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Abstract: Solute transport through homogeneous media has long been assumed to be
scale-independent and can be quantified by the second-order advection-dispersion equation
(ADE). This study, however, observed the opposite in the laboratory, where transport of
CuSO4 through relatively homogeneous silica-sand columns exhibits sub-diffusion growing
with the spatial scale. Only at a very small travel distance (approximately 10 cm) and a
relatively short temporal scale can the transport be approximated by normal diffusion. This
is also the only spatiotemporal scale where the fundamental concept of the “representative
element volume” (which defines the scale of homogeneous cells used by the ADE-based
hydrologic models) is valid. The failure of the standard ADE motivated us to apply
a tempered-stable, fractional advection-dispersion equation (TS-FADE) to capture the
transient anomalous dispersion with exponentially truncated power-law late-time tails in
CuSO4 breakthrough curves. Results show that the tempering parameter in the TS-FADE
model generally decreases with an increase of the column length (probably due to the
higher probability of long retention processes), while the time index (which is a non-local
parameter) remains stable for the uniformly packed columns. Transport in sand columns
filled with relatively homogeneous silica sand, therefore, is scale-dependent, and the
resultant transient sub-diffusion can be quantified by the TS-FADE model.
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1. Introduction

Fractional-derivative models have been increasingly used in the last two decades to quantify
anomalous diffusion in disordered systems [1,2]. The entropy theory was also combined with fractional
calculus in analyzing fractional dynamics with a power-law memory [3]. For example, El-Wakil and
Zahran [4] applied the maximum entropy principle to reveal the structure of the probability distribution
function of waiting times underlying the fractional Fokker-Planck equation. Machado [5] analyzed
multi-particle systems with fractional order behavior. Ubriaco [3] applied Fisher’s information theory
based on his new definition of fractional entropy [6] to derive mathematical models for anomalous
diffusion. Machado [7] found a power law evolution of the system energy and the entropy measures
in fractional dynamical systems filled with colliding particles. Here, we focus on fractional porous
media equations, which may also be related to the entropy solution theory [8].

Porous media focused on by the hydrologic community are known as complex dynamic systems
containing multi-scale heterogeneity, but the application of the fractional engine is limited [9], due to
probably two reasons. First, the second-order advection-dispersion equation (ADE) is believed by the
hydrologic community to be valid. Most hydrologic numerical models are grid-based, where each grid
is homogeneous. Transport within the grid is assumed to be scale-independent normal diffusion, which
can be quantified by the ADE. The available, detailed subsurface heterogeneity can then be embedded in
the model using a combination of millions of grids. Therefore, although contaminant transport through
heterogeneous porous media from pore to regional scales has been well documented to be non-Fickian
(as characterized by heavy tails in tracer breakthrough curves (BTC) [10,11]), the second-order ADE
model with a certain resolution of velocity remains the routine modeling tool in the field of hydrology.
For readers interested in this topic, we refer to the most recent comments and replies on the feasibility
of the ADE-based models [12–15]. Second, the fractional-derivative models do describe anomalous
diffusion more efficiently than the standard ADE [9], but they also introduce additional parameters (such
as the fractional order), whose linkage with medium properties may remain obscure.

Critical questions however remain for hydrologic numerical models that have been used for decades.
First, does the transport through typical homogeneous porous media remain as scale-independent normal
diffusion? If not, then the classical ADE-based modeling tool is questionable. This leads to the
subsequent question: could the fractional-derivative model be the appropriate alternative to the ADE
for transport in the deceptively simple homogeneous media? In other words, does the diffusion through
homogeneous media exhibit fractional dynamics with a power-law memory in either space or time or
both? Finally, for practical applications, what are the main factors affecting the fractional-derivative
model parameters? These critical questions motivated this study.

