB) and
FxA→xB = I∞(xA → xB) stem from the knowledge that the entropy rate of a Gaussian stationary process
is the logarithm of the asymptotic power of the one-step-ahead prediction [55]. Likewise, we can show
that FxA↔xB∥xC = I∞(xA↔ xB∥xC) and FxA→xB∥xC = I∞(xA → xB∥xC) holds.

In the multivariate case, conditioning on the past of the side information, i.e., xn−1
C , in the definition of

FxA↔xB∥xC , a decomposition analogous to Equation (62) holds and is exactly that given by Equation (44).

4.2.3. The Model-based Approach

In a more general framework, we examine how a model-based approach can be used to test for
Granger causality, and how directed information comes into play.

Let us consider a rather general model in which xV (t) is a multivariate Markovian process
that statisfies:

xV (t) = fθ(x t−1
V t−k) +wV (t) (63)

where fθ ∶ Rk∣V ∣ Ð→ R∣V ∣ is a function belonging to some functional class F , and where wV is
a multivariate i.i.d. sequence, the components of which are not necessarily mutually independent.
Function fθ might (or might not) depend on θ, a multidimensional parameter. This general model
considers each signal as an AR model (linear or not) with exogeneous inputs; fθ can also stand for
a function belonging to some reproducing kernel Hilbert space, which can be estimated from the
data [66,67,81]. Using the partition A,B,C, this model can be written equivalently as:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xA(t) = fA,θA(x t−1
At−k , x

t−1
Bt−k , x

t−1
Ct−k ) +wA(t)

xB(t) = fB,θB(x t−1
At−k , x

t−1
Bt−k , x

t−1
Ct−k ) +wB(t)

xC(t) = fC,θC(x t−1
At−k , x

t−1
Bt−k , x

t−1
Ct−k ) +wC(t)

(64)

where the functions f.,θ. are the corresponding components of fθ. This relation can be used for inference
in a parametric setting: the functional form is assumed to be known and the determination of the function
is replaced by the estimation of the parameters θA,B,C . This can also be used in a nonparametric setting,
in which case the function f is searched for in an appropriate functional space, such as an rkHs associated
to a kernel [81].

In any case, for studying the influence of xA to xB relative to V , two models are required for xB:
one in which xB explicitly depends on xA, and the other one in which xB does not depend on xA. In
the parametric setting, the two models can be merged into a single model, in such a way that some
components of the parameter θB are, or not, zero, which depends on whether A causes B or not. The
procedure then consists of testing nullity (or not) of these components. In the linear Gaussian case, this
leads to the Geweke indices discussed above. In the nonlinear (non-Gaussian) case, the Geweke indices
can be used to evaluate the prediction in some classes of nonlinear models (in the minimum mean square
error sense). In this latter case, the decomposition of the mutual information, Equation (62), has no
reason to remain valid.

Another approach base relies on directly modeling the probability measures. This approach has been
used recently to model spiking neurons and to infer Granger causality between several neurons working
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in the class of generalized linear models [37,79]. Interestingly, the approach has been used either to
estimate the directed information [37,77] or to design a likelihood ratio test [38,79]. Suppose we wish to
test whether “xA Granger causes xB relative to V ” as a binary hypothesis problem (as in Section 4.2.1. ).
Forgetting the problem of instantaneous coupling, the problem is then to choose between the hypotheses:

⎧⎪⎪⎨⎪⎪⎩

H0 ∶ p0(xB(i) ∣ xi−1
V ) = p(xB(i) ∣ xi−1

V ; θ0),∀i ≤ T
H1 ∶ p1(xB(i) ∣ xi−1

V ) = p(xB(i) ∣ xi−1
V ; θ1),∀i ≤ T

(65)

where the existence of causality is entirely reflected into the parameter θ. To be more precise, θ0 should
be seen as a restriction of θ1 when its components linked to xA are set to zero. As a simple example
using the model approach discussed above, consider the simple linear Gaussian model

xB(t) =∑
i>0

θA(i)xA(t − i) +∑
i>0

θB(i)xB(t − i) +∑
i>0

θC(i)xC(t − i) +wB(t) (66)

where wB(t) is an i.i.d. Gaussian sequence, and θA, θB, θC are multivariate impulse responses of
appropriate dimensions. Define θ1 = (θA, θB, θC) and θ0 = (0, θB, θC). Testing for Granger causality
is then equivalent to testing θ = θ1; furthermore, the likelihood ratio can be implemented due to the
Gaussian assumption. The example developed in [37,79] assumes that the probability that neuron b

(b ∪ A ∪ C = V ) sends a message at time t (xb(t) = 1) to its connected neighbors is given by the
conditional probability

Pr(xb(t) = 1∣xtV ; θ) = U(∑
i>0

θA(i)xA(t − i) +∑
i>0

θb(i)xb(t − i) +∑
i>0

θEb(i)xEb(t − i) +wb(t))

where U is some decision function, the output of which belongs to [0; 1], A represents the subset of
neurons that can send information to b, and Eb represents external inputs to b. Defining this probability
for all b ∈ V completely specifies the behavior of the neural network V .

