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1. Introduction

Classical Shannon entropy has been generalized in many directions [1,2]. An α-generalized entropy,
parallel to Havrda-Charvat entropy, introduced by the first author, is found to be quite useful in deriving
pathway models [3], including Tsallis statistics [4] and superstatistics [5,6]. It is also connected to
Kerride’s measure of inaccuracy [7]. For the continuous case, let f(X) be a density function associated
with a random variable X , where X could be a real or complex scalar, vector or matrix variable. In the
present paper we consider only the real cases for convenience. Let

Mα(f) =

∫
X

[f(X)]2−αdX − 1

α− 1
, α 6= 1 (1.1)

Note that when α→ 1,Mα(f)→ S(f) = −
∫
X
f(X) ln f(X)dX where S(f) is Shannon’s entropy [7]

and in this sense (1.1) is a α-generalized entropy measure. The corresponding discrete case is available as∑k
i=1 p

2−α
i − 1

α− 1
, pi > 0, i = 1, ..., k, p1 + ...pk = 1, α 6= 1

Characterization properties and applications of (1.1) may be seen from [7]. Note that∫
X

[f(X)]2−αdX =

∫
X

[f(X)]1−αf(X)dX = E[f(X)]1−α

Thus there is a parallelism with Kerridge’s measure of inaccuracy. The α-generalized Kerridge’s measure
of inaccuracy [9] is given by∫

x
P (x)[Q(x)]1−α − 1

α− 1
=
E[Q(x)]1−α − 1

α− 1
, α 6= 1 (1.2)

When α→ 1, Equation (1.2) goes to Kerridge’s measure of inaccuracy given by

K(P,Q) = −
∫
x

P (x) lnQ(x)dx (1.3)

where x is a scalar variable, P (x) is the true density and Q(x) is a hypothesized or assigned density for
the true density P (x). Then a measure of inaccuracy in taking Q(x) for the true density P (x) is given
by Equation (1.3) and its α-generalized form is given by Equation (1.2).

Earlier works on Shannon’s measure of entropy, measure of directed divergence, measure of
inaccuracy and related items and applications in natural sciences may be seen in [7] and the references
therein. A measure of entropy, parallel to the one of Havrda-Charvat entropy was introduced by Tsallis
in 1988 [4,8,9], given by

Tα(f) =

∫
x
[f(x)]αdx− 1

1− α
, α 6= 1 (1.4)

Tsallis statistics or non-extensive statistical mechanics is derived by optimizing (1.4) by putting
restrictions in an escort density associated with f(x) of Equation (1.4). Let g(x) = [f(x)]α

m
,

m =
∫
x
[f(x)]αdx < ∞. If Tα(f) is optimized over all non-negative functional f , subject to the

conditions that f(x) is a density and the expected value in the escort density is a given quantity, that
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is
∫
x
xg(x)dx = a given quantity, then the Euler equation to be considered, if we optimize by using

calculus of variations, is that

∂

∂f
[{f(x)}α − λ1f(x) + λ2x{f(x)}α] = 0

where λ1 and λ2 are Lagrangian multipliers. That is,

α[f(x)]α−1 − λ1 + λ2xα[f(x)]α−1 = 0

Then
f(x) = c[1 + λ2x]−

1
α−1 , c = (

λ1

α
)

1
α−1

Taking λ2 = a(α− 1) for α > 1, a > 0 we have Tsallis statistics as

f(x) = c[1 + a(α− 1)x]−
1

α−1 , α > 1, a > 0 (1.5)

For α < 1, writing α− 1 = −(1− α) the density in Equation (1.5) changes to

fx(x) = c1[1− a(1− α)x]
1

1−α , α < 1, a > 0

where 1− a(1− α)x > 0 and c1 can act as a normalizing constant if f1(x) is to be taken as a statistical
density. Tsallis statistics in Equation (1.5) led to the development of none-extensive statistical mechanics.
We will show later that Equation (1.5) comes directly from the entropy of Equation (1.1) without going
through any escort density. Let us optimize Equation (1.1) subject to the conditions that f(x) is a density,∫
x
f(x)dx = 1, and that the expected value of x in f(x) is a given quantity, that is,

∫
x
xf(x)dx = a given

quantity. Then, if we use calculus of variations, the Euler equation is of the form