The rest of the paper is organized as follows. In Section 2, we introduce the systematic laboratory
transport experiments focusing on the dynamics of nonreactive tracers moving through sand columns of
various lengths. Relatively uniform silica sand was used to fill the columns, forming an ideal porous
medium that is much more homogeneous than the natural geological medium. In Section 3, we quantify
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the observed dynamics using both the classical ADE and different fractional-derivative models. The
questions raised above are then discussed in Section 4. Finally, conclusions are drawn in Section 5.

2. Laboratory Experiments of Tracer Transport in Sand Columns

2.1. Experimental Setup

We packed glass tubes (with an inner diameter of 25 mm) using silica sand with a relatively uniform
size. The corresponding median grain size packed in each tube was 0.73 mm (i.e., coarse sand),
0.35 mm (medium sand), and 0.21 mm (fine sand), respectively. The silica sand was soaked in nitric
acid for 24 h, and then washed with tap water and deionized (DI) water. After drying in an oven, the
sand is ready for packing. Finally, the glass columns were packed using the wet sand loading method
(which can minimize the air bubbles [16]), and the resultant porosity was measured (Table 1). To test
the scale effect, we built sand columns with three different lengths of 10 cm, 20 cm and 40 cm.

Table 1. Parameters used in the models. R denotes the median grain size. v and
DADE are the velocity and dispersion coefficient used in the advection-dispersion (ADE)
model in Equation (1), respectively. γ is the order of the time fractional derivative in the
fractional-derivative models in Equations (3) and (5). λ is the tempering parameter, r is
the scale factor and DFADE is the dispersion coefficient in the tempered-stable, fractional
advection-dispersion (TS-FADE) model in Equation (5).

Column length R Porosity v DADE γ λ r DFADE

cm mm [-] cm/min cm2/min [-] min−1 minγ−1 cm2/min

10 0.73 0.37 0.91 0.59 0.91 0.12 0.88 0.23
10 0.35 0.38 1.00 0.45 0.91 0.25 0.97 0.25
10 0.21 0.38 0.91 0.82 0.91 0.08 0.88 0.23

20 0.73 0.36 0.87 0.52 0.91 0.09 0.86 0.17
20 0.35 0.36 1.00 0.45 0.91 0.24 0.99 0.20
20 0.21 0.38 0.95 0.56 0.91 0.12 0.94 0.19

40 0.73 0.35 1.11 1.67 0.91 0.04 0.83 0.13
40 0.35 0.35 1.18 0.71 0.91 0.125 0.92 0.18
40 0.21 0.39 1.14 1.03 0.91 0.095 0.89 0.17

The transport experiment involved three main steps. First, DI water with a pH of 2.0 was run through
the column (oriented vertically) for a period of ten pore volumes, and then, the background solution
(i.e., tap water, in this case) was run through for another five pore volumes to build the flow domain and
remove the background (concentration) effect. The vertical flow is from top to bottom. A peristaltic
pump (BT100-1F, LongerPump) was used to regulate the downward flow at a specific discharge
around ∼ 1 mL/min. Second, the CuSO4 solution was added into the column continuously for
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40 min at a concentration of 0.5 mmol/L, followed by three pore volumes of water for flushing. Third,
discrete samples were collected from the outlet using a fraction collector (BS-100A, PuYang Scientific
Instrument Research Institute, Nanjing, China).

Finally, we measured the sample concentration by: (1) adding 100 uL nitric acid; (2) diluting the
solution to a volume of 5 mL using DI water; (3) passing the solution through a 0.45 µm moisture film;
(4) measuring the absorbance using an atomic absorption spectrophotometer (Z-2000, Hitachi, Tokyo,
Japan); and (5) converting the absorbance to the concentration.

