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Abstract: Introducing the notion of thermal entropy density via the first law of
thermodynamics and assuming the Einstein equation as an equation of thermal state, we
obtain the thermal entropy density of any arbitrary spacetime without assuming a
temperature or a horizon. The results confirm that there is a profound connection between
gravity and thermodynamics.
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1. Introduction

In Newtonian theory of gravity, when a particle falls freely in a gravitational field, the gravity is also
the inertial force. This fact leads to the principle that the inertial mass and the gravitational mass are
equivalent. This principle can be considered as the first principle of equivalence. Based on this principle,
Einstein suggested that the gravitational force and inertial force are equivalent. This equivalence between
gravitational force and inertial force can be considered as the second principle of equivalence on which
general relativity bases.

Besides these two relations (i.e., the relation between gravitational mass and inertial mass, and the
relation between gravitational force and inertial force), it was also known that there is a profound
connection between gravity and thermodynamics, as implied by the work of Cocke [1], Bekenstein [2],
Hawking [3], Davies [4], and Unruh [5]. After these studies, Wald had shown that the entropy S can

be taken to be the Noether charge associated with the diffeomorphism invariance of the theory [6,7]
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Jacobson revealed that the Einstein equation can be derived from the first law of thermodynamics [8].
This attempt had been generalized to the modified gravity [9—11] and had been revisited in [12], which
was based on a consideration of the properties of a very small, spacelike two-plane in a uniformly
accelerating motion. It had been shown that the field equations in both general relativity and
Lovelock theories can be expressed as a thermodynamic identity near the horizon in a wide class of
spacetime [13-15] (see a review [16]). Recently, the connection between gravity and
thermodynamics had been proved to be held in the dynamical spacetime [17]. By using the
maximum entropy principle to a charged perfect fluid, the generalized TolmantOppenheimer—Volkoff is
derived, which provides a strong evidence for the fundamental relationship between general relativity and
ordinary thermodynamics [18]. In cosmological context, the Friedmann equation can be rewritten in the
form of the first law of thermodynamics [19-28]. In [29], it has been explicitly shown that the equations
of motion for modified gravity theories of F'( R)-gravity, the scalar-Gauss—Bonnet gravity, F'(G)-gravity
and the non-local gravity are equivalent to the Clausius relation in thermodynamics. In [30], Verlinde
argued that gravity can be explained as entropic force. Recently, it was shown that the Einstein—Hilbert
action can be constructed by minimizing free energy [31].

All these investigations were carried out in special contexts, or based on some assumptions, such
as Unruh temperature, the existence of horizon, null surfaces, the apparent horizon, and so on. The key
point in Jacobson’s analysis, for example, is based on three assumptions: the first law of thermodynamics
holds, the temperature experienced by the observer is the Unruh temperature, and the heat flow through
the past Rindler horizon is defined to be the boost-energy current carried by matter. Does the connection
between gravity and thermodynamics hold in any arbitrary spacetime? Can the analysis be carried out
without assuming a specific expression of temperature or horizon? The difficulties are that we cannot
find a general expression of temperature (to find a specific expression of temperature, such as Unruh
temperature taken by Jacobson or Hawking temperature taken by other researchers on horizon) or define
a horizon in any arbitrary spacetime. In this paper, we try to investigate the relation between gravity and
thermodynamics without firstly assuming a temperature or a horizon. The result we obtain implies that

gravity possesses thermal effects, or, thermal entropy density possesses effects of gravity.

2. Thermal Entropy Density of Spacetime

In general relativity or thermodynamics, both the energy density p and the pressure p play
important roles. In general relativity, the energy density and the pressure are contained in the
stress-energy tensor. In thermodynamics, p and p are contained in the first law of thermodynamics.
We can reasonably conjecture that a relation may exist between gravitation and thermodynamics. So let

us begin with the first law of thermodynamics in curved spacetime
dE =TdS — pdV (1)

where F is the total energy and S is entropy within the volume V, T is the temperature and p is the
pressure of the perfect fluid, and dV = v/hd*z with v/h being the determinant of the spatial metric.
Throughout this paper, we take ¢ = G = 1 and use metric signature (—, +,+, +). For a very small

volume, the energy density can be considered as unchanged, so Equation (1) can be rewritten as

(p+p)dV =TdS = TsdV (2)
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where s is the entropy density. To avoid the difficulty of finding a specific expression of temperature, we
introduce the thermal entropy density defined as 0 = T's, and re-express Equation (2) as

c=p+p 3)

For radiation, p = oT* with « being a constant, p = p /3, and s = 4aT3 /3. Tt is obvious that we have
o =Ts = p+p. If p=wp with w being a constant, the thermal entropy density is proportional to the
energy density, and the change of the thermal entropy density with time is also proportional to that of
the energy density, ¢ & p, for w > 0. For dust (or dark matter) with p o~ 0, the thermal entropy density
is just the energy density. For w < 0, the thermal entropy increases when the energy density decreases,
and vice versa. The energy density p and the pressure p can be observed, so does the thermal entropy
density. So it can be concluded that the thermal entropy density is a notion that is more comprehensive
than the notion of the energy density in thermodynamics.

