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Abstract: We review a nonparametric version of Amari’s information geometry in which the
set of positive probability densities on a given sample space is endowed with an atlas of charts
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1. Introduction

Information geometry was developed in the seminal monograph by Amari and Nagaoka [1], where
previous—essentially metric—descriptions of probabilistic and statistics concepts are extended in the
direction of differential geometry, including the fundamental treatment of differential connections. The
differential geometry involved in their construction is finite dimensional, and the formalism is based on
coordinate systems. Following a suggestion by Phil Dawid in [2–4], a particular nonparametric version
of the Amari-Nagaoka theory was developed in a series of papers [5–14], where the set P> of all strictly
positive probability densities of a measure space is shown to be a Banach manifold (as defined in [15–17])
modeled on an Orlicz Banach space, see [18] (Ch II).

Specifically, Gibbs densities, q = eu−Kp(u) · p, Ep [u] = 0, are represented by the chart, sp : q 7→ u.
Because of the exponential form, the random variable, u, is required to belong to an exponential
Orlicz space, which is similar to ordinary Lebesgue spaces, but lacks some important features of these
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spaces, such as reflexivity and separability. On the other side, the nonparametric setting emphasizes
in a nice way the fact that statistical manifolds are actually affine manifolds with a Hessian structure,
cfr. [19].

Such a formalism has been frequently criticized as unnecessarily involved to be of use in practical
applications and, also, as lacking really new results with respect to the Amari-Nagaoka theory. However,
it should be observed that most applications in statistical physics, such as the Boltzmann equation
theory [20], are intrinsically nonparametric. I like to quote here a line by Serge Lang in [17] (p. vi):
“One major function of finding proofs valid in the infinite dimensional case is to provide proofs which
are especially natural and simple in the finite dimensional case.” A good example is the use here of a
different Banach space for each chart in the atlas defining our manifold, with a notable advantage in the
interpretation of the results.

If p(t), t ∈ I , is a curve in the manifold of positive densities, the Fisher score, δp(t) = d
dt

ln (p(t)), is
a parameterized family of random variables, such that Ep(t) [δp(t)] = 0, t ∈ I . The Fisher score provides
the correct notion of the velocity of a statistical curve, while the set of all Fisher scores, i.e., the vector
space of all random variables, u, such that Ep [u] = 0, suggest the form of the tangent space at p. We
attach to each density p ∈ P> a vector space of random variables whose expected value with respect to
p is zero to form the linear fiber of a vector bundle on the statistical manifold. This vector space can
be either an Orlicz space, denoted here Bp or ∗Bp, or a Hilbert space Hp = L2

0(p). The purpose of this
paper is to show that this mathematical formalism can be rigorously defined in such a way as to allow
for the treatment of the Boltzmann equation as an evolution equation on the statistical manifold.

This paper is organized as follows. Sections 2 and 3 are a review of the basic material on statistical
exponential manifolds with some emphasis on the functional analytic setting and on second order
structures. Section 4 contains a discussion of examples of the application to the differential geometry of
expected values, Kullback-Leibler divergence, Boltzmann-Gibbs entropy and the Boltzmann equation.
Section 5 presents some topics that would require further study, together with references to some lines
of current research.

2. Model Spaces

Given a σ-finite measure space, (Ω,F , µ), we denote by P> the set of all densities that are positive
µ-a.s, by P≥ the set of all densities, by P1 the set of measurable functions f with

∫
f dµ = 1. In

the finite state space case, P1 is an affine subspace, P≥ is the simplex and P> its topological interior.
We summarize below the basic notations and results. Missing proofs are to be found, e.g., in [10] and
in [18] (Ch II).

If both φ and φ∗ are monotone, continuous functions on R≥ onto itself, such that φ−1 = φ∗, we call
the pair:

Φ(x) =

∫ |x|
0

φ(u) du, Φ∗(y) =

∫ |y|
0

φ∗(v) dv (1)

a Young pair. Each Young pair satisfies the Young inequality:

|xy| ≤ Φ(x) + Φ∗(y) (2)
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with equality, if and only if y = φ(x). The relation in a Young pair is symmetric, and either element is
called a Young function. We will use the following Young pairs:

φ∗ φ = φ−1
∗ Φ∗ Φ

(a) ln (1 + u) ev − 1 (1 + |x|) ln (1 + |x|)− |x| e|y| − 1− |y|
(b) sinh−1 u sinh v |x| sinh−1 |x| −

√
1 + x2 + 1 cosh y − 1

(3)

Let us derive a few elementary, but crucial, inequalities. If x ≥ 0:

Φ(a)
∗ (x) =

∫ x

0

x− u
1 + u

du, Φ(b)
∗ (x) =

∫ x

0

x− u√
1 + u2

du (4)

hence, as
√

1 + u2 ≤ 1 + u ≤
√

2
√

1 + u2, if u ≥ 0, for all real x, we have:

Φ(a)
∗ (x) ≤ Φ(b)

∗ (x) ≤
√

2Φ(a)
∗ (x) (5)

From Equation (4), we have for a > 1:

Φ(a)
∗ (ax) = a2

∫ x

0

x− v
1 + av

dv ≤ a2Φ(a)
∗ (x), Φ(b)

∗ (ax) = a2

∫ x

0

x− v√
1 + a2v2

dv ≤ a2Φ(b)
∗ (x) (6)

In a similar way, from:

Φ(a)(y) =

∫ y

0

(y − v)ev dv, Φ(b)(y) =

∫ y

0

(y − v) cosh v dv (7)

and cosh v ≤ ev ≤ 2 cosh v, if v ≥ 0 we have a relation similar to Equation (5), that is, for all y:

Φ(b)(y) ≤ Φ(a)(y) ≤ 2Φ(b)(y) (8)

Property Equation (6) does not hold in this case, i.e., Φ(ax)/Φ(x), a > 1, is unbounded for x → ∞.
Such a type of inequality is called a ∆2-condition and has a crucial role in the theory of Orlicz spaces;
see [18] (Th. 8.14).

If Φ is any Young function, a real random variable, u, belongs to the Orlicz space,
LΦ(p), if Ep [Φ(αv)] < +∞ for some α > 0. A norm is obtained by defining
the set, {v : Ep [Φ(v)] ≤ 1}, to be the closed unit ball. It follows that the open unit
ball consists of those u’s, such that αu is in the closed unit ball for some α > 1.
The corresponding norm, ‖ · ‖Φ,p, is called the Luxemburg norm and defines a Banach space;
see [18] (Th 7.7). From Equations (8) and (5) follows that cases (a) and (b) in Equation (3)
define equal vector spaces with equivalent norms; see [10] (Lemma 1). Therefore, we drop any
mention of them.

The Young function, cosh−1, has been chosen here, because the condition Ep [Φ(αv)] < +∞ is
clearly equivalent to Ep [etv] < +∞ for t ∈ [−α, α], that is, the random variable, u, has a Laplace
transform around zero. The case of a moment-generating function defined on all of the real line is
special and defines a notable subspace of the Orlicz space. The use of such a space has been proposed
by [21].

There are technical issues in working with Orlicz spaces, such as L(cosh−1)(p), in particular, the
regularity of its unit sphere Scosh−1 =

{
u : ‖u‖(cosh−1),p = 1

}
. In fact, while Ep [coshu− 1] = 1
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implies u ∈ Scosh−1, the latter implies only Ep [coshu− 1] ≤ 1. Subspaces of LΦ(p), where it cannot
happen at the same time ‖(cosh−1), p‖, u = 1 and Ep [coshu− 1] < 1 are of special interest. In general,
the sphere, Scosh−1, is not smooth; see an example in [14] ( Example 3).