2.2. Experimental Results

Figure 1. The CuSO4 breakthrough curves (BTC) along a 10 cm-long sand column:
the measurements (symbols) versus the best-fit solutions using the ADE model in
Equation (1) (grey lines), the time-fractional advection-dispersion equation (tFADE) model
in Equation (3) (the dashed line) and the TS-FADE model in Equation (5) (black lines). In
the legend, “R” denotes the median grain size.
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The measured CuSO4 BTCs are shown in Figures 1–3, for the travel distance of 10 cm, 20 cm and
40 cm, respectively. The early time tails of all BTCs (representing the early arrivals of solute) are as steep
as exponential, implying that there is no fast movement along preferential flow paths. This is expected,
since super-diffusive transport typically requires a heterogeneous medium with a hydraulic conductivity
field exhibiting large correlation length and variance [9]. The late-time tails of BTCs, however, become
relatively heavier with an increase of the travel distance. In the next section, we conduct numerical
analysis to reveal whether the observed transport is actually scale-dependent.

Figure 2. The CuSO4 BTC along a 20 cm-long sand column: the measurements (symbols)
versus the best-fit solutions using the ADE model in Equation (1) (grey lines), the tFADE
model in Equation (3) [the dashed lines in (a) and (d)] and the TS-FADE model in
Equation (5) (black lines).
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Figure 3. The CuSO4 BTC along a 40 cm-long sand column: the measurements (symbols)
versus the best-fit solutions using the ADE model in Equation (1) (grey lines), the tFADE
model in Equation (3) (the dashed lines in (a) and (d)) and the TS-FADE model in
Equation (5) (black lines).
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3. Quantifying the Observed Transport

We first apply the local transport model (i.e., the standard ADE model) to simulate the observed
CuSO4 BTCs. If the ADE fails, we will then apply the non-local transport models (i.e., the
fractional-derivative models) and compare them with the ADE model.

3.1. The ADE Model

The second-order ADE model takes the form:

∂C(x, t)

∂t
= −v

∂C(x, t)

∂x
+DADE

∂2C(x, t)

∂x2
+ s(x, t) (1)
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where C [ML−3] is the solute concentration, v [LT−1] is the mean flow velocity, DADE [LT−2] is the
macroscopic dispersion coefficient used by the ADE model (which is not necessarily the same as the
other dispersion coefficients used below) and s [ML−3T−1] is the source/sink term.

The ADE in Equation (1) can be solved analytically [17]. Here, we also apply the well-known
Lagrangian solver (see [18,19], among many others) to solve Equation (1). The Lagrangian solver is
selected here, since it can be extended conveniently to approximate all the fractional-derivative models
used below. The space and time Markov processes underlying in Equation (1) are:

Xi+1 = Xi + v dti + ω
√
2DADE dti (2a)

Ti+1 = Ti + dti (2b)

where Xi [L] denotes the particle position at time Ti, dti [T ] is the operational time used by the i-th jump
and ω (dimensionless) is a normally distributed random variable with zero mean and unit variance. Here,
the physical/clock time increases linearly with the operational time.

The above Lagrangian scheme was validated extensively against analytical solutions (for simplicity,
they are not shown here). Solutions of the ADE model in Equation (1) fit generally well with the
measured BTCs for the shortest sand column (Figure 1), but underestimate significantly the late-time
tail of the other BTCs (Figures 2 and 3).

3.2. The Time-Fractional Advection-Dispersion Equation (tFADE) Model

The time-fractional advection-dispersion equation model can capture the heavy tail of tracer BTCs [9],
since it describes the heavy tailed memory in time. Using the subordination tool [20], the time-fractional
advection-dispersion equation (tFADE) model can be written as [21]:

∂C(x, t)

∂t
= − ∂1−γ

∂t1−γ

[
v

r

∂C(x, t)

∂x
+

DFADE

r

∂2C(x, t)

∂x2

]
+ s(x, t) (3)

where the fractional time derivative of the order of γ (0 < γ < 1) (dimensionless) (i.e., the scale
index) and the scale factor, r [tγ−1], describe an inverse stable distribution of clock times between
jump events. Here, the dispersion coefficient, DFADE, can be different from (i.e., smaller than) DADE

in Equation (1), since the tFADE model in Equation (3) accounts for the variation of transport velocity
using the fractional-time derivative. The Caputo fractional derivative for time is used in this study.

