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Abstract:



Permutation entropy, introduced by Bandt and Pompe, is a conceptually simple and well-interpretable measure of time series complexity. In this paper, we propose efficient methods for computing it and related ordinal-patterns-based characteristics. The methods are based on precomputing values of successive ordinal patterns of order d, considering the fact that they are “overlapped” in d points, and on precomputing successive values of the permutation entropy related to “overlapping” successive time-windows. The proposed methods allow for measurement of the complexity of very large datasets in real-time.
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1. Introduction


1.1. Motivation


Measuring the complexity of a system by observed time series is an important problem in different fields of research. One faces the problem, for instance, of distinguishing between different brain states on the base of EEG data. The complexity of a dynamical system can be measured by the well-motivated Kolmogorov-Sinai (KS) entropy [1], by the Lyapunov exponent, or by the correlation dimension [2], but it is often not easy to estimate these and similar quantities from finite real-world data.



In order to quantify complexity on the base of real-world data, Bandt and Pompe have introduced permutation entropy [3]. It is based on the distributions of ordinal patterns, which describe order relations between the values of a time series. On the one hand, permutation entropy is strongly related to KS entropy. It coincides with KS entropy for piecewise strictly monotone interval maps [4] and is not less than KS entropy for many dynamical systems [5,6,7] (see also [8,9] for some new results in this direction and [10] for the discussion of two approaches to the permutation entropy with respect to KS entropy). On the other hand, permutation entropy is estimated by empirical permutation entropy, which is conceptually simple and algorithmically fast [3,11]. Empirical permutation entropy also provides robustness with respect to noise [3,12]. An important practical aspect of empirical permutation entropy is that one can compare by it complexities of different time series of a fixed length in a well-interpretable, standardized and simple way.



Justified theoretically and simple conceptually, empirical permutation entropy and different ordinal-patterns-based characteristics have been applied in various fields for analyzing real-world data: for detecting and visualizing EEG changes related to epileptic seizures (e.g., [13,14,15,16]), for distinguishing brain states related to anesthesia [17,18], for discriminating sleep stages in EEG data [19], for analyzing and classifying heart rate variability data [20,21,22,23], and for financial, physical and statistical time series analysis (see [10,12] for a review of applications).



Motivated by the good properties and many applications of empirical permutation entropy, we propose in this paper an efficient method of computing it and ordinal patterns faster than in [11], which allows for processing very large data sets in real-time. An efficient computation of ordinal patterns provides a fast calculation of not only empirical permutation entropy, but of many ordinal-patterns-based characteristics, such as, for example, the ordinal distributions itself [24] and derived measures [25], or transcripts, introduced in [26]. The concept behind an efficient method is to use precomputed tables of successive values instead of computing ordinal patterns and the empirical permutation entropy in each time point. It is possible to precompute such successive values, because ordinal patterns “overlap” and, in fact, have some common information. Since successive values of the empirical permutation entropy are computed for successive overlapping time-windows, the possible “successive” entropies can also be precomputed.





To motivate the method, let us give an example of processing epileptic EEG data by the empirical permutation entropy (data from The European Epilepsy Database [27]). Figure 1 illustrates how the empirical permutation entropy (bottom plot) reflects the epileptic seizure (marked in red and with a “head”) in one-channel EEG data (upper plot). The processing of the depicted 20 min of EEG data, recorded at a sampling rate of 256 Hz, takes about 1 second in MATLAB R2012b.


Figure 1. The empirical permutation entropy reflects changes of the epileptic EEG data.



[image: Entropy 15 04392 g001]






In Section 2 we recall some notions from ordinal patterns analysis and consider how to compute ordinal patterns (by the method introduced in [11]) and how to compute the empirical permutation entropy from the distributions of ordinal patterns. More efficient methods for computing ordinal patterns and the empirical permutation entropy are introduced in Section 3 and Section 4, correspondingly. In Section 5 we adapt the method to time series with a high frequency of occurrence of equal values. It is reasonable to take into account these equalities for data digitized with a low resolution, for example, for heart rate variability data as they are considered in [23]. Finally, we present the comparison between two known methods of computing the empirical permutation entropy and the proposed method in Section 6.





2. Computing Ordinal Patterns and the Empirical Permutation Entropy


In this section we recall how to compute ordinal patterns by the method introduced in [11] and how to compute the empirical permutation entropy from the obtained distributions of ordinal patterns.



2.1. Ordinal Patterns


Let us start from an example of computing ordinal patterns (see Figure 2). We consider a part of a time series, consisting of 10 points, we fix a delay [image: there is no content], which indicates a distance between points in ordinal patterns, and an order [image: there is no content], meaning ordinal patterns contain [image: there is no content] points.