∂

∂f
[{f(x)}2−α − λ1f(x) + λ2xf(x)] = 0

where λ1 and λ2 are Lagrangian multipliers. Then we have

f1(x) = c1[1− a(1− α)x]
1

1−α , α < 1, a > 0 (1.6)

by taking λ2
λ1

= a(1− α), a > 0, α < 1, and c1 is the corresponding normalizing constant to make f1(x)

a statistical density. Now, for α > 1, write 1−α = −(α− 1), then directly from Equation (1.6), without
going through any escort density, we have

f2(x) = c2[1 + a(α− 1)x]−
1

α−1 , α > 1, a > 0 (1.7)

which is Tsallis statistics for α > 1. Thus, both the cases α < 1 and α > 1 follow directly from
Equation (1.1).

Now, let us look into optimizing (1.1) over all non-negative integrable functionals, f(x) ≥ 0 for all
x,
∫
x
f(x)dx <∞, such that two moment-type relations are imposed on f , of the form∫

x

xγ(1−α)f(x)dx = given, and
∫
x

xγ(1−α)+δf(x)dx = given (1.8)
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Then the Euler equation becomes

∂

∂f
[{f(x)}2−α − λ1x

γ(1−α)f(x) + λ2x
γ(1−α)+δf(x)] = 0

which leads to
f ∗1 (x) = c∗1x

γ[1− a(1− α)xδ]
1

1−α , a > 0, α < 1, δ > 0, γ > 0 (1.9)

for 1 − a(1 − α)xδ > 0, by taking λ2
λ1

= a(1 − α), a > 0, α < 1, where c∗1 can act as the normalizing
constant. Equation (1.9) is a special case of the pathway model of [3] for the real scalar positive random
variable x > 0. For γ = 0, δ = 1 in Equation (1.9) we obtain Tsallis statistics of Equation (1.6) for the
case α < 1. When α > 1 write 1− α = −(α− 1) for α > 1 then Equation (1.9) becomes

f ∗2 (x) = c∗2x
γ[1 + a(α− 1)xδ]−

1
α−1 , α > 1, a > 0, x > 0, δ > 0 (1.10)

When α→ 1 both f ∗1 (x) of Equation (1.9) and f ∗2 (x) of Equation (1.10) go to

f ∗3 (x) = c∗3x
γe−ax

δ

, a > 0, δ > 0, x > 0 (1.11)

Equation (1.10) for α > 1, x > 0 is superstatistics [5,6].

2. A Generalized Measure of Entropy

Let X be a scalar, a p × 1 vector of scalar random variables or a p × n, p ≥ n matrix of rank n of
scalar random variables and let f(X) be a real-valued scalar function such that f(X) ≥ 0 for all X and∫
X
f(X)dX = 1 where dX stands for the wedge product of the differentials in X . For example, if X is

m× n, X = (xij) then

dX =
m∏
i=1

n∏
j=1

∧dxij

where ∧ stands for the wedge product of differentials, dx∧dy = −dy∧dx⇒ dx∧dx = 0. Then f(X)

is a density of X . When X is p×n, p ≥ n we have a rectangular matrix variate density. For convenience
we have taken X of full rank n ≤ p. When n = 1 we have a multivariate density and when n = 1, p = 1

we have a univariate density. Consider the generalized entropy of Equation (1.1) for this matrix variate
density, denoted by f(X), then

Mα(f) =

∫
X

[f(X)]2−αdX − 1

α− 1
, α 6= 1 (2.1)

Let n = 1. Let us consider the situation of the ellipsoid of concentration being a preassigned quantity. Let
X be p×1 vector random variable. Let V = E[(X−E(X))(X−E(X))′] > O (positive definite) where
E denotes expected value. For convenience let us denote E(X) = µ. Then ρ = E[(X−µ)′V −1(X−µ)]

is the ellipsoid of concentration. Let us optimize (2.1) subject to the constraint that f(X) ≥ 0 is a density
and that the ellipsoid of concentration over all functional f is a constant, that is,

∫
X
f(X)dX = 1 and∫

X
[(X − µ)′V −1(X − µ)]δf(X)dX = given, where δ > 0 is a fixed parameter. If we are using calculus

of variation then the Euler equation is given by

∂

∂f
[{f(X)}2−α − λ1f(X) + λ2[(X − µ)′V −1(X − µ)]δf(X)] = 0
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where λ1 and λ2 are Lagrangian multipliers. Solving the above equation we have

f1(X) = C1[1− a(1− α){(X − µ)′V −1(X − µ)}δ]
1

1−α (2.2)

for α < 1, a > 0 where we have taken λ2
λ1

= a(1 − α), a > 0, α < 1 and ( λ1
2−α)