Similar to Equation (2), the Lagrangian solver for the tFADE model in Equation (3) contains the
following two Markov processes, after using the extended Langevin approach [22]:

Xi+1 = Xi + (v/r) dti + ω
√

2(DFADE/r) dti (4a)

Ti+1 = Ti +
[
cos

(πγ
2

)
dti

]1/γ
dLγ(β = +1, σ = 1, µ = 0) (4b)

where dLγ (dimensionless) represents a stable random variable with the maximum skewness (β = +1),
unit scale (σ = 1) and zero mean shift (µ = 0). Note that the operational time, dti, is now different from
the clock time.

The above Lagrangian solver in Equation (4) is validated, with several examples shown in Figure 4,
where the Lagrangian solutions generally match the fast Fourier transform solutions (see, also [20]) of
Equation (3).
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Further applications, however, show that, as opposed to the ADE model in Equation (1),
the tFADE model in Equation (3) overestimates significantly the late-time tail of the BTCs (see
Figures 1a, 2a and 3a). The tFADE model assumes a power-law distribution for the particle clock time,
which leads to a late-time BTC tail heavier than the measurement.

Figure 4. The Lagrangian solutions (symbols, denoted as “RW” (representing Random
Walk) in the legend) of the tFADE model in Equation (3) versus the the fast Fourier transform
(FFT) solutions (lines). (b) is the log-log plot of (a). An instantaneous point source is injected
at x = 0. The velocity v = 1, dispersion coefficient D = 0 and the control plane is located
at x = 10. In the legend, CR denotes the resident concentration and CF denotes the flux
concentration [23].
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3.3. The Tempered-Stable, Fractional Advection-Dispersion Equation (TS-FADE) Model

Truncated stable Lévy flights were first proposed by Mantegna and Stanley [24] to censor arbitrarily
large jumps and capture the natural cutoff present in real physical systems. Exponentially-tempered
stable processes were proposed by various researchers [25–28] as a smoother alternative, without a sharp
cutoff. The tempered stable density may describe the distribution of the random clock time between
jump events.

To capture the truncated power-law decline of the late-time BTC, we apply the following
tempered-stable, fractional advection-dispersion equation (TS-FADE):

∂C(x, t)

∂t
= − ∂1−γ,λ

∂t1−γ,λ

[
v

r

∂C(x, t)

∂x
+

DFADE

r

∂2C(x, t)

∂x2

]
+ s(x, t) (5)

where λ [T−1] is the tempering parameter. The operator, ∂γ,λ/∂tγ,λ, denotes [29]:

∂γ,λ F (t)

∂tγ,λ
= e−λt ∂

γ[eλt F (t)]

∂tγ
− λγF (t) (6)

The Lagrangian solver developed for the tFADE model in Equation (3) can be used for the TS-FADE
model in Equation (5), where the only change is the stable random variable, dLγ , in Equation (4) replaced
by a tempered stable random variable, dLγ,λ.

Applications show that the TS-FADE model in Equation (5) can capture the observed BTCs for all
cases (Figures 1–3). The best-fit model parameters are shown in Table 1. The linear-linear scale of
Figures 1–3 shows that some solutions of the ADE model in Equation (1) are almost identical to those of
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the TS-FADE in Equation (5), while the discrepancy in the simulated BTC tails between the two models
is amplified by the logarithmic scale. This is not a surprise, given that the mass in the late-time BTC tail
(such as Figure 2a) represents only a small fraction (0.78%) of the total mass.

In the next section, we discuss the possible underlying mechanism and the main controlling factors
for the observed transport dynamics.