Because the functions, Φ and Φ∗, are a Young pair, for each u ∈ LΦ(p) and v ∈ LΦ∗(p), such that
‖u‖Φ,p , ‖v‖Φ∗,p

≤ 1, we have from the Young inequality Equation (2), |Ep [uv]| ≤ 2; hence:

LΦ∗(p)× LΦ(p) 3 (v, u) 7→ 〈u, v〉p = Ep [uv] (9)

is a duality pairing,
∣∣∣〈u, v〉p∣∣∣ ≤ 2 ‖u‖Φ∗,p

‖v‖Φ,p. It is a classical result that in our case (3), the space,

LΦ∗(p), is separable and its dual space is LΦ(p), the duality pairing being (u, v) 7→ 〈u, v〉p. This duality
extends to a continuous chain of spaces:

LΦ(p)→ La(p)→ Lb(p)→ LΦ∗(p), 1 < b ≤ 2,
1

a
+

1

b
= 1 (10)

where→ denotes continuous injection.

2.1. Cumulant Generating Functional

Let p ∈ P> be given. The following theorem has been proven in [9] (Ch 2); see also [10].

Proposition 1.

1. For a ≥ 1, n = 0, 1, . . . and u ∈ LΦ(p):

λa,n(u) : (w1, . . . , wn) 7→ w1

a
· · · wn

a
e

u
a (11)

is a continuous, symmetric, n-multi-linear map from LΦ(p) to La (p).

2. v 7→
∑∞

n=0
1
n!

(v
a

)n
is a power series from LΦ(p) to La(p), with radius of convergence ≥ 1.

3. The superposition mapping, v 7→ ev/a, is an analytic function from the open unit ball of
LΦ(p) to La(p).

The previous theorem provides an improvement upon the original construction of [5].

Definition 1. Let Φ = cosh−1 and Bp = LΦ
0 (p) =

{
u ∈ LΦ

0 (p) : Ep [u] = 0
}

, p ∈ P>. The moment
generating functional is Mp : LΦ(p) 3 u 7→ Ep [eu] ∈ R> ∪{+∞}. The cumulant generating functional
is Kp : Bp 3 u 7→ logMp(u) ∈ R> ∪ {+∞}.

The moment-generating functional is the partition functional (normalizing factor) of the Gibbs model,
(eu/Mp(u)) · p ∈ P>, if u ∈ LΦ(p), Mp(u) < +∞. The same model is written eu−Kp(u) · p, if, moreover,
Ep [u] = 0.

Proposition 2.

1. Kp(0) = 0; otherwise, for each u 6= 0, Kp(u) > 0.
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2. Kp is convex and lower semi-continuous, and its proper domain is a convex set that contains the
open unit ball of Bp; in particular, the interior of the proper domain is a non-empty open convex
set denoted Sp.

3. Kp is infinitely Gâteaux-differentiable in the interior of its proper domain.

4. Kp is bounded, infinitely Fréchet-differentiable and analytic on the open unit ball of Bp.

Other properties of the functional Kp are described below, as they relate directly to the
exponential manifold.

3. Exponential Manifold

The set of positive densities, P>, around a given p ∈ P> is modeled by the subspace of centered
random variables in the Orlicz space, LΦ(p). Hence, it is crucial to discuss the isomorphism of the
model spaces for different p’s.

Definition 2 (Maximal exponential model: [10] (Def 20)). For p ∈ P>, let Sp be the topological interior
of the proper domain of the cumulant functional, Kp : Bp. The maximal exponential model at p is:

E (p) =
{

eu−Kp(u) · p : u ∈ Sp
}

(12)

It is important to observe that q ∈ E (p) is equivalent to p ∈ E (q), as is proven in Proposition 3 below.

Definition 3 (Connected densities). Densities p, q ∈ P> are connected by an open exponential arc,
p ^ q, if there exists an open exponential family containing both, i.e., if for a neighborhood I of [0, 1]:

∫
p1−tqt dµ = Ep

[(
q

p

)t]
= Eq

[(
p

q

)1−t
]
< +∞, t ∈ I (13)

The following example is of interest for the applications in Section 4. Let f0 be the standard normal
density on RN and f , a density, f(x) ∝ (1 + |x|a)f0(x), a > 0. Then,

∫
(1 + |x|a)tf0(x) dx < +∞ for

all real t, hence f0 ^ f .

Proposition 3 (Characterization of a maximal exponential model: ([10], Th 19 and 21)). The following
statements are equivalent:

1. p, q ∈ P> are connected by an open exponential arc, p ^ q;

2. q ∈ E (p);

3. E (p) = E (q);

4. log q
p

belongs to both LΦ(p) and LΦ(q).

If it holds, then:

5. LΦ(p) and LΦ(q) are equal as vector spaces and their norms are equivalent.
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We can now define the exponential manifold as follows.

Definition 4 (Exponential manifold: [5,7,9,10]). For each p ∈ P>, define the charts:

sp : E (p) 3 q 7→ ln

(
q

p

)
− Ep

[
ln

(
q

p

)]
∈ Sp ⊂ B, (14)

with inverse
s−1
p = ep : Sp 3 u 7→ eu−Kp(u) · p ∈ E (p) ⊂ P> (15)

The atlas, {sp : Sp : p ∈ P>}, is affine and defines the exponential (statistical) manifold P>.

The affine manifold we have defined has a simple and natural structure because of Proposition 3. The
domains, E (p), E (q), of the charts, sp, sq, are either disjoint or equal when p ^ q:

E (p)
sp // Sp
sq◦s−1

p

��

I // Bp

d(sq◦s−1
p )

��

I // LΦ(p)

E (q) sq
// Sq I

// Bq I
// LΦ(q)

(16)

For ease of reference, various results from [5,7,9,10] are collected in the following proposition. We
assume q = eu−Kp(u) · p ∈ E (p). It should be noted that Kp(u) = Ep [ln (p/q)] is the expression in the
chart centered at p of the Kullback-Leibler divergence, D (p ‖q).

Proposition 4.

1. The first three derivatives of Kp on Sp are:

dKp(u)v = Eq [v] (17)

d2Kp(u)(v1, v2) = Covq (v1, v2) (18)

d3Kp(u)(v1, v2, v3) = Covq(v1, v2, v3) (19)

2. The random variable, q
p
− 1, belongs to ∗Bp and:

dKp(u)v = Ep
[(

q

p
− 1

)
v

]
(20)

In other words, the gradient of Kp at u is identified with an element of the predual space of Bp,
viz. ∗Bp = LΦ∗

0 (p), denoted by ∇Kp(u) = eu−Kp(u) − 1 = q
p
− 1.

3. The mapping, Sp 3 u 7→ ∇Kp(u) ∈ ∗Bp, is monotonic:

〈∇Kp(u)−∇Kp(v), u− v〉p > 0, u 6= v (21)

in particular, one-to-one.

4. The weak derivative of the map, Sp 3 u 7→ ∇Kp(u) ∈ ∗Bp, at u applied to w ∈ Bp is given by:

d(∇Kp(u))w =
q

p
(w − Eq [w]) (22)

and it is one-to-one at each point.
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5. The mapping, mUq
p : v 7→ p

q
v, is an isomorphism of ∗Bp onto ∗Bq. It is called the mixture transport

or m-transport.