1
1−α = C1. This C1 can

act as the normalizing constant to make f(X) in Equation (2.2) a statistical density. Note that for α > 1,
we have from Equation (2.2)

f2(X) = C2[1 + a(α− 1){(X − µ)′V −1(X − µ)}δ]−
1

α−1 , α > 1, a > 0 (2.3)

and when α→ 1, f1 and f2 go to

f3(X) = C3e−a[(X−µ)′V −1(X−µ)]δ (2.4)

Equation (2.4) for δ = 1 is the multivariate Gaussian density. If Y = V −
1
2 (X − µ), where V −

1
2 is the

positive definite square root of the positive definite matrix V −1, then dY = |V |− 1
2 dX and the density of

Y , denoted by g(Y ), is given by

g(Y ) = C4 e−a(y21+...+y2p)δ ,−∞ < yj <∞, j = 1, ..., p, Y ′ = (y1, ..., yp) (2.5)

and C4 is the normalizing constant. This normalizing constant can be evaluated in two different ways.
One method is to use polar coordinate transformation, see Theorem 1.25 of [10]. Let

y1 = r sin θ1 sin θ2... sin θp−1

y2 = r sin θ1... sin θp−2 cos θp−1

... =
...

yp−1 = r sin θ1 cos θ1

yp = r cos θ1

where r > 0, 0 < θj ≤ π, j = 1, ..., p− 2, 0 < θp−1 ≤ 2π and the Jacobian is given by

dy1 ∧ ... ∧ dyp = rp−1{
p−1∏
j=1

| sin θj|p−j−1}dr ∧ dθ1 ∧ ... ∧ dθp−1 (2.6)

Under this transformation the exponent (y2
1+...+y2

p)
δ = (r2)δ. Hence we integrate out the sine functions.

The integral over θp−1 goes from 0 to 2π and gives the value 2π, and others from 0 to π. These, in general,
can be evaluated by using type-1 beta integrals by putting sin θ = u and u2 = v. That is,∫ π

0

sin θ dθ = 2

∫ π/2

0

sin θ dθ = 2

∫ 1

0

u(1− u2)−
1
2 du

=

∫ 1

0

v1−1(1− v)−
1
2 dv =

Γ(1)Γ(1/2)

Γ(3/2)∫ π

0

(sin θ)2dθ =
Γ(3/2)Γ(1/2)

Γ(4/2)
... =

...∫ π

0

(sin θ)p−2dθ =
Γ(p−1

2
)Γ(1/2)

Γ(p
2
)
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Taking the product we have

2π
(
√
π)p−2

Γ(p
2
)

=
2πp/2

Γ(p/2)

Hence the total integral is equal to

1 = C4|V |
1
2

2πp/2

Γ(p/2)

∫ ∞
0

rp−1e−ar
2δ

dr, δ > 0

Put x = ar2δ and integrate out by using a gamma integral to get

C4 =
δΓ(p

2
)a

p
2δ

|V | 12πp/2Γ( p
2σ

)

That is, the density is given by

f3(X) =
δ a

p
2δΓ(p/2)

|V |1/2πp/2Γ( p
2δ

)
e−a[(X−µ)′V −1(X−µ)]δ , δ > 0, a > 0, V > O (2.7)

From the above steps the following items are available: The density of Y = V −
1
2 (X − µ) is available as

g(Y ) =
δ a

p
2δΓ(p

2
)

πp/2Γ( p
2δ

)
e−a(Y ′Y )δ (2.8)

The density of u = Y ′Y = y2
1 + ...+ y2

p , denoted by g1(u), is given by

g1(u) =
δ a

p
2δ

Γ( p
2δ

)
u
p
2
−1e−au

δ

, δ > 0, u > 0 (2.9)

and the density of r > 0, where r2 = u = Y ′Y , denoted by g2(r), is given by

g2(r) =
2δ a

p
2δ

Γ( p
2δ

)
rp−1e−ar

2δ

, r > 0, δ > 0 (2.10)