4. Discussion

4.1. Short-Duration of Normal Diffusion in Relatively Homogeneous Porous Media

The above laboratory and numerical tests reveal that normal diffusion may only exist for a short
travel distance (i.e., ∼10 cm) in the relatively homogeneous sand columns. The short-duration of normal
diffusion may be due to two reasons. First, there may be small-scale variations in the packing of the
sands, which leads to micro-structure (such as aggregates) in the macroscopic homogeneous medium.
The silica sand used in our experiments is not perfectly uniform, but has a relatively narrow size
distribution, which also helps to build internal structures. Solute particles diffusing into the sand matrix
or a dead-end water zone may be delayed and, therefore, build the late-time tail of the BTC. If the
transport is a non-dissipative process, the microscopic scale heterogeneity may control the macroscopic
dynamics [30]. With an increase of the spatial scale, more (and perhaps larger) aggregates may be
formed, and the solute transport is delayed further, resulting in scale-dependent sub-diffusion. It is
well-known that the solute particle jumps can be regarded as instantaneous [1], and hence, the clock
time [expressed, for example, by Equation (4b)] between jump events represents the random waiting
time for random-walking particles. At a small scale in both space and time, most particles have not
experienced large retention periods yet, and the transport exhibits initial behavior similar to normal
diffusion. Normal diffusion, therefore, may only be an approximation of real-world anomalous diffusion
at a small spatiotemporal scale where the anomaly has not apparently developed yet.

Another explanation is the fractal geometry of silica sand (see, for example, [31,32], among others),
which tends to generate anomalous diffusion. This explanation, however, is difficult to validate directly.
Some researchers also argued that the fractal properties of soil might not be so obvious [30]. The
qualitative link between fractal properties of sand (such as texture and surface area) and fractional
dynamics remains to be shown [33]. In addition, a recent study [34] found that uniform glass beads
(which may contain aggregates or relatively immobile flow zones when they are packed in glass tubes)
without any multi-fractality can also lead to sub-diffusion.

It is noteworthy that the limited duration of normal diffusion may be even shorter in natural geological
formations with intrinsic multi-scale heterogeneity. Mixing and structured sands in the field can enhance
(i.e., super-diffusion) or decelerate (i.e., sub-diffusion) the motion of solute particles, which can appear
much earlier than those in the laboratory sand columns.

The short-duration of normal diffusion challenges the ADE-based hydrologic modeling, with one
example discussed blow.
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4.2. Challenge on the Definition of the Representative Element Volume

The scale-limited normal diffusion constrains seriously the size of the representative elementary
volume (REV) [35]. The conventional local ADE is believed to be applicable at the scale of REV,
so that the heterogeneity of a large-scale medium must be adequately represented at the REV scale. For
a regional scale (i.e., kilometers) model, the size of each homogeneous cell is usually larger than one
meter, which is at least one order of magnitude larger than the valid scale of normal diffusion revealed by
this study. A finer resolution with a small REV, however, can lead to a prohibitive computational burden.

Several recent studies also identified a very small REV or even could not find the scale for REV.
For example, Yoon and McKenna [36] found that the REV may exist at the length of 0.25 cm,
while local-heterogeneity features below the REV should still be quantified in numerical modeling.
Klise et al. [37] conducted an unprecedented laboratory experiment by taking a thin slab of
Massillon sandstone and exhaustively sampling the permeability (k) via air permeability sampling. The
30.5 × 30.5 × 2.1 cm slab was measured for k every 0.33 cm, yielding 17,328 measurements. Each
sample support volume was on the order of 0.45 cm3. The finely discretized ADE, however, could not
capture the observed early or late time tails of the tracer BTC [37]. Major et al. [38] further found
that sub-grid dispersion (below the support volume) is non-Fickian, and the non-local transport model is
needed to capture the observed transport.

4.3. Fractional Dynamics for Tracer Transport in Relatively Homogeneous Sand Columns

The underlying dynamics for tracer transport in relatively homogeneous sand columns is transient
sub-diffusion, due to probably the physical and chemical properties in the transport process. The finite
retention capacity of sand matrix, probably due to the limited thickness of matrix and the non-negligible
diffusive displacement of solute [39], acts as an upper bound for tracer particle waiting times. This is
similar to what we observed in solute retention in alluvial aquifers [39]. Fractional dynamics in porous
media therefore may depend on both the physical properties of the media and the chemical properties of
the tracer.