6. q/p ∈ LΦ∗(p).

7. D (q‖p) = DKp(u)u−Kp(u) with q = eu−Kp(u)p, in particular −D (q ‖p) < +∞.

8. Bq is defined by an orthogonality property:

Bq = LΦ
0 (q) =

{
u ∈ LΦ(p) : Ep

[
u
q

p

]
= 0

}
(23)

9. The mapping, eUq
p : u 7→ u− Eq [u], is an isomorphism of Bp onto Bq. It is called the exponential

transport or e-transport.

3.1. Tangent Bundle

Our discussion of the tangent bundle of the exponential manifold is based on the concept of the
velocity of a curve as in [16] (§3.3), and it is mainly intended to underline its statistical interpretation,
which is obtained by identifying curves with one-parameter statistical models. For a statistical model
p(t), t ∈ I , the random variable, ṗ(t)/p(t), the Fisher score, has zero expectation with respect to p(t),
and its meaning in the exponential manifold is velocity. If p(t) = etv−ψ(t) ·p, v ∈ LΦ(p), is an exponential
family, then ṗ(t)/p(t) = v − Ep(t) [v] ∈ Bp(t); see [22] on exponential families.

Let p(·) : I → E (p), I the open real interval containing zero. In the chart centered at p, the curve is
u(·) : I → Bp, where p(t) = eu(t)−Kp(u(t)) · p. The transition maps of the exponential manifold are:

sq ◦ ep : Sp 3 u 7→ sq(e
u−Kp(u) · p) = u− Eq [u] + ln

(
p

q

)
− Eq

[
ln

(
p

q

)]
∈ Sq = Sp (24)

with derivative:
dvsq ◦ s−1

p (u) = v − Eq [v] = eUq
pv, v ∈ Bp (25)

Definition 5 (Velocity field of a curve).

1. Assume t 7→ u(t) = sp(p(t)) is differentiable with derivative u̇(t). Define:

δp(t) = eUp(t)
p u̇(t) = u̇(t)− Ep(t) [u̇(t)] =

d

dt
(u(t)−Kp(u(t)) =

d

dt
ln

(
p(t)

p

)
=

d
dt
p(t)

p(t)
(26)

Note that δp does not depend on the chart sp and that the derivative of t 7→ p(t) in the last term of
the equation is computed in LΦ∗(p). The curve t 7→ (p(t), δp(t)) is the velocity field of the curve.

2. On the set {(p, v) : p ∈ P>, v ∈ Bp}, the charts:

sp : {(q, w) : q ∈ E (p) , w ∈ Bq} 3 (q, w) 7→ (sp(q),
eUp

qw) ∈ Sp ×Bp ⊂ Bp ×Bp (27)

define the tangent bundle, TP>. The isomorphism w 7→ eUq
pw = w − Ep [w] = d(sq ◦ s−1

p )(u)w

of Proposition 4(9) is the (exponential) parallel transport.
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Let E : E (p)→ R be a C1 function. Then, Ep = E ◦ ep : Sp → R is differentiable and:

d

dt
E(p(t)) =

d

dt
Ep(u(t)) = dEp(u(t))u̇(t) = dEp(u(t)) eUp

p(t)δp(t) (28)

Proposition 5 (Covariant derivative of a real function).

1. As v 7→ dEp(u)v is a linear operator on Bp, w 7→ dEp(u) eUp
ep(u)w is a linear operator on Bep(u),

which does not depend on p.

2. If G is a vector field in TP>, the covariant derivative DGE is:

DGE(q) = dEp(sp(q))
eUp

ep(u)w = dEq(0)w, w = G(q) (29)

3. Assume moreover that dEp(u) ∈ Bp
∗ can be identified with an element,∇Ep(u) ∈ ∗Bp, by:

dEp(u)w = Ep [∇Ep(u)w] , w ∈ Bp (30)

Then, for u = ep(q):

DGE(q) = dEp(u) eUp
qG(q) = Eq

[mUq
p∇Ep(u)G(q)

]
(31)

We define the covariant gradient,∇GE(q), by DGE(q) = Eq [∇GE(q)G(q)].

Proof.

1. Assume u1 = sp1(q) = sp1 ◦ep2(u2), so that E(q) = Ep1(u1) = Ep2(u2) = Ep1(sp1 ◦ep2(u2)) and:

dEp2(u2) eUp2
q w = dEp1 ◦ sp1 ◦ ep2(u2) eUp2

q w = dEp1(u1) eUp2
p1

eUp2
q w = dEp1(u1) eUp1

q w (32)

2. Compute the derivative of t 7→ E ◦ p(t) when δp(t) = G(p(t)).

3. It is a computation based on:

Ep [∇Ep(u)(G(p)− Ep [G(q)])] = Eq
[
p

q
∇Ep(u)(G(q)− Ep [G(q)])

]
= Eq

[
p

q
∇Ep(u)(G(q)

]
(33)

Definition 6. Let F,G : E (p) be vector fields of TP>. In the chart at p, Fp(u) = eUp
ep(u)F ◦ ep(u),

u ∈ Sp has differential Bp : v 7→ dFp(u)v ∈ Bp. The e-covariant derivative is the vector field defined
by DGF (q) = eUq

pdFp(sp(q))
eUp

qw, w = G(q), and this definition does not depend on p.
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3.2. Pretangent Bundle

Because of the lack of reflexivity of the exponential Orlicz space, we are forced to distinguish between
the dual tangent bundle (TP>)∗ = {(p, v) : p ∈ P>, v ∈ (Bp)

∗} and a pretangent bundle.

Definition 7. The set, {(q, v) : q ∈ P>, v ∈ ∗Bq}, together with the charts:

∗sp : {(q, v) : q ∈ E (p) , v ∈ ∗Bq} 3 (q, v) 7→
(
sp(q),

mUp
qv
)

(34)

are the pretangent bundle, ∗TP>.

The pretangent bundle is actually the tangent bundle of the mixture manifold (cfr. [1]) on P1 ={
f ∈ L1(µ) :

∫
f dµ = 1

}
, whose charts are of the form ηp(q) = q/p − 1 ∈ ∗Bp. For each p ∈ P>,

consider the set:
∗Up =

{
q ∈ P1 : q/p ∈ LΦ∗(p)

}
(35)

and the mapping:
ηp : ∗Up 3 q 7→ ηp(q) = q/p− 1 ∈ ∗Bp. (36)

Characterize ∗Up as the set of q’s of finite Kullback-Leibler divergence from p.

Proposition 6 ([9], Proposition 30). Let p ∈ P> and q ∈ P1. Define q̃ = |q| /
∫
|q| dµ.

Then, D (q̃ ‖p) < +∞, if and only if q/p ∈ LΦ∗(p).

Proof. The second derivative of Φ∗(x) = (1 + x) ln (1 + x)− x, x > 0, is 1/(1 + x), while the second
derivative of x ln (x) is 1/x. The function x ln (x) is more convex than Φ∗(x) as 0 < 1/(1 + x) < 1/x.
The two functions have parallel tangents at x > 0 if ln (1 + x) = ln (x) + 1, that is, at x̄ = 1/(e − 1).
At this point, the difference of the values is:

Φ∗(x̄)− x̄ ln (x̄) = 1− ln (e− 1) (37)

In conclusion, we have the inequalities:

Φ∗(x) ≤ x ln (x) + 1− ln (e− 1) < x lnx+ 1, x ≥ 0 (38)

If D (q̃ ‖p) < +∞, then:

+∞ >

∫
ln

(
q̃

p

)
q̃ dµ = Ep

[
q̃

p
ln

(
q̃

p

)]
> Ep

[
Φ∗

(
q̃

p

)]
− 1 = Ep

[
Φ∗

((∫
|q| dµ

)−1
q

p

)]
− 1

(39)
so that q/p ∈ LΦ∗(p).