2.1. Another Method

Another direct way of deriving the densities of X, Y = V −
1
2 (X − µ), u = Y ′Y, r =

√
u is the

following: From [3] see the transformation in Stiefel manifold where a matrix of the form n× p, n ≥ p

of rank p is transformed into S = X ′X which is a p × p matrix, where the differential elements, after
integrating out over the Stiefel manifold, are connected by the relation, see also Theorem 2.16 and
Remark 2.13 of [10],

dX =
π
np
2

Γp(
n
2
)
|S|

n
2
− p+1

2 dS (2.11)

where |S| denotes the determinant of S and Γp(α) is the real matrix-variate gamma given by

Γp(α) = π
p(p−1)

4 Γ(α)Γ(α− 1

2
)...Γ(α− p− 1

2
),<(α) >

p− 1

2
(2.12)

Applications of the above result in various disciplines may be seen from [11–14]. In our problem, we
can connect dY of Equation (2.8) to du of Equation (2.9) with the help of Equation (2.11) by replacing
n by p and p by 1 in the n× p matrix. That is, from Equation (2.11)

dY =
πp/2

Γ(p/2)
u
p
2
−1du (2.13)
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The total integral of f3(X) of Equation (2.3) is given by

1 =

∫
X

f3(X)dX = C3|V |1/2
πp/2

Γ(p/2)

∫ ∞
u=0

u
p
2
−1e−au

δ

du, a > 0, δ > 0

Put v = auδ and integrate out by using a gamma integral to get

C3 =
δ a

p
2δΓ(p/2)

|V |1/2πp/2Γ( p
2δ

)

and we get the same result as in (2.7), thereby the same expressions for g(Y ) in Equation (2.8), g1(u) in
Equation (2.9) and g2(r) in Equation (2.10).

3. A Generalized Model

If we optimize (2.1) over all integrable functions f(X) ≥ 0 for all X , subject to the two moment-like
restrictions E[(X − µ)′V −1(X − µ)]γ(1−α) = fixed and E[(X − µ)′V −1(X − µ)]δ+γ(1−α) = fixed, then
the corresponding Euler equation becomes

∂

∂f
[{f(X)}2−α − λ1[(X − µ)′V −1(X − µ)]γ(1−α) + λ2[(X − µ)V −1(X − µ)]δ+γ(1−α)] = 0

and the solution is available as

f(X) = C∗[(X − µ)′V −1(X − µ)]γ[1− a(1− α){(X − µ)′V −1(X − µ)}δ]
1

1−α (3.1)

for α < 1, a > 0, V > O, δ > 0, γ > 0 and for convenience we have taken λ2
λ1

= a(1−α), a > 0, α < 1,
where C∗ can act as the normalizing constant if f(X) is to be treated as a statistical density. Otherwise
f(X) can be a very versatile model in model building situations. If C∗ is the normalizing constant then
it can be evaluated by using the following procedure: Put Y = V −

1
2 (X − µ) ⇒ dY = |V |− 1

2 dX . The
total integral is 1, that is,

1 =

∫
X

f(X)dX = C∗|V |
1
2

∫
Y

[Y ′Y ]γ[1− a(1− α)(Y ′Y )δ]
1

1−αdY

Let u = Y ′Y , then dY = πp/2

Γ(p/2)
u
p
2
−1du from Equation (2.13). Then for a > 0, α < 1, δ > 0 we can

integrate out by using a type-1 beta integral by putting z = a(1− α)uδ for α < 1. Then the normalizing
constant, denoted by C∗1 , is available as

C∗1 =
δ[a(1− α)]

γ
δ

+ p
2δΓ(p/2)Γ( 1

1−α + 1 + γ
δ

+ p
2δ

)

|V |1/2πp/2Γ(γ
δ

+ p
2δ

)Γ(1 + 1
1−α)