The waiting time for solute particles between jump events exhibits multi-fractal scaling, which
evolves in space. Numerical fitting in Section 3.3 shows that the particle waiting time distribution at
a given spatial scale is a power-law function transferring gradually to become exponential. According
to [40], multi-fractality can arise from a linear, additive process, whose increments have power-law tails
with a variable truncation. Note that, here, the multi-fractal waiting times also grow in space, since the
tempering parameter, λ (which defines the rate of exponential tempering of the power-law tail), changes
with the travel distance.

4.4. Factors Affecting Sub-Diffusion in Relatively Homogeneous Sand Columns

In our experiments, the spatial scale affects the tempering parameter, λ, but the time fractional
order, γ (which is also the BTC or waiting-time tail index), remains stable in these uniformly packed
sand columns. For a given tracer, the index, γ, is a non-local parameter characterizing the overall
retention capacity of the medium. In general, a stationary medium with strong immobile regions



Entropy 2013, 15 4386

may be characterized by a small, constant γ [9]. The tempering parameter, λ, on the other hand,
records the extreme retention event, which, therefore, may change with the local variation of immobile
zone properties.

In addition, the sand size also significantly affects the tailing behavior of transport, which can also be
captured by adjusting the tempering parameter in the TS-FADE model in Equation (5). For coarse and
medium sand, λ decreases with an increase of the travel distance (see Table 1). For fine sand, however,
λ fluctuates with the spatial scale, where the relative amplitude of fluctuation is smaller than that for the
coarser sand. The discrepancy might imply that the immobile zones formed by fine sand have relatively
less variability (such as properties of segregates) than that for coarser sands. This hypothesis needs
further experimental and numerical tests in a future study.

It is noteworthy that, for a short travel distance in relatively homogeneous media, the parameters in
the TS-FADE model in Equation (5) may not be unique when fitting the measured BTC. This is because
the late-time tailing of transport cannot fully develop in a limited time; see, for example, Figure 1c.
Even if the observation time is long enough to capture the full range behavior of late-time tailing, the
measured BTC may still remain incomplete, due to the concentration detection limit of tracers. Caution
is therefore needed when quantifying a small-scale transport using the TS-FADE model in Equation (5).

4.5. Possible Influence of the Small Diameter of the Sand Columns on Anomalous Diffusion

The repacked sand columns in this study have a relatively small diameter (25 mm), which may affect
solute transport in three ways. First, a narrower column may force sand to be packed tightly, resulting
in more dead zones for flow that can enhance the trapping of solutes. Second, solute particles may
be trapped between the narrow glass tube and the filled sands, and solutes may also sorb on to the
glass tube. Third, a narrower sand column provides less spatial inter-connectivity that is necessary for
super-diffusion. The first two impacts tend to enhance sub-diffusion, while the last one may constrain
the generation of super-diffusion.

Further analysis, however, shows that the above possible impacts might be minimized in this study.
For example, for a short column (Figure 1), the classical ADE model captures the observed BTCs,
showing that the narrow sand column with a short length does not necessarily cause sub-diffusion.
In addition, although none of the observed BTCs exhibit heavy early-time tails (the BTC with a
power-law early-time tail is one of the typical characteristics of super-diffusion), this does not mean
that the sand column with a small diameter must constrain super-diffusion. Previous studies, such as
Herrick et al. [41] and Kohlbecker et al. [42], showed that the heavy-tailed and long-range-dependent
hydraulic conductivity (K) field is needed to generate heavy-tailed solute displacement. In this study,
the repacked silica-sand columns do not contain such a heterogeneous K field. Indeed, to the best
of our knowledge, no previous studies showed that the column experiments packed with relatively
homogeneous sand can build heavy-tailed super-diffusive transport. Therefore, the small diameter of the
sand columns may have limited impact on the anomalous transport observed in this study. We will check
this hypothesis in a future study, by using glass tubes with various inner diameters. Additional factors,
such as variable-density flow and undisturbed soils may also be considered to explore the possible
influence of the lateral dimension of sand columns on tracer transport.
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It is also noteworthy that glass tubes with a centimeter-scale inner diameter have also been used to
study various aspects of transport, especially in the last two years. For example, Ngueleu et al. [43]
used a glass column with an inner diameter of 24 mm (and a length of 150 mm) to minimize the sorption
of lindane onto the equipment. Sagee et al. [44] conducted column experiments for silver nanoparticle
transport in closed, cylindrical columns with an inner diameter of 31 mm (and a length of 100 mm).
Gouet-Kaplan et al. [45] packed sands in an acrylic vertical column with an internal diameter of 30
mm (to a height of 150 mm) to study the mixture of water. Zhang et al. [34] measured bromide
transport through a horizontal glass tube with internal dimensions of 15.9 mm (diameter) (and 150 mm
in length). Historic and well-known column experiments also used columns with similar sizes. For
example, Gramling et al. [46] monitored bimolecular reactions through a thin glass chamber with the
smallest thickness being 18 mm. Raje and Kapoor [47] measured reactive kinetics across a glass column
with a diameter of 45 mm (and a length of 180 mm). We also emphasize that the focus of the above
column experiments differs from this study.