Figure 2. The ordinal patterns of order [image: there is no content].



[image: Entropy 15 04392 g002]








One can see that the blue ordinal patterns (in dashed line) “overlap” the previous black ordinal patterns in [image: there is no content] points, and then the black ordinal patterns “overlap” the previous blue ordinal patterns in [image: there is no content] points. This “overlapping” allows to use all information about order relations between points that can be obtained from a time series. By the same reason the ordinal patterns are computed starting from the point [image: there is no content] (the first, the third and the fifth ones) and then with a shift 1, starting from the point [image: there is no content] (the second, the fourth and the sixth ones). In the general case, ordinal patterns are computed starting from all initial times [image: there is no content].



2.1.1. Number Representation


In order to obtain the distribution of ordinal patterns, we assign numbers to each type of ordinal patterns. We consider here the enumeration of ordinal patterns introduced in [11], because it allows to compute them relatively fast. Originally, ordinal patterns of order d were defined as permutations of the set [image: there is no content] (see [3,11]). However, we define them here in the following way since that provides a simple enumeration of them (we refer for details to [11]).




Definition 1. 

The delay vector [image: there is no content] is said to have the ordinal pattern [image: there is no content] of order d and delay τ if [image: there is no content] for [image: there is no content] is given by


[image: there is no content]



(1)











Simply speaking, each [image: there is no content] codes how many points from [image: there is no content] are not larger than [image: there is no content]. Note that we assume here occurrence of equal values in a time series quite rare. Indeed, the relation “equal to” is combined with the relation “greater than” in Definition 1. Regarding the time series with a high frequency of occurrence of equal values, we discuss modified ordinal patterns with considering equality in Section 5.



There are [image: there is no content] ordinal patterns of order d, and one assigns to each of them a number from [image: there is no content] in a one-to-one way by


[image: there is no content](t)=[image: there is no content]([image: there is no content])=∑[image: there is no content]=1[image: there is no content]i[image: there is no content]τ(t)[image: there is no content]([image: there is no content]+1)!



(2)




For example, all ordinal patterns of order [image: there is no content] in their number representation are given in Table 1. Note that the ordinal patterns with the numbers [image: there is no content] for each [image: there is no content] have the same relations between the last d points, because they have the same [image: there is no content] but a different [image: there is no content]. For instance, the ordinal patterns [image: there is no content] (as well as the ordinal patterns [image: there is no content]) have the same relation between the last [image: there is no content] points since they have the same [image: there is no content] and a different [image: there is no content] (see Table 1). We will use this property in Subsection 3.3.



Table 1. The ordinal patterns of order [image: there is no content].







	
Ordinal pattern

	
 [image: Entropy 15 04392 i001]

	
 [image: Entropy 15 04392 i002]

	
 [image: Entropy 15 04392 i003]

	
 [image: Entropy 15 04392 i004]

	
 [image: Entropy 15 04392 i005]

	
 [image: Entropy 15 04392 i006]




	
([image: there is no content],[image: there is no content])

	
(0,0)

	
(0,1)

	
(0,2)

	
(1,0)

	
(1,1)

	
(1,1)




	
n2([image: there is no content],[image: there is no content])=3[image: there is no content]+[image: there is no content]

	
0

	
1

	
2

	
3

	
4

	
5













2.1.2. Successive Ordinal Patterns


Due to the “overlapping” between ordinal patterns one easily obtains the successive ordinal pattern [image: there is no content] from the previous one [image: there is no content] by


i[image: there is no content]+1τ(t+τ)=[image: there is no content]if[image: there is no content]<[image: there is no content]i[image: there is no content]τ(t)+1otherwise



(3)




([image: there is no content] is determined by Equation (1)). According to Equation (3) one needs only d comparisons and at most d incrementation operations to obtain the successive ordinal pattern when the current ordinal pattern is given [11]. When counting ordinal patterns in their number representation (2), which is clearly more convenient than in the representation provided by Equation (1), one needs d multiplications more.





2.2. The Empirical Permutation Entropy


In order to reflect complexity changes in a time series in the course of time, the empirical permutation entropy is usually computed in sliding time-windows of a fixed size.




Definition 2. 

By the empirical permutation entropy of order d and of delay τ of a time-window [image: there is no content] at time t one understands the quantity


h[image: there is no content]τ(t)=−∑j=0[image: there is no content]qjMlnqjM=lnM−1M∑j=0[image: there is no content]qjlnqj,whereqj=#{k∈{t,t−1,…,t−M+1}∣(xk,xk−τ,…,xk−[image: there is no content]τ)hastheordinalpatternj}



(4)




(with [image: there is no content]).