(3.2)

for δ > 0, γ + p
2
> 0. Hence the density of the p× 1 vector X is given by

f1(X) = C∗1 [(X − µ)′V −1(X − µ)]γ[1− a(1− α)[(X − µ)′V −1(X − µ)]δ]
1

1−α (3.3)

for V > O, a > 0, δ > 0, γ + p
2
> 0, X ′ = (x1, ..., xp), µ

′ = (µ1, ..., µp), −∞ < xj <∞,−∞ < µj <

∞, j = 1, ..., p. For α < 1 we may say that f(X) in Equation (3.3) is a generalized type-1 beta form.
Then the density of Y , denoted by g(Y ), is given by

g(Y ) = |V |1/2C∗1(Y ′Y )γ[1− a(1− α)(Y ′Y )δ]
1

1−α
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for a > 0, α < 1 and C∗1 is defined in Equation (3.2). Note that the density of u = Y ′Y , denoted by
g1(u), is available, as

g1(u) = C̃1u
γ+ p

2
−1[1− a(1− α)uδ]

1
1−α (3.4)

where

C̃1 =
δ[a(1− α)]

γ
δ

+ p
2δΓ( 1

1−α + 1 + γ
δ

+ p
2δ

)

Γ(γ
δ

+ p
2δ

)Γ( 1
1−α + 1)

for δ > 0, γ+ p
2
> 0. Note that for α > 1 in Equation (3.1) the model switches into a generalized type-2

beta form. Write 1 − α = −(α − 1) for α > 1. Then the model in Equation (3.2) switches into the
following form:

f2(X) = C∗2 [(X − µ)′V −1(X − µ)]γ[1 + a(α− 1)[(X − µ)′V −1(X − µ)]δ]−
1

α−1 (3.5)

for δ > 0, a > 0, V > O, α > 1. The normalizing constant C∗2 can be computed by using the following
procedure. Put z = a(α− 1)uδ, δ > 0, α > 1. Then integrate out by using a type-2 beta integral to get

C∗2 =
δ[a(α− 1)]

γ
δ

+ p
2δΓ(p/2)Γ( 1

α−1
)

|V |1/2πp/2Γ(γ
δ

+ p
2δ

)Γ( 1
α−1
− γ

δ
− p

2δ
)

(3.6)

for γ + p/2 > 0, 1
α−1
− γ

δ
− p

2δ
> 0. When α → 1 then both f1(X) of Equation (3.3) and f2(X) of

Equation (3.5) go to the generalized gamma model given by

f3(X) = C∗3 [(X − µ)′V −1(X − µ)]γe−a[(X−µ)′V −1(X−µ)]δ (3.7)

where

C∗3 =
δΓ(p/2)a

γ
δ

+ p
2δ

|V |1/2πp/2Γ(γ
δ

+ p
2δ

)
, δ > 0, γ +

p

2
> 0 (3.8)

It is not difficult to show that when α → 1 both C∗1 → C∗3 and C∗2 → C∗3 . This can be seen by using
Stirling’s formula

Γ(z + η) ≈
√

2πzz+η−
1
2 e−z

for|z| → ∞ and η is a bounded quantity. Observe that

lim
α→1−

1

1− α
=∞ and lim

α→1+

1

α− 1
=∞

and we can apply Stirling’s formula by taking z = 1
1−α in one case and z = 1

α−1
in the other case. Thus,

from f1(X) we can switch to f2(X) to f3(X) or through the same model we can go to three different
families of functions through the parameter α and hence α is called the pathway parameter and the model
above belongs to the pathway model in [3].

4. Generalization to the Matrix Case

Let X be a p× n, n ≥ p rectangular matrix of full rank p. Let A > O be p× p and B > O be n× n
positive definite constant matrices. Let A1/2 and B1/2 denote the positive definite square roots of A and
B respectively. Consider the matrix

I − a(1− α)A1/2XBX ′A1/2 > O
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where a > 0, α < 1. Let f(X) be a real-valued function of X such that f(X) ≥ 0 for all X and f(X)

is integrable,
∫
X
f(X)dX < ∞. If we assume that the expected value of the determinant of the above

matrix is fixed over all functional f , that is

E|I − a(1− α)A1/2XBX ′A1/2| = fixed (4.1)

then, if we optimize the entropy (2.1) under the restriction (4.1) the Euler equation is,