4.6. Reason to Select the Fractional Models with Temporal Derivatives

The introduction of the time-fractional derivative in Equations (3) and (5) is motivated by the observed
late time tailing of BTCs. Other time-nonlocal transport models can also capture the delayed transport,
including the well-known multi-rate mass transport (MRMT) model [48] and the continuous time
random walk (CTRW) framework [10], which have been used widely by the hydrologic community. The
time-fractional derivative models in Equations (3) and (5), which can describe the time nonlocal transport
processes, such as sub-diffusion, are specific and simplified MRMT models with power-law distributed
mass exchange rates. Model in Equation (5) may also be functionally equivalent to the CTRW framework
with a truncated power-law memory function in Equation [10], and model in Equation (5) requires fewer
parameters (e.g., only the tempering parameter, λ) to capture the nuance of an exponentially truncated
power-law tail in the BTC. Discrepancy between fractional models and the other time-nonlocal models
is not the main focus of this study. We leave this discussion for future work.

The transport process observed in this study is not super-diffusive, but sub-diffusive, since the late
time tailing of BTC suggests a retardation process (a typical behavior of sub-diffusion), and there is no
sign of fast displacement for CuSO4. This process might not be related obviously to the small diameter
of the sand columns, since the sand column with a much larger diameter (i.e., 300 mm) can also lead to
sub-diffusion (see, for example, [49]), and the above discussion implies the minimal impact of column
diameter on transport.

It is noteworthy that we did not use the fractional models with spatial derivatives, since they describe
processes different from our observations. Particularly, the space fractional advection-dispersion
equation with maximally positive skewness captures super-diffusion with heavy power-law early-time
tails in BTCs [9], which is not observed in our column experiments. The space fractional
advection-dispersion equation with maximally negative skewness does capture sub-diffusion, but the
solute particles must travel backward and reach the upstream boundary [9]. This power-law backward
movement is not apparent, if not impossible, in our laboratory tests.
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5. Conclusions

This study evaluates the dynamics of nonreactive tracer transport in relatively homogeneous media.
The fundamental assumption in typical hydrologic models is that normal diffusion in homogeneous
cells is scale-independent. To check this assumption, we conducted laboratory transport experiments
and explored whether the dynamics of CuSO4 transport through silica sand columns varies with the
travel distance. The measured BTCs were then interpreted using both the standard ADE model and the
fractional-derivative models. The combined study of laboratory tests and stochastic analysis leads to the
following three major conclusions.

(1) Normal diffusion and the representative element volume are only valid at small scales.
(2) The TS-FADE model can capture the scale-dependent sub-diffusive transport through relatively

homogeneous media.
(3) The tempering parameter in the TS-FADE model generally decreases with an increase of the

column length (due probably to the higher probability of long retention precesses), while the time index
(which is a non-local parameter) remains stable.
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