Assume now q/p ∈ LΦ∗(p), or, equivalently, q̃/p ∈ LΦ∗(p). As x ln+(x) ≤ (1 + x) ln (x) for x ≤ 0,
we have:

+∞ > Ep
[
φ∗

(
q̃

p

)]
= Ep

[(
1 +

q̃

p

)
ln

(
1 +

q̃

p

)]
− 1 ≥ Ep

[
q̃

p
ln+

(
q̃

p

)]
− 1 (40)

which, in turn, implies that:

D (q̃ ‖p) < Ep
[
q̃

p
ln+

(
q̃

p

)]
(41)

is finite.
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The covariant gradient defined in Proposition 3(3) is a vector field of the pretangent bundle. Note
that the injection, P> ↪→ P1, is represented in the charts centered at p by u 7→ eu−Kp(u) · p − 1. We
do not further discuss here the mixture manifold and refer to [10] (Section 5) for further information on
this topic.

Let F be a vector field of the pretangent bundle, ∗TP>. The chart centered at p E (p) 3 q 7→ F (q) is
represented by:

Fp(u) = mUp
ep(u)F ◦ ep(u) ∈ ∗Bp, u ∈ Sp (42)

If Fp is of class C1 with derivative dFp(u) ∈ L(Bp,
∗Bp), for each differentiable curve t 7→ p(t) =

eu(t)−Kp(u(t)) · p:
d

dt
Fp(p(t)) = dFp(u(t))u̇(t) = dFp(u(t)) eUp

p(t)δp(t) ∈
∗Bp (43)

For each q = ep(u) ∈ E (p), w ∈ ∗Bq, mUq
pdFp(u) eUp

qw ∈ ∗Bq does not depend on p.

Definition 8 (Covariant derivative in ∗TP>.). Let F be a vector field of the pretangent bundle, ∗TP>,
and G a vector field in the tangent bundle, P>, both of class C1 on E (p). The covariant derivative is:

DGF (q) = d mUq
eq(u)F ◦ eq(0)w, w = G(q) (44)

The tangent and pretangent bundle can be coupled to produce the new frame bundle:

(∗T × T )P> = {(p, v, w) : p ∈ P>, v ∈ Bp, w ∈ ∗Bp} (45)

with the duality coupling:

(∗T × T )P> 3 (p, v, w) 7→ 〈v, w〉p = Ep [vw] = Eq
[mUq

pv
eUq

pw
]
, p ^ q (46)

Proposition 7 (Covariant derivative of the duality coupling). Let F be a vector field of ∗TP>, G,H
vector fields of TP>, all of class C1 on a maximal exponential model E . Then:

DH 〈F,G〉 = 〈DHF,G〉+ 〈F,DHG〉 (47)

Proof. Consider the real function E 3 q 7→ 〈F,G〉 (q) = Eq [F (q)G(q)] in the chart centered at any
p ∈ E :

Sp 3 u 7→ Eq [F (q)G(q)] = Ep
[mUp

qF ◦ ep(u) eUp
qG ◦ ep(u)

]
= Ep [Fp(u)Gp(u)] (48)

and compute its derivative.

3.3. The Hilbert Bundle

The duality on (∗T × T )P> is reminiscent of a Riemannian metric, but it is not, because we do not
have a Riemannian manifold unless the state space is finite. However, we can push on the analogy, by
constructing a Hilbert bundle. As LΦ(p) ⊂ L2(p) ⊂ LΦ∗(p), p ∈ P>, we have Bp ⊂ Hp ⊂ ∗Bp,
L2

0(p) = Hp being the fiber at p. The Hilbert bundle:

HP> = {(p, v) : p ∈ P>, v ∈ Hp} (49)

is provided with an atlas of charts by using the isometries, Uq
p : Hp → Hq, which result from the

pull-back of the metric connection on the sphere Sµ =
{
f ∈ L2(µ) :

∫
f 2 dµ = 1

}
; see [6,8,23]

and [14] (Section 4).
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Proposition 8 (Isometric transport: ([14], Proposition 13)).

1. For all p, q ∈ P>, the mapping:

Uq
p : v 7→

√
p

q
u−

(
1 + Eq

[√
p

q

])−1(
1 +

√
p

q

)
Eq
[√

p

q
v

]
(50)

is an isometry of HpP> onto HqP>.

2. Up
q ◦ Uq

pu = u, u ∈ HpP> and (Uq
p)
t = Up

q .

Note that Ur
qUq

p 6= Ur
p.

Definition 9 (Hilbert bundle). The charts:

2sp : {(q, v) : q ∈ E (p) , v ∈ Hq} 3 (q, v) 7→
(
sp(q),Up

qv
)
∈ Sp ×Hp ⊂ Bp ×Hp (51)

form an atlas on HP>.

Let t 7→ p(t) be a C1 curve in E (p), p = p(0), u(t) = sp(p(t)) and F : E (p) a C1 vector field in
HP>. In the chart centered at p, we have Fp(u(t)) = Up

p(t)(F ◦ ep)(u(t)). A computation shows that:

d

dt
Fp(t)

∣∣∣∣
t=0

=
d

dt
Up
p(t)(F ◦ ep)(u(t))

∣∣∣∣
t=0

= dFp(0)δp(0) +
1

2
Fp(0)δp(0)− Ep

[
dFp(0)δp(0) +

1

2
Fp(0)δp(0)

]
(52)

which could be used as a nonparametric definition of the metric connection; see [14] (Section 4.4)
and [23] .

Our results on parallel transports and connections are a development, not yet complete, of previous
work on statistical bundles in [6,8,14,23].

3.4. The Second Tangent Bundle

We briefly discuss here the second order structure, i.e., the tangent bundle of tangent bundle TP>.
Let F : I 3 t 7→ (p(t), V (t)) be a C1 curve in the tangent bundle, TP>. In the chart centered at p,
we have:

Fp(t) = (sp(p(t)),
eUp

p(t)V (t)) = (u(t), Vp(t)) (53)

where p(t) = eu(t)−Kp(u(t)) · p and V (t) = Vp(t) − Ep(t) [Vp(t)] = Vp(t) − dKp(u(t))(Vp(t)). It follows
that t 7→ V (t) is differentiable in LΦ(p), with derivative:

V̇ (t) = V̇p(t)− dKp(u(t))(V̇p(t))− d2(p(t))(Vp(t), u̇(t)) = eUp(t)
p V̇p(t)− Covp(t) (Vp(t), u̇(t)) (54)

hence:
eUp(t)

p V̇p(t) = V̇ (t) + Ep(t) [V (t)] δp(t) (55)
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It follows, in particular, that Ep(t)
[
V̇ (t)

]
= −Ep(t) [V (t)δp(t)] and eUp(t)

p V̇p(t) = V̇ (t) − Ep(t)
[
V̇ (t)

]
.