Note that the window size M is defined as the number of ordinal patterns in the window. Let us give an example of computing the empirical permutation entropy in the two sliding windows ([image: there is no content],[image: there is no content],…,x9) and ([image: there is no content],[image: there is no content],…,x10), containing [image: there is no content] ordinal patterns of order [image: there is no content] with a delay [image: there is no content] (see Figure 3).


Figure 3. Computing the empirical permutation entropy in a sliding window.
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The windows overlap in 8 points and in 4 ordinal patterns. There are q0=0,q1=1,q2=1,q3=1,q4=2,q5=0 and q0=1,q1=1,q2=1,q3=1,q4=1,q5=0 ordinal patterns in Window 1 and in Window 2, correspondingly (see Table 1 for determining their types). Then the empirical permutation entropy at time [image: there is no content] and [image: there is no content] is computed by Equation (4) as


[image: there is no content]













3. Efficiently Computing Ordinal Patterns


In this section, we precompute successive ordinal patterns for each ordinal pattern. Using these values allows to compute ordinal patterns as numbers about two times faster than by EquationS (2) and (3). This is important for the fast calculation of ordinal-patterns-based characteristics, in particular, the empirical permutation entropy.



For simplicity, we use here the number representation of ordinal patterns provided by Equation (2), but, in fact, the type of number representation is not substantial for the method, as we discuss in Subsection 3.3.



3.1. Precomputed Successive Ordinal Patterns


Given the ordinal pattern [image: there is no content] there are [image: there is no content] possible successive ordinal patterns [image: there is no content] since there are [image: there is no content] positions of the point [image: there is no content] relative to the points from [image: there is no content]. Ordinal patterns of order [image: there is no content] and their successive ones are presented in Table 2. For example, for the ordinal pattern 0 there are three possible positions [image: there is no content] of the next point and three possible successive ordinal patterns [image: there is no content], respectively.



Table 2. The successive ordinal patterns [image: there is no content] given [image: there is no content].







	
Current ordinal pattern

	
 [image: Entropy 15 04392 i007]

	
 [image: Entropy 15 04392 i008]

	
 [image: Entropy 15 04392 i009]

	
 [image: Entropy 15 04392 i010]

	
 [image: Entropy 15 04392 i011]

	
 [image: Entropy 15 04392 i012]




	
Successive ordinal pattern

	
0

	
 [image: Entropy 15 04392 i013]

	
1

	
 [image: Entropy 15 04392 i014]




	
3

	
 [image: Entropy 15 04392 i015]

	
2

	
 [image: Entropy 15 04392 i016]




	
4

	
 [image: Entropy 15 04392 i017]

	
5

	
 [image: Entropy 15 04392 i018]












Let us denote the function determining successive ordinal patterns from a given one and from the position of the next value by [image: there is no content]:


[image: there is no content](t+τ)=[image: there is no content]([image: there is no content](t),[image: there is no content])



(5)




where l indicates how many points from [image: there is no content] are greater than or equal to [image: there is no content], i.e.,


[image: there is no content]=#{r∈{0,1,…,[image: there is no content]−1}∣xt−rτ≥[image: there is no content]}



(6)







For example, the values of the function [image: there is no content], determining the successive ordinal pattern [image: there is no content] from the given ordinal pattern [image: there is no content], are presented in Table 3. One could determine the position l also as how many points from [image: there is no content] are less than or equal to [image: there is no content]. The way of determining l is not substantial since it changes only the representation of the precomputed table.



Table 3. The successive ordinal patterns n2τ(t+τ)=[image: there is no content](n2τ(t),[image: there is no content]).







	

	
[image: there is no content]




	
position [image: there is no content]

	
0

	
1

	
2

	
3

	
4

	
5






	
0

	
0

	
1




	
1

	
3

	
2




	
2

	
4

	
5













3.2. How can the Precomputed Table be Obtained?


One obtains the entries of the table by determining for each ordinal pattern of order d all possible successive ordinal patterns in dependence on the position [image: there is no content]=0,1,…,[image: there is no content] of the next point. When using the number representation (2), one obtains the successive ordinal patterns [image: there is no content] from the given ordinal pattern [image: there is no content] for all [image: there is no content]=0,1,…,[image: there is no content] by Equation (3). Then the entries of the table are obtained by Equation (2). The precomputed tables of successive ordinal patterns of the orders [image: there is no content] are given in the supplementary files “table1.mat”,...,“table8.mat”.