∂

∂f
[{f(X)}2−α − λ|I − a(1− α)A1/2XBX ′A1/2|f(X)] = 0

Equation such as the one in Equation (4.1) can be connected to the volume of a certain parallelotope or
random geometrical objects. Solving it we have

f(X) = Ĉ|I − a(1− α)A1/2XBX ′A1/2|
1

1−α (4.2)

where Ĉ is a constant. A more general form is to put a restriction of the form that the expected value of
|A1/2XBX ′A1/2|γ(1−α)|I − a(1− α)A1/2XBX ′A1/2| is a fixed quantity over all functional f . Then

f(X) = Ĉ1|A1/2XBA1/2|γ|I − a(1− α)A1/2XBA1/2|
1

1−α (4.3)

for α < 1, a > 0, A > O,B > O and X is p×n, n ≥ p of full rank p and a prime denotes the transpose.
The model in Equation (4.3) can switch around to three functional forms, one family for α < 1, a second
family for α > 1 and a third family for α→ 1. In fact Equation (4.3) contains all matrix variate statistical
densities in current use in physical and engineering sciences. For evaluating the normalizing constants
for all the three cases, the first step is to make the transformation

Y = A1/2XB1/2 ⇒ dY = |A|n/2|B|p/2dX (4.4)

see [10] for the Jacobian of this transformation. After this stage, all the steps in the previous sections
are applicable and we use matrix variate type-1 beta, type-2 beta, and gamma integrals to do the final
evaluation of the normalizing constants. Since the steps are parallel the details are omitted here.

5. Standard Deviation Analysis and Diffusion Entropy Analysis

Scale invariance has been found to hold for complex systems and the correct evaluation of the scaling
exponents is of fundamental importance to assess if universality classes exist. Diffusion is typically
quantified in terms of a relationship between fluctuation of a variable x and time t. A widely used
method of analysis of complexity rests on the assessment of the scaling exponent of the diffusion process
generated by a time series. According to the prescription of Peng et al. [15], the numbers of a time series
are interpreted as generating diffusion fluctuations and one shifts the attention from the time series to the
probability density function (pdf) p(x, t), where x denotes the variable collecting the fluctuations and t
is the diffusion time. In this case, if the time series is stationary, the scaling property of the pdf of the
diffusion process takes the form

p(x, t) =
1

tδ
F
( x
tδ

)
(5.1)
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where δ is a scaling exponent. Diffusion may scale linearly with time, leading to ordinary diffusion,
or it may scale nonlinearly with time, leading to anomalous diffusion. Anomalous diffusion processes
can be classified as Gaussian or Lévy, depending on whether the central limit theorem (CLT) holds.
CLT entails ordinary statistical mechanics. That is, it entails a Gaussian form for F in Equation (5.1)
composing a random walk without temporal correlations (i.e., δ = 0). Due to the CLT, the probability
function p(x, t) describing the probabilities of x(t) has a finite second moment < x2 >, and when the
second moment diverges, x(t) no longer falls under the CLT and instead indicated that the generalized
central limit theorem applies. Failures of CLT mean that instead of statistical mechanics, nonextensive
statistical mechanics may be utilized [8,9].

Scafetta and Grigolini [16] established that Diffusion Entropy Analysis (DEA), a method of statistical
analysis based on the Shannon entropy (see Equation (1.1)) of the diffusion process, determines the
correct scaling exponent δ even when the statistical properties, as well as the dynamic properties, are
anomalous. The other methods usually adopted to detect scaling, for example the Standard Deviation
Analysis (SDA), are based on the numerical evaluation of the variance. Consequently, these methods
detect a power index, denoted H by Mandelbrot [17] in honor of Hurst, which might depart from
the scaling δ of Equation (5.1). These variance methods (cf. Fourier analysis and wavelet analysis;
see [18,19] produce correct results in the Gaussian case, where H = δ, but fail to detect the correct
scaling of the pdf, for example, in the case of Lévy flight, where the variance diverges, or in the case of
Lévy walk, where δ and H do not coincide, being related by δ = 1/(3− 2H). The case H = δ = 0.5 is
that of a completely uncorrelated random process. The case δ = 1 is that of a completely regular process
undergoing ballistic motion. Figures 1 to 4 clearly show that the diffusion entropy development over time
for solar neutrinos does neither meet the first nor the latter case. The Shannon entropy, Equation (1.1)
for the diffusion process at time t, is defined by

S(t) = −
∫
p(x, t) ln[p(x, t)] dx (5.2)