Note that the left-end side is not a transport, but an extension of the transport, precisely the projection,
Πp(t) : LΦ(p)→ Bp(t). It follows from Ḟp(t) =

(
u̇(t), V̇p(t)

)
that the velocity vector is:

δ(p, V )(t) =
(
δp(t), eUp(t)

p V̇p(t)
)

=
(
δp(t),Πp(t)V̇ (t)

)
(56)

The Equation (55) in the case V (t) = (δp)(t) gives:

Πp(t) ˙(δp)(t) = ˙(δp)(t) + Ep(t)
[
δp(t)2

]
= ˙(δp)(t) + I(p(t)) (57)

where we have denoted by I(p(t)) = Ep(t)
[
d
dt

ln (p(t))2] the Fisher information. In this case, we
can write:

δ(p, δp)(t) = (δp(t), ˙(δp)(t) + I(p(t))) (58)

4. Applications

In this section, we consider a typical set of examples where the nonparametric framework
is applicable.

4.1. Expected Value

Let f ∈ LΦ(p), f0 = f −Ep [f ] ∈ Bp, and consider its expected value as a function of the the density,
q ∈ E (p):

E : E (p) 3 q 7→ Eq [f ] = Eq [f0] + Ep [f ] (59)

which is sometimes called the relaxed version of f in optimization theory, where it is convenient to
regularize the problem of finding maxx f(x) by extending it to the problem of finding maxq E(q). As
Eq [f ] < max f , q ∈ P>, unless f is µ-a.s.constant; relaxed optimization can produce a maximizing
sequence only.

The information geometric study of the relaxed mapping can be based on the notion of natural
gradient as defined in a seminal paper by Amari [24], and it is currently used for optimization, see,
e.g., [25–31]. The covariant derivative of a real function is the nonparametric counterpart of Amari’s
natural gradient.

From the properties of Kp in Equations (17) and (18) of Proposition 4, we obtain
the representation Ep(u) = E ◦ s−1

p (u) of the function in Equation (59) in the chart
centered at p, Ep(u) = dKp(u)(f0) + Ep [f ], whose differential in the direction v is
dEp(u)v = d2Kp(u)(f0, v) = Covq (f, v). The covariant derivative at (q.w) ∈ TBq is computed
from Definition 5(2) as:

dEp(u) eUp
qw = Covq

(
f, eUp

qw
)

= Eq [(f − Eq [f ])(w − Ep [w])] = Eq [(f − Eq [f ])w] (60)

hence, DGE(p) = Ep [(f − Ep [f ])G(p)] with gradient∇GE(q) = f−Eq [f ] in the duality on ∗Bq×Bq.
Note that the gradient is never zero unless f is constant and that the covariant derivative is zero for each
vector field G, which is uncorrelated with f .
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We now compute the covariant derivative of the of the gradient in order to obtain the Hessian of the
function, E. Consider the gradient vector field F (q) = f − Eq [f ] ∈ ∗TP>. The gradient flow is:

δp(t) =
d

dt
ln (p(t)) = f − Ep(t) [f ] (61)

whose unique solution is the exponential family, p(t) ∝ etf · p(0). In fact, the gradient is actually
the e-transport of f0, F (p) = eUep(u)

p f0, and the exponential family is the exponential curve of the
e-transport.

Let us discuss the differentiability of the gradient. In the chart centered at p, the gradient is
represented as:

Fp(u) = mUp
ep(u)[f0 − dKp(u)(f0)] = mUp

ep(u)
eUep(u)

p f0 (62)

Let us first compute the differential of u 7→ 〈Fp(u), w〉p, w ∈ Bp, in the direction v ∈ Bp, i.e., the
weak differential:

dv 〈Fp(u), w〉p = dv

〈
mUp

ep(u)
eUep(u)

p f0, w
〉
p

= Covep(u) (f0, w) =

dvd
2Kp(u)(fo, w) = d3Kp(u)(f0, w, v) = Covep(u)(f0, w, v) (63)

where we have used Proposition 4. At u = 0:

dv 〈Fp(0), w〉p = Ep [f0wv] = Ep [(f0v − Ep [f0v])w] = 〈f0v − Ep [f0v] , w〉p (64)

The product f0G(p) belongs to ∗Bp. In fact:

Ep [Φ∗ (f0G(p))] = Ep

[
f 2

0

∫ |G(p)|

0

|G(p)| − u
1 + |f0|u

du

]
≤ 1

2
Ep
[
f 2

0G(p)2
]
< +∞ (65)

If DG∇E exists in ∗P> as a Fréchet derivative, then:

DG∇E(p) = f0G(p)− Ep [f0G(p)] (66)

The differentiability in Orlicz spaces of superposition operators is discussed in detail in [32].

4.2. Kullback-Leibler Divergence

If E is a maximal exponential model, the mapping:

E × E 3 (q1, q2) 7→ D (q1 ‖q2) = Eq1
[
ln

(
q1

q2

)]
(67)

is represented in the charts centered at p by:

Ep : Sp × Sp 3 (u1, u2) 7→ dKp(u1)(u1 − u2)− (Kp(u1)−Kp(u2)) (68)

Hence, from Proposition 2(4), it is C∞ jointly in both variables and, moreover, analytic:

Ep(u1, u2) =
∑
n≥2

1

n!
dnKp(u1)(u1 − u2)◦n, ‖u1 − u2‖Φ,p < 1 (69)
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This regularity result is to be compared with what is available when the restriction, q1 ^ q2, is removed,
i.e., the semi-continuity [33].

The (partial) derivative of u2 7→ Ep(u1, u2) in the direction v2 ∈ Bp is:

d2Ep(u1, u2)v2 = −dKp(u1)v2 + dKp(u2)v2 = Eq2 [v2]− Eq1 [v2] (70)

If v2 = eUp
qw, we have Eq2 [v2]− Eq1 [v2] = Eq2 [w]− Eq1 [w], and the covariant derivative of the partial

functional q 7→ D (q1 ‖q) is:

D2,w D (q1 ‖q) = Eq [w]− Eq1 [w] = Eq
[(

1− q1

q

)
w

]
, ∇q D (q1 ‖q) = 1− q1

q
(71)

The second mixed derivative of Ep is:

d1d2Ep(u1, u2)(v1, v2) = −d2Kp(u1)(v1, v2) = −Covq1 (v1, v2) (72)

Equivalently, we consider the mapping, q1 7→ D2,w D (q1 ‖q), in the chart u1 7→ Eq [w] − Eq1 [w],
to obtain:

D1,w1D2,w2 D (q1 ‖q2)|q1=q2=q = −Eq [w1, w2] (73)

4.3. Boltzmann-Gibbs Entropy

While our discussion of the Kullback-Leibler divergence in the previous Section 4.2 does not require
any special assumption, but the restriction of its domain to a maximal exponential model, in the present
discussion of the Boltzmann-Gibbs entropy, a further restriction is required. If p, q belong to the same
maximal exponential model, p ^ q, then, from q = eu−Kp(u) · p with u ∈ Bp, we obtain ln q − ln p ∈
LΦ(p), so that ln q ∈ LΦ(p), if and only if ln p ∈ LΦ(p).