In order to relate the thermal entropy density with general relativity, we briefly review the main point
in [8]. Assuming that the first law of thermodynamics holds, namely 6¢) = T'dS, with 6Q) and T’
interpreted as the energy flux and Unruh temperature, Jacobson obtained the Einstein equation. In other
words, viewed in thermodynamics way, the Einstein equation can be thought of as a thermal state. Here
we assume that both the first law of thermodynamics and the Einstein equation hold, and adopt the view
obtained in [8]: the Einstein equation is an equation of state. So we can treat thermodynamic quantity
p + p as a bridge to relate the thermal entropy density and the geometrical quantities of spacetime. Let
us look for the expression of p + p in general relativity so as to find the relation between gravity and
thermodynamics. Thanks to the Einstein equation [32]

Ry, — %Q,WR + Ag = 87T, 4)
and the stress energy tensor of the perfect fluid
T = gup + (p + P)uyuy (5)
we obtain
R—4A = —87(3p—p) (6)

To obtain the expression of p + p in general relativity, we must find another equation about p or p.
We use the 3 + 1 Einstein equation to attain this goal. Let n* be the unit normal vector field to the
three-dimensional hypersurfaces 3., then we have [32,33]

1
n'n" R, + §R — A =8rn¢& (7)

where £ = I'*(p + p) — p with T being the Lorentz factor. According to the scalar Gauss relation, we
obtain

R+ K? — KKV — 2A = 167& (8)
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where R is Ricci scalar of the three-dimensional hypersurfaces X, K; is the extrinsic curvature tensor
of X, and K is the trace of the K;;. Combining Equations (6) and (8), we obtain the expression of p + p
in general relativity

p‘i‘p:m{R"—KQ—Kinij—%R} 9)
From Equations (3) and (9), one can easily get
a_——i——¢R+K%JQK”—h4 (10)
47 (412 — 1) ! 2
The four-dimensional Ricci scalar, R, can be decomposed as [33]
R=R+ K* 4 KyK9 — 2L,K — 2DD'N (1)

where L,, is the Lie derivative along m of any vector tangent to 32, and D; is the Levi—Civita connection
associated with the metric of the three-dimensional hypersurfaces >.. Then we can express the thermal

entropy density with three-dimensional spatial geometrical quantities as

1

77 Sn(rz— 1)

xR+K%dmﬂﬁ+3@K+3QUN (12)
N N
Equations (10) and (12) are the most important result we obtained in this work. The left-hand side of
the equation is a quantity concerned with thermodynamics, while the right-hand side of the equation is
related to the geometrical quantities of the spacetime. According to Equations (10) and (12), they are
equivalent. Recall the case in Newtonian theory of gravity, when a particle free falls in a gravitational
field, the gravity is also the inertial force, one can see that the inertial mass and the gravitational mass
are equivalent. Now, the energy density p and the pressure p are not only the source of heat but also the
source of gravity. This fact leads to Equations (10) and (12), which imply that gravity possesses thermal
effects, or, thermal entropy density possesses effects of gravity. We note that Equations (10) and (12)
hold for perfect fluid only, and the case for non-perfect fluid will be discussed elsewhere.
In co-moving coordinate, Equation (10) takes the form [34]

1
— (4R, — 3R 13
sy ) (13)

where Ry = g11 RM + g2 R* + g33R33. In FRW universe, the thermal entropy density of the spacetime
is —(H — k/a®)/4n with H = a/a being the Hubble parameter and k being a constant. In radiation
dominated era, according to the Einstein equation, we have —(H — k/a?) /41 = p+ p = 4aT*/3 =
Ts = o with a = 875k /(15h3) and s = 4T3 /3 [35], so Equation (12) holds.

3. Conclusions

We have introduced the notion of thermal entropy density via the first law of thermodynamics, and
related it with three dimensional spatial geometrical quantities via the Einstein equation. We have
obtained the thermal entropy density of any arbitrary spacetime without assuming a temperature or

a horizon, that is to say, gravity can possess thermal effects, or, thermal entropy density can possess
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effects of gravity. The results also indicate that, besides gravity, the thermal entropy density can also be
geometrized. The results we obtained confirm that there is a profound connection between gravity and
thermodynamics. The thermal entropy density of spacetime can be applied to discuss the gravitational
collapse. Here we have discussed the case of perfect fluid only and leave the case of non-perfect fluid
for future investigations.
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