If the scaling condition of Equation (5.1) holds true, it is easy to prove that

S(t) = A+ δ ln(t) (5.3)

where
A ≡ −

∫ ∞
−∞

dy F (y) ln[F (y)] (5.4)

and y = x/tδ. Numerically, the scaling coefficient δ can be evaluated by using fitting curves with the
form Equation (5.3) that on a linear-log scale is a straight line. Even though time series extracted from
complex environments may not show a pure scaling behavior as in Equation (5.3) but, instead, patterns
with oscillations due to periodicities, one can still observe how diffusion entropy grows linearly with
time and one can estimate the diffusion exponent with reasonable accuracy.
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Figure 1. Standard Diffusion Analysis of the boron solar neutrino data from
SuperKamiokande I and II. The green line coincides with a straight line with the slope
δ = 0.5. The red line reflects the approximated straight slope of the real data with δ = 0.65.
The exact result of the SDA is shown by the blue line and indicates a change in the diffusion
entropy over time from δ > 0.5 to δ = 0.5.

Figure 2. Diffusion Entropy Analysis of the boron solar neutrino data from
SuperKamiokande I and II. The green line coincides with a straight line with the slope
δ = 0.5. The red line reflects the approximated straight slope of the real data with
δ = 0.88. In comparison with Figure 1, the green and red lines are remarkable different
from each other and indicate strong anomalous diffusion. The exact result of the DEA is
shown by the blue line and indicates a development over time from periodic modulation to
asymptotic saturation.
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Figure 3. Standard Diffusion Analysis of the hep solar neutrino data from SuperKamiokande
I and II. The green line coincides with a straight line with the slope δ = 0.5. The red line
reflects the approximated straight slope of the real data with δ = 0.35. Note the remarkable
difference between the boron analysis results δ > 0.5 and the hep analysis results shown
in this Figure. with δ < 0.5. This is an indication of superdiffusion in the first case and
subdiffusion in the second case. The exact result of the SDA is shown by the blue line and
indicates a change in the diffusion entropy over time from δ > 0.5 to δ < 0.5.

Figures 1–4, respectively, are showing diffusion entropy as a function of time for two different time
series. Figures 1 to 4 show the numerical results of Standard Deviation Analysis and Diffusion Entropy
Analysis for solar neutrino data taken by the SuperKamiokande experiments I (SK-I, 1996–2001, 1496
days, 5.0–20.0 MeV) and II (SK-II, 2002–2005, 791 days, 8.0–20.0 MeV). SuperKamiokande [20] is a
50 kiloton water Cherenkov detector located at the Kamioka Observatory of the Institute for Cosmic Ray
Research, University of Tokyo. It was designed to study solar neutrino oscillations and carry out searches
for the decay of the nucleon. The SuperKamiokande experiment began in 1996 and in the ensuing decade
of running has produced extremely important results in the fields of atmospheric and solar neutrino
oscillations, along with setting stringent limits on the decay of the nucleon and the existence of dark
matter and astrophysical sources of neutrinos. Perhaps most crucially, Super-Kamiokande for the first
time definitely showed that neutrinos have mass and undergo flavor oscillations.

An additional feature of the S(t) behavior over time in Figures 2 and 4 are distinct oscillations
characteristic for processes with periodic modulation and asymptotic saturation. They appear for large
δ. At the current stage of research the origin of these oscillations is an open problem [21].
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Figure 4. Diffusion Entropy Analysis of the hep solar neutrino data from SuperKamiokande
I and II. The green line coincides with a straight line with the slope δ = 0.5. The red line
reflects the approximated straight slope of the real data with δ = 0.8. In comparison with
Figure 3, the green and red lines are remarkable different from each other similar to the
boron data analysis and indicate strong anomalous diffusion. The exact result of the DEA is
shown by the blue line and indicates a development over time from periodic modulation to
asymptotic saturation similar to the boron analysis results.

6. Conclusions

An α-generalized entropy measure, parallel to Havrda-Charvat entropy and related to Tsallis entropy,
for the scalar, multivariable, and matrix case, respectively, was introduced. This entropy measure was
optimized under different types of restrictions leading to generalized type-1 beta family of densities,
generalized type-2 beta family of densities, and generalized gamma family of densities. The pathway
model, through its α parameter, established links between many entropic, distributional and differential
models utilized in the literature. The pathway model provides the ways and means to switch from the
Gaussian form of densities to heavy-tailed densities, and, through appropriate normalizing constants,
to statistical densities. The simplest case in the pathway model, Shannon entropy, is used for the
numerical treatment of diffusion entropy analysis and compared to standard deviation analysis for solar
neutrino data from SuperKamiokande. Such a procedure will be extended to other entropy measures
of the pathway model in the future. Results of evaluating the simplest case, Shannon entropy, already
shows that the solar neutrino data show non-Gaussian signature and contain a signal of modulation
with subsequent saturation. This is a clear indication of the superiority of diffusion entropy analysis,
focusing on the time development of the probability density function, in contrast to standard deviation
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analysis, focusing on the time development of the variance. Consequences of this results for so-called
solar modeling will be discussed elsewhere.