We study the Boltzmann-Gibbs entropy E(q) = Eq [ln (q)] on a maximal exponential model
q ∈ E , such that for at least one, and, hence, for all, p ∈ E , it holds ln (p) ∈ LΦ(p),
i.e.,

∫
(p1+α + p1−α) dµ < +∞ for some α > 0. This is, for example, the case when the reference

measure is finite and p is constant. Another notable example is the Gaussian case, i.e., the
sample space is Rn endowed with the Lebesgue measure and p(x) ∝ exp−1/2|x|2. In fact∫

cosh(α|x|2) exp (−1/2|x|2) dx < +∞ for 0 < α < 1/2.
Under our assumption, the Boltzmann-Gibbs entropy is a smooth function. As:

ln (q) = u−Kp(u) + ln (p) = u−Kp(u) + (ln (p)− E(p)) + E(p) ∈ LΦ(p) (74)

the representation in the chart centered at p is:

Ep(u) = Eep(u) [u−Kp(u) + ln (p)] = dKp(u) [u+ (ln (p)− E(p))]−Kp(u) + E(p) (75)

Hence, it is a C∞ real function. The derivative in the direction v equals:

dEp(u)v = d2Kp(u) (u+ (ln (p)− E(p)), v) = Covq (u+ ln (p) , v) (76)

in particular:
dEp(0)v = Ep [(ln (p)− E(p))v] = 〈ln (p)− E(p), v〉p (77)
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The value of the covariant derivative DGE at q and G(q) = w is:

dEp(u) eUp
qw = Covq (u+ ln (p) , w) = Eq [((ln (q) +Kp(u))w] = Eq [(ln (q)− E(q))w] (78)

The gradient ∇E(q) ∈ (Bq)
∗, DGE(q) = 〈∇E(q), G(q)〉q is identified with a random variable in

Bq ⊂ ∗Bq, and:

F (q) = ln (q)− E(q)

= u−Kp(u) + ln (p)− Eq [u−Kp(u) + ln (p)]

= (u+ ln (p)− E(p))− dKp(u)(u+ ln (p)− E(p))

= eUq
p(u+ ln (p)− E(p)) ∈ Bq (79)

is a vector field in the tangent bundle, TE , hence a vector field in the Hilbert bundle, HE , and in the
pretangent bundle, ∗TE .

The equation, ∇E(q) = 0, implies q = E(q), hence constant. The Boltzmann-Gibbs entropy is
increasing along the vector field G ∈ TE if Eq [(ln (q)− E(q))G(q)] = Covq (ln (q) , G(q)) > 0.
The exponential family tangent at p to ∇E(p) is p(t) ∝ et ln(p) · p = p1+t. The gradient flow equation is
δq(t) = ∇E(q(t)), that is:

d

dt
ln (q(t)) = ln q(t)− E(q(t)) (80)

In the pretangent bundle, the action of the dual exponential transport, (eUp
q)
∗, is identified with mUp

q .
It follows that the representation of the gradient in the chart centered at p is:

Fp(u) = eu−Kp(u) [(u+ ln (p)− E(p))− dKp(u)(u+ ln (p)− E(p))]

= mUp
ep(u)

eUep(u)
p [(u+ ln (p)− E(p)) (81)

Let us assume u 7→ Fp(u) is (strongly) differentiable, and let us compute the derivative by the product
rule. As u 7→ Fp(u) can be seen locally as the product of an analytic mapping, u 7→ eu−Kp(u), with
values in La(p), a > 1, because of Proposition 1, while the second factor is an analytic function with
values in LΦ(p) ⊂ ∩a>1L

a(p), we can compute its differential in the direction, v ∈ Bp, as the product of
two functions in the Fréchet space ∩a>1L

a(p) as:

d(∇E)p(u)v = eu−Kp(u) ×
[(v − dKp(u)v) [(u+ ln (p)− E(p))− dKp(u)(u+ ln (p)− E(p))]

+v − d2Kp(u)(u+ ln (p)− E(p), v)− dKp(u)v
]

=
q

p
[(v − Eq [v])(ln (q)− E(q)) + v − Eq [v]− Covq (ln (q) , v)] (82)

in particular, for u = 0:

d(∇E)p(0)v = (ln (p)− E(p) + 1)v − Ep [ln (p) v]

= (∇E(p) + 1)v − Ep [∇E(p)v] (83)
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The covariant derivative of the gradient, ∇E, of the Boltzmann-Gibbs entropy in the pretangent bundle,
∗TE , is:

DG(∇E)(p) = (ln (p)− E(p) + 1)G(p) + Ep [ln (p)G(p)]

= (∇E(p) + 1)G(p) + Ep [∇E(p)G(p)] , p ∈ E (84)

The existence of the covariant derivative implies ln (p)G(p) ∈ LΦ∗(p), p ∈ E . We do not discuss here
the existence problem.

The computation of the covariant derivative of the same gradient in the tangent bundle, TE , would be:

F̄p(u) = eUp
q(ln (q)− E(q)) = ln (q)− Ep [ln (q)] = u+ ln (p)− E(p)

dF̄p(u)v = v (85)

but we cannot suggest any use for this computation.

4.4. Boltzmann Equation

Orlicz spaces as a setting for the Boltzmann equation have been recently discussed in [34], while the
use of exponential manifolds has been suggested in [14] (Example 11). Here we further work out this
framework for a space-homogeneous Boltzmann operator with angular collision kernel B(z, x) = |x′z|;
see the presentation in [20]. In order to avoid a clash with the notations used in other parts of this
paper, we use v and w to denote velocities in R3 in place of the more common couple, v and v∗, and the
velocities after collision are denoted by vx and wx instead of v′, v′∗, x ∈ S2 being a unit vector.

Let v, w ∈ R3 be the velocities of two particles, and v̄, w̄ be the velocities after an elastic collision, i.e.,

v + w = v̄ + w̄, |v|2 + |w|2 = |v̄|2 + |w̄|2 (86)

Using Equation (86), we derive from the development of |v + w|2 = |v̄ + w̄|2 that v · w = v̄ · w̄.
The four vectors, v, w, v̄, w̄, all lie on a circle with center z = (v + w)/2 = (v̄ + w̄)/2. In fact, the four
vectors and z lie on the same plane, because v − z = −(w − z), v̄ − z = −(w̄ − z), and moreover,
|v − z|2 = |v̄ − z|2. As v, w, v̄, w̄ form a rectangle, we can denote by x the common unit vector of the
parallel sides, w̄−w and v− v̄, and write w̄−w = v− v̄ as the orthogonal projection of v−w on x. Given
the unit vector x ∈ S2 = {x ∈ R3 : x′x = 1}, the collision transformation (v, w) 7→ (v̄, w̄) = (vx, wx) is
linear and represented by a R(3+3)×(3+3) matrix:

Ax =

[
(I − Πx) Πx

Πx (I − Πx)

]
,

{
vx = v − xx′(v − w) = (I − xx′)v + xx′w

wx = w + xx′(v − w) = xx′v + (I − xx′)w
(87)

where ′ denotes the transposed vector.
Given any x ∈ S2, we have Ax = A−x. If v, w, vx, wx are as in Equation (87), then the elastic

collision invariants of Equation (86) hold, v+w = vx+wx, |v|2 + |w|2 = |vx|2 + |wx|2. The components
in the direction x are exchanged, xx′vx = xx′w and xx′wx = xx′v, while the orthogonal components
are conserved.
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Let σ be the uniform probability on S2. For each positive function, g : R3 × R3, the integral,∫
S2
g(vx, wx) σ(dx), depends on the collision invariants only. In fact:

vx =
v + w

2
+
|v − w|

2
y (88)

wx =
v + w

2
− |v − w|

2
y (89)

where the unit vector y = ̂vx − wx = (I − 2xx′)v̂ − w and all other terms depend on the collision
invariants, in particular, |v − w|2 = 2(|v|2 + |w|2)− |v + w|2.