3.3. Size of the Precomputed Table


In order to efficiently compute ordinal patterns by Equation (5), one has to store [image: there is no content] values [image: there is no content]([image: there is no content],[image: there is no content]) for each of the [image: there is no content] ordinal patterns [image: there is no content], i.e., [image: there is no content] values in total. This is usually not a very large size since in many situations the orders [image: there is no content] are recommended for applications [3].



When using the enumeration (2) one can reduce the size of the table. Indeed, the ordinal patterns with the numbers [image: there is no content] for each [image: there is no content] have the same successive ordinal patterns, because they describe the same relation between the last d points (Subsection 2.1). For example, the ordinal patterns [image: there is no content] as well as the ordinal patterns [image: there is no content] have the same successive ordinal patterns: [image: there is no content](0,[image: there is no content])=[image: there is no content](1,[image: there is no content])=[image: there is no content](2,[image: there is no content]) and [image: there is no content](3,[image: there is no content])=[image: there is no content](4,[image: there is no content])=[image: there is no content](5,[image: there is no content]) (see Table 2).



Note that one can use enumerations of ordinal patterns different from (2) since only the correct correspondence between successive ordinal patterns is needed to efficiently compute them by Equation (5).




3.4. Efficiency of the Method


When efficiently determining the number [image: there is no content] from [image: there is no content] by Equation (5), one calculates only l by Equation (6). This is almost twice faster than calculating [image: there is no content] by Equation (2), involving calculation (3) (see Table 4).



Table 4. Efficiency of computing the ordinal pattern [image: there is no content] from [image: there is no content].







	
Computation of [image: there is no content]

	
+

	
Incrementation

	
*

	
[image: there is no content]

	
The total number of operations






	
by Equation (2), involving Equation (3)

	
d

	
≤d

	
[image: there is no content]

	
d

	
≤[image: there is no content]




	
by Equation (5)

	
0

	
≤d

	
0

	
d

	
≤[image: there is no content]














4. Efficiently Computing the Empirical Permutation Entropy


In this section, we consider the empirical permutation entropy, computed in sliding windows of a size M with maximal overlapping, i.e., the first point of the successive window is the second point of the previous one. The case with non-maximal overlapping is discussed in Subsection 4.3.



4.1. Precomputed Values


The successive windows [image: there is no content] and [image: there is no content] differ in the points [image: there is no content] and [image: there is no content], therefore the ordinal distributions in the windows differ in the frequencies of occurrence of the ordinal patterns [image: there is no content] and [image: there is no content](t−M). In order to obtain the ordinal distribution of the successive window given the current one, one needs to substitute the frequency of the “outcoming” ordinal pattern q[image: there is no content] by (q[image: there is no content]−1) and the frequency of the “incoming” ordinal pattern q[image: there is no content] by (q[image: there is no content]+1):


q[image: there is no content](t−M)lnq[image: there is no content](t−M)⟶(q[image: there is no content](t−M)−1)ln(q[image: there is no content](t−M)−1)q[image: there is no content]lnq[image: there is no content]⟶(q[image: there is no content]+1)ln(q[image: there is no content]+1)








Then the empirical permutation entropy [image: there is no content] given [image: there is no content] is computed by


h[image: there is no content]τ(t)=h[image: there is no content]τ(t−1)+g(q[image: there is no content]+1)−g(q[image: there is no content](t−M)),where



(7)






g(j)=1Mjlnj−(j−1)ln(j−1)forj=1,2,…,Mq[image: there is no content]=#{k∈{t,t−1,…,t−M+1}∣(xk,xk−τ,…,xk−[image: there is no content]τ)hastheordinalpattern[image: there is no content](t)}.



(8)




If the “incoming” ordinal pattern coincides with the “outcoming” ordinal pattern, the ordinal distributions and the values of the empirical permutation entropy are the same for successive windows.




4.2. How can the Precomputed Table be Obtained: Size of the Precomputed Table


The precomputed table is obtained by computing (8) for all [image: there is no content], where M is the size of a sliding window. We have used a window size of two seconds in the example in the Introduction, which implies the size [image: there is no content] of the precomputed table for a sampling rate of 256 Hz (see Figure 1).




4.3. Efficiency of the Method


Assuming that the distribution of ordinal patterns for the window [image: there is no content] and [image: there is no content] are known, we compare the computation of [image: there is no content] by Equation (4) and by Equation (7) (see Table 5).



Table 5. Efficiency of computing the empirical permutation entropy [image: there is no content].