The problem is a composite hypothesis testing problem, in which parameters defining the likelihoods
have to be estimated. It is known that there is no definitive answer to this problem [82]. An approach
that relies on an estimation of the parameters using maximum likelihood can be used. Letting Ω be the
space where parameter θ is searched for and Ω0 the subspace where θ0 lives, then the generalized log
likelihood ratio test reads:

l(xTA, xTB) ∶= log
supθ∈Ω p(xTV ; θ)
supθ∈Ω0

p(xTV ; θ) = log
p(xTV ; θ̂T1 )
p(xTV ; θ̂T0 )

(67)

where θ̂Ti denotes the maximum likelihood estimator of θ under hypothesis i. In the linear Gaussian case,
we will recover exactly the measures developed by Geweke. In a more general case, and as illustrated in
Section 4.2.1, as the maximum likelihood estimates are efficient, we can conjecture that the generalized
log likelihood ratio will converge to the causal conditional transfer entropy rate if sufficiently relevant
conditions are imposed on the models (e.g., Markov processes with recurrent properties). This approach
was described in [38] in the bivariate case.
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5. Discussion and Extensions

Granger causality was developed originally in econometrics, and it is now transdisciplinary, with the
literature on the subject being widely dispersed. We have tried here to sum up the profound links that
exist between Granger causality and directed information theory. The key ingredients to build these links
are conditional independence and the recently introduced causal conditioning.

We have eluded the important question of the practical use of the definitions and measures presented
here. Some of the measures can be used and implemented easily, especially in the linear Gaussian case.
In a more general case, different approaches can be taken. The information-theoretic measures can be
estimated, or the prediction can be explicitly carried out and the residuals used to assess causality.

Many studies have been carried out over the last 20 years on the problem of estimation of
information-theoretic measures. We refer to [83–87] for information on the different ways to
estimate information measures. Recent studies into the estimation of entropy and/or information
measures are [88–90]. The recent report by [76] extensively details and applies transfer entropy in
neuroscience using k-nearest neighbors type of estimators. Concerning the applications, important
reviews include [14,16], where some of the ideas discussed here are also mentioned, and where
practicalities such as the use of surrogate data, for example, are extensively discussed. Applications
for neuroscience are discussed in [15,30,50,51,79].

Information-theoretic measures of conditional independence based on Kullback divergence were
chosen here to illustrate the links between Granger causality and (usual) directed information theory.
Other type of divergence could have been chosen (see e.g., [91,92]); metrics in probability space
could also be useful in the assessing of conditional independence. As an illustration, we refer to
the study of Fukumizu and co-workers [93], where conditional independence was evaluated using
the Hilbert–Schmidt norm of an operator between reproducing kernel Hilbert spaces. The operator
generalizes the partial covariance between two random vectors given a third one, and is called the
conditional covariance operator. Furthermore, the Hilbert–Schmidt norm of conditional covariance
operator can be efficiently estimated from data. A related approach is also detailed in [94].

Many important directions can be followed. An issue is in the time horizon over which the side
information is considered in definition 2. As done for instantaneous coupling, we could have chosen
to condition by xn+1

C instead of xnC . This proposition made recently in [35,95] allows in certain
circumstances to eliminate the effect of common inputs to A, B and C. It is denoted as partial Granger
causality. As noted in [35] this is particularly useful when the common inputs are very powerful
and distributed equally likely among all the nodes. If this definition is adopted, then according to
Equation (40), the directed information I(xnA → xnB∥xnC) decomposes as the sum of instantaneous
information exchange I(xnA ↔ xnB∥xnC) with the adequate formulation of the transfer entropy for this
definition I(xn−1

A → xnB∥xnC). Despite this nice result, a definitive interpretation remains unclear within
the probabilistic description presented here. Even in the usual linear setting as developed in [32] this
definition leads to some difficulties. Indeed, Geweke’s analysis relies on the possibility to invert the
Wold decomposition of the time series, representing the times series as a possibly infinite autoregression
with the innovation sequence as input. All the existing dynamical structure (finite order autoregression
and moving average input representing exogeneous inputs) is then captured by Geweke’s approach. The
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analysis in [35,95] assumes that residuals may not be white, and identifiability issues may then arise
in this case. Other important issues are the following. Causality between nonstationary processes has
rarely been considered (see however [76] for an ad-hoc approach in neuroscience). A very promising
methodology is to adopt a graphical modeling way of thinking. The result of [28] on the structural
properties of Markov–Granger causality graphs can be used to identify such graphs from real datasets.
First steps in this direction were proposed by [69,70]. Assuming that the network under study is
a network of sparsely connected nodes and that some Markov properties hold, efficient estimation
procedures can be designed, as is the case in usual graphical modeling.
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