On the sample space (R3, dv), let f0 be the standard normal density viz. the Maxwell distribution of
velocities. As AxAx = I6 the identity matrix on R6, in particular |detAx| = 1, we have:

Ax(V,W ) = (Vx,Wx) ∼ (V,W ) (90)

if (V,W ) ∼ N(06, I6). We can give the previous remarks a more probabilistic form as follows.

Proposition 9. Let f0 be the density of the standard normal N(03, I3).

1. If (V,W ) ∼ f0 ⊗ f0, then
∫
S2 g(Vx,Wx) σ(dx) is the conditional expectation of g(V,W ), given

V +W and |V |2 + |W |2.

2. Assume (V,W ) ∼ f , f ∈ E (f0 ⊗ f0); then
∫
S2 f ◦ Ax σ(dx) ∈ E (f0 ⊗ f0) and:

E
(
g(V,W )

∣∣V +W, |V |2 + |W |2
)

=

∫
S2 g(Vx,Wx)f(Vx,Wx) σ(dx)∫

S2 f(Vx,Wx) σ(dx)
(91)

Proof.
1. The random variable,

∫
S2 g(Vx,Wx) σ(dx) =

∫
S2 g ◦ Ax(V,W ) σ(dx), is a function

g̃(m1(V,W ),m2(V,W )) with m1(V,W ) = V + W and m2(V,W ) = |V |2 + |W |2. For all h1 : R3,
h2 : R3:

E
((∫

S2

g ◦ Ax(V,W ) σ(dx)

)
h1(m(V,W )h2(m2(V,W )))

)
=

E (g(V,W )h1(m(V,W )h2(m2(V,W )))) (92)

because of Ax(V,W ) ∼ (V,W ) and m1 ◦ Ax = m1, m2 ◦ Ax = m2.
2. We use Proposition 3. If f ∈ E (f0 ⊗ f0), then:

f = eu−K0(u) · f0 ⊗ f0, u ∈ Sf0⊗f0 (93)

and there exists a neighborhood, I , of [0, 1], where the one dimensional exponential family:

ft = etu−K0(tu) · f0 ⊗ f0, t ∈ I (94)

exists. To show Ef0⊗f0 [(f/f0 ⊗ f0)t] < +∞ for t ∈ I , it is enough to consider the convex cases, t < 0

and t > 1. We have: ∫
S2

f ◦ Ax σ(dx) =

∫
S2

efu◦Ax−K0(u) σ(dx) · f0 ⊗ f0 (95)



Entropy 2013, 15 4059

and in the convex cases:

Ef0⊗f0

[(∫
S2
f ◦ Ax σ(dx)

f0 ⊗ f0

)t]
= Ef0⊗f0

[(∫
S2

eu◦Ax−K0(u) σ(dx)

)t]
≤

Ef0⊗f0
[∫

S2

etu◦Ax−tK0(u) σ(dx)

]
= Ef0⊗f0

[
etu−tK0(u)

]
= eK0(tu)−tK0(u) (96)

The last equation is Bayes’ formula for conditional expectation.

Definition 10. For each element of the maximal exponential model containing f0, f ∈ E (f0), the
Boltzmann operator is:

Q(f)(v) = ∫
R3

∫
S2

(f(v − xx′(v − w))f(w + xx′(v − w))− f(v)f(w)) |x′(v − w)| σ(dx) dw (97)

In our definition, we have restricted the domain of the Boltzmann operator to a maximal exponential
model containing the standard normal density in order to fit into our framework and be able to prove
the smoothness of the operator. The maximal exponential model E (f0) contains all normal densities,
f ∼ N(µ,Σ). It has other peculiar properties.

As f ∈ E (f0), f = eu−K0(u) ·f0; u belongs to the interior of the proper domain ofK0, u ∈ Sf0 ⊂ Bf0 .
It follows from Proposition 3 that we have the equality and isomorphism of the Banach spaces, LΦ(f)

and LΦ(f0). For the random variable, Va : v 7→ |v|a, it holds Vα ∈ LΦ(f0) = LΦ(f) for all a ∈ [1, 2].
In fact:

Ef0 [cosh(αVa)] = (2π)−3/2

∫
R3

cosh(α |v|a) exp
(
− |v|2 /2

)
dv (98)

is finite for all α if a ∈ [0, 2[ and for α < 1/2 if a = 2. In particular, it follows that V1(v) = |v| has finite
moments with respect to f ,

∫
|v|n f(v) dv < +∞, n = 1, 2, . . . .

As x′(v − w) = −x′(vx − wx), the measure, |x′(v − w)| dvdw, is invariant under the transformation
Ax and the measure f(vx)f(wx) |x′(v − w)| dvdw is the image of f(v)f(w) |x′(v − w)| dvdw under
Ax. Other properties are obtained in the proof of the following proposition.

Proposition 10. Let f0(v) = (2π)−3/2 exp
(
− |v|2 /2

)
and f ∈ E (f0); then, Q(f)/f ∈ ∗Bf . Then,

f 7→ Q(f)/f is a vector field in the pretangent bundle, ∗TE (f0), called the Boltzmann field.

Proof. Let us consider first the second part of the Boltzmann operator:

Q−(f)(v) =

∫
R3

∫
S2

f(v)f(w) |x′(v − w)| σ(dx) dw = f(v)

∫
R3

f(w)

(∫
S2

|x′(v − w)| σ(dx)

)
dw

(99)
Note that from inequality (6):

Φ∗

(∫
S2

|x′(v − w)| σ(dx)

)
= Φ∗

(
|v − w|

∫
S2

|x1| σ(dx)

)
≤
(∫

S2

|x1| σ(dx)

)2

Φ∗ (|v − w|)

(100)
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We prove Q−(f)/f ∈ LΦ∗(f):

Ef
[
Φ∗

(
Q−(f)

f

)]
=

∫
R3

dvf(v)Φ∗

(∫
R3

f(w)

(∫
S2

|x′(v − w)| σ(dx)

)
dw

)
≤
∫
R3

dvf(v)

∫
R3

dwf(w)Φ∗

(∫
S2

|x′(v − w)| σ(dx)

)
=

∫
R3

dvf(v)

∫
R3

dwf(w)Φ∗ (b |v − w|)

≤ b2

2

∫
R3

∫
R3

dvdw f(v)f(w) |v − w|2 (101)

which is finite as |v − w|2 ≤ 2(|u|2 + |v|2).
We consider now the first part of the Boltzmann operator:

Q+(f)(v) =

∫
R3

∫
S2

f(v − xx′(v − w))f(w + xx′(v − w)) |x′(v − w)| σ(dx) dw

=

∫
R3

∫
S2

f(vx)f(wx) |x′(v − w)| σ(dx) dw (102)

We want to prove that Q+(f)/f ∈ LΦ∗(f) or, equivalently, Q+(f)/f0 ∈ LΦ∗(f0). As f ∈ E (f0),
we can write f as f = eu−K0(u) · f0, where u ∈ Bf0 , so that:

Q+(f)(w) = f0(w)

∫
S2

σ(dx)

∫
R3

dvf0(v)eu(vx)+u(wx)−2K0(u) |x′(v − w)| (103)

and:

Φ∗

(
Q+(f)(w)

f0(w)

)
≤
∫
S2

σ(dx)

∫
R3

dvf0(v)Φ∗
(
eu(vx)+u(wx)−2K0(u) |x′(v − w)|

)
≤
∫
S2

σ(dx)

∫
R3

dvf0(v)L(|x′(v − w)|)Φ∗
(
eu(vx)+u(wx)−2K0(u)

)
(104)

where L(a) = a ∨ a2. It follows:

Φ∗

(
Q+(f)(w)

f0(w)

)
≤
∫
S2

σ(dx)

∫
R3

dvf0(v)L(|x′(v − w)|)
(
(u(vx) + u(wx)− 2K0(u))eu(vx)+u(wx)−2K0(u) + 1

)
(105)

and:

Ef0
[
Φ∗

(
Q+(f)

f0

)]
≤
∫∫

R3

dvdwf0(v)f0(w)L(|x′(v − w)|)
(
(u(v) + u(w)− 2K0(u))eu(v)+u(w)−2K0(u) + 1

)
≤
∫∫

R3

dvdwf(v)f(w)L(|x′(v − w)|) (u(v) + u(w)− 2K0(u))

+

∫∫
R3

dvdwf0(v)f0(w)L(|x′(v − w)|) (106)



Entropy 2013, 15 4061

where both terms are finite.
Finally, the integral of the Boltzmann operator is zero:∫
R3

Q(f)(v) dv =∫
S2

∫
R3

∫
R3

(f(vx)f(wx)− f(v)f(w)) |x′(v − w)| dw dv dx =∫
S2

∫
R3

∫
R3

f(vx)f(wx) |x′(vx − wx)| dwx dvx dx−∫
S2

∫
R3

∫
R3

f(v)f(w)) |x′(v − w)| dw dv dx = 0 (107)

The smoothness of the Boltzmann field can be studied by carefully analyzing the structure of the
operator as a superposition of:

(1) Product: E (f0) 3 f 7→ f ⊗ f ∈ E (f0 ⊗ f0);

(2) Interaction: E (f0 ⊗ f0) 3 f ⊗ f 7→ g = Bf ⊗ f ∈ E (f0 ⊗ f0);

(3) Conditioning: E (f0 ⊗ f0) 3 g 7→
∫
S2
g ◦ Ax σ(dx) ∈ E (f0 ⊗ f0);

(4) Marginalization.

The single operations of the chain are discussed in [7]. We do not do this analysis here and conclude
the section by rephrasing in our language Maxwell’s weak form [20] (I.2.3) of the Boltzmann operator.

Proposition 11. Let f ∈ E (f0) and g ∈ LΦ(f). Then, Ag defined by:

Ag(v, w) =

∫
S2

1

2
(g(vx) + g(wx)) σ(dx)− 1

2
(g(v) + g(w)) (108)

belongs to LΦ(f ⊗ f) and:
〈g,Q(f)/f〉f = Ef⊗f [Ag] (109)

Especially, if f = eu−K0(u) · f0:

〈u,Q(f)/f〉f = Ef⊗f
[
A

(
f

f0

)]
(110)

5. Conclusions and Discussion

We have shown that a careful consideration of the relevant functional analysis allows us to discuss
some basic features of statistical models of interest in statistical physics in the framework of the
nonparametric information geometry based on Orlicz spaces. In particular, we have defined the
exponential statistical manifold and its vector bundles, namely, the tangent bundle, the pretangent bundle
and the Hilbert bundle. Partial results are obtained on connections, which is a topic considered by many
authors at the very core of statistical manifolds theory.
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For example, the Boltzmann equation takes the form of an evolution equation for the Boltzmann field:

δft =
Q(ft)

ft
, δf ∈ TE (f0) ,

Q(f)

f
∈ ∗TE (f0) (111)

and we can compute the covariant derivative of Boltzmann-Gibbs entropy along the Boltzmann
field DQ(f)/fE(f) = 〈Q(f)/f, ln (f)− E(f)〉f with Proposition 11, cfr. [20] (Ch. 3). Our treatment
of Boltzmann-Gibbs entropy and Boltzmann equation does not add any new result, but our aim is
to transform a generic geometric intuition about the geometry of probability densities into a formal
geometrical methodology.

A number of issues remain open, in particular, the proper topological setting of the second order
structures and the proper definition of sub-manifold, an important topic that is not mentioned at all in
this paper.

In the case of the pretangent bundle, we have been able to show that it is actually the tangent bundle
of an extension of the exponential manifold, the mixture manifold, ∗TP> → TP1. The construction of
an extended manifold whose tangent space would extend the Hilbert bundle, HP>, has been the object
of much research. In some sense, the answer is known because of the embedding p 7→ √p that maps
positive densities, P>, into the unit sphere Sµ, but a proper definition of the charts is difficult in this
setting.

It has been suggested to use functions called deformed exponentials to mimic the theory of
exponential families; see the monograph [35] and also [12], [14] (Section 5). An example of deformed
exponential is:

expd(u) =

(
1

2
u+

√
1 +

1

4
u2

)2

which is a special case of the class introduced in [36,37]. See [38] for an example of application.
The function, expd, maps R onto R>, is increasing, convex and:

Φd(u) =
1

2
(expd(u) + expd(−u))− 1 =

1

2
u2 (112)

The Young conjugate is Φd,∗ = Φd, and the Orlicz space is LΦd(p) = L2(p). A nonparametric
exponential family around the positive density, p, was defined by [39] to be:

q = expd (u−Kp(u) + lnd p) (113)

where:
lnd(v) = exp−1

d (v) = v1/2 − v−1/2 (114)

If we assume Ep̄ [u] = 0, where p̄ is a suitable density associated with p, then:

Kp(u) = Ep̄ [lnd p− lnd q] (115)

An account of this research in progress will be published elsewhere.
There are other approaches to nonparametric information geometry that are not based on the notion

of the exponential family. We refer in particular to [40].



Entropy 2013, 15 4063

Acknowledgments

This research was supported by the de Castro Statistics Initiative, Collegio Carlo Alberto, Moncalieri.
I wish to thank the guest editor, Antonio Scafone, for suggesting to me to present this contribution.
My warmest thanks to Bertrand Lods and Lamberto Rondoni for helpful conversations on
Boltzmann-Gibbs entropy and the Boltzmann equation.

Conflicts of Interest

The author declares no conflict of interest.

References

1. Amari, S.; Nagaoka, H. Methods of Information Geometry; Translated from the 1993 Japanese
original by Daishi Harada; American Mathematical Society: Providence, RI, USA, 2000;
pp. x+206.

2. Dawid, A.P. Discussion of a paper by Bradley Efron. Ann. Stat. 1975, 3, 1231–1234.
3. Dawid, A.P. Some comments on a paper by Bradley Efron. Ann. Statist. 1975, 3, 1189–1242.
4. Dawid, A.P. Further comments on “Some comments on a paper by Bradley Efron”. Ann. Stat.

1977, 5, No. 6.
5. Pistone, G.; Sempi, C. An infinite-dimensional geometric structure on the space of all the

probability measures equivalent to a given one. Ann. Stat. 1995, 23, 1543–1561.
6. Gibilisco, P.; Pistone, G. Connections on non-parametric statistical manifolds by Orlicz space

geometry. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1998, 1, 325–347.
7. Pistone, G.; Rogantin, M. The exponential statistical manifold: Mean parameters, orthogonality

and space transformations. Bernoulli 1999, 5, 721–760.
8. Gibilisco, P.; Isola, T. Connections on statistical manifolds of density operators by geometry of

noncommutative Lp-spaces. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1999, 2, 169–178.
9. Cena, A. Geometric Structures on the Non-Parametric Statistical Manifold. Ph.D. Thesis,
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