	
Calculation

	
+

	
*

	
ln

	
The total number of operations






	
by Equation (4)

	
≤[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
≤[image: there is no content]




	
by Equation (7)

	
2

	
0

	
0

	
2












However, when using Equation (7) the empirical permutation entropy [image: there is no content] for the first window is computed by Equation (4) since there is no precomputed value [image: there is no content]. There are also no precomputed numbers of ordinal patterns for the first τ ordinal patterns. Computing their numbers by Equation (2) takes at most [image: there is no content] operations (see Figure 5 for the scheme of the method).


Figure 5. Computational scheme of the method.



[image: Entropy 15 04392 g005]






In the case of non-maximal overlapping between windows, one can also compute the empirical permutation entropy by Equation (7), omitting “unnecessary” intermediate values [image: there is no content]. This is reasonable when the distance between the windows is not very large, and computing the empirical permutation entropy by Equation (4) implies more operations than by Equation (7). Roughly speaking, for a distance D<[image: there is no content]2 between successive windows computing the empirical permutation entropy for the whole time series with use of sliding windows by Equation (7) is faster than by Equation (4).




4.4. Round-off Error


Successively calculating the empirical permutation entropy by Equation (7) provides an accumulation of round-off errors resulting from finite computer precision. One performs two operations in Equation (7) at each of W time points, which bounds the error by [image: there is no content], where ψ is the machine precision and W is the length of a time series. For a relatively long time series one can recalculate the empirical permutation entropy by Equation (4) after some time, depending on the computer precision again, in order to avoid big accumulating errors and then continue calculations by Equation (7). For example, if ϵ is the maximal allowable error in computing the empirical permutation entropy, then one should recalculate the empirical permutation entropy by Equation (4) every [image: there is no content] points.



For illustration purposes we present the round-off error of the empirical permutation entropy obtained for the example shown in the Introduction in Figure 4. One can see that the error is very small in relation to the values of the empirical permutation entropy (compare with Figure 1).


Figure 4. Round-off error of the empirical permutation entropy computed in dependence on time.



[image: Entropy 15 04392 g004]









4.5. Method Summary


We summarize the proposed method of the efficient computation of the empirical permutation entropy in the following scheme (see Figure 5). As above, the size of a sliding window is denoted by M, the order of ordinal patterns by d, the delay by τ and the length of a time series by W. The MATLAB code for computing the empirical permutation entropy is given in Appendix B.1.





Note that according to the scheme the efficiency of the proposed method after computing [image: there is no content] by Equation (4) depends only on a length of a time series W and does not depend neither on the order d, the window size M nor on the delay τ.





5. Efficiently Computing Modified Ordinal Patterns


This section is devoted to the efficient computation of modified ordinal patterns, which are adapted to the case of a time series with a high frequency of occurrence of equal values. In order to give an impression, we present all modified ordinal patterns of order [image: there is no content] in Figure 6. Modified ordinal patterns are efficiently computed by using the idea of precomputed successive values similarly as it is done in Section 3. In Subsection 5.1.2. we propose a possible variant of their enumeration, which is natural from the computational point of view and provides a “short” precomputed table (as in Subsection 3.3). However, the way of enumerating modified ordinal patterns is also not substantial for computing them efficiently.


Figure 6. The modified ordinal patterns of order [image: there is no content].



[image: Entropy 15 04392 g006]








5.1. Modified Ordinal Patterns


There are many ways to code modified ordinal patterns. We code them naturally by determining for the vector [image: there is no content] the position of each point [image: there is no content] in relation to the points from the same vector. There are now three possibilities of the relation between two points: one point can be greater (less) than another one or equal to another one.



Let us indicate by b[image: there is no content]τ(t), whether the point [image: there is no content] is equal to any point from [image: there is no content]:


b[image: there is no content]τ(t)=1if[image: there is no content]=xt−jτforsomej∈{0,1,…,[image: there is no content]−1}0otherwise



(9)




Then the position I[image: there is no content]τ(t) of the point [image: there is no content] in relation to the points from [image: there is no content] is calculated as


I[image: there is no content]τ(t)=b[image: there is no content]τ(t)+2#{r∈{0,1,…,[image: there is no content]−1}∣[image: there is no content]>xt−rτ,brτ(t)=0}



(10)




In words, in order to determine the position of the point [image: there is no content] in relation to the points [image: there is no content] one counts how many values among the points in [image: there is no content] are less than [image: there is no content] and indicates whether the point [image: there is no content] is equal to any other point from [image: there is no content].




Definition 3. 

A delay vector [image: there is no content] is said to have the modified ordinal pattern [image: there is no content] of order d and delay τ if I[image: there is no content]τ(t) for [image: there is no content] is given by Equation (10).