Acknowledgements

The authors would like to thank the Department of Science and Technology, Government of India, for
financial assistance for this work under project No.SR/S4/MS:287/05. The authors are also grateful to
Haubold, A., Columbia University New York, for the numerical analysis of the solar neutrino data with
Standard Deviation Analysis and Diffusion Entropy Analysis.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Greven, A.; Keller, G.; Warnecke, G. Entropy; Princeton University Press: Princeton, NJ,
USA, 2003.

2. Penrose, R. Cycles of Time: An Extraordinary New View of the Universe; The Bodley Head:
London, UK, 2010.

3. Mathai, A.M. A pathway to matrix variate gamma and normal densities. Linear Algebra Appl.
2005, 396, 317–328.

4. Tsallis, C. Possible generalizations of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52,
479–487.

5. Beck, C. Stretched exponentials from superstatistics. Physica A 2006, 365, 96–101.
6. Beck, C.; Cohen, E.G.D. Superstatistics. Physica A 2003, 322, 267–275.
7. Mathai, A.M.; Rathie, P.N. Basic Concepts in Information Theory and Statistics: Axiomatic

Foundations and Applications; Wiley Eastern: New Delhi, India; Wiley Halsted: New York, NY,
USA, 1975.

8. Gell-Mann, M.; Tsallis, C. Nonextensive Entropy: Interdisciplinary Applications; Oxford
University Press: New York, NY, USA, 2004.

9. Tsallis, C. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World;
Springer: New York, NY, USA, 2009.

10. Mathai, A.M. Jacobians of Matrix Transformations and Functions of Matrix Argument; World
Scientific Publishing: New York, NY, USA, 1997.

11. Mathai, A.M. Some properties of Mittag-Leffler functions and matrix-variate analogues: A
statistical perspective. Fract. Calc. Appl. Anal. 2010, 13, 113–132.

12. Mathai, A.M.; Haubold, H.J. Pathway model, superstatistics, Tsallis statistics and a generalized
measure of entropy. Physica A 2007, 375, 110–122.

13. Mathai, A.M.; Haubold, H.J. Special Functions for Applied Scientists; Springer: New York, NY,
USA, 2008.

14. Mathai, A.M.; Provost, S.B.; Hayakawa, T. Bilinear Forms and Zonal Polynomials; Springer:
New York, NY, USA, 1995.



Entropy 2013, 15 4025

15. Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic
organization of DNA nucleotides. Phys. Rev. E 1995, 49, 1685–1689.

16. Scafetta N.; Grigolini, P. Scaling detection in time series: Diffusion entropy analysis. Phys. Rev. E
2002, doi: 101103/Phys.RevE.66.036130.

17. Mandelbrot, B.B. The Fractal Geometry of Nature; W.H. Freeman and Company: New York, NY,
USA, 1983.

18. Haubold, H.J.; Mathai, A.M. A heuristic remark on the periodic variation in the number of solar
neutrinos detected on Earth. Astrophys. Space Sci. 1995, 228, 113–134.

19. Sakurai, K.; Haubold, H.J.; Shirai, T. The variation of the solar neutrino fluxes over time in the
Homestake, GALLEX(GNO), and the Super-Kamiokande experiments. Space Radiat. 2008, 5,
207–216.

20. SuperKamiokande. Available online: http://www-sk.icrr.u-tokyo.ac.jp/sk/index-e.html (accessed
on 20 September 2013).

21. Sebastian, N.; Joseph, D.P.; Nair, S.S. Overview of the pathway idea in statistical and physical
sciences. arXiv:1307.793 [math-ph].

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	A Generalized Measure of Entropy
	Another Method

	A Generalized Model
	Generalization to the Matrix Case
	Standard Deviation Analysis and Diffusion Entropy Analysis
	Conclusions
	Conflicts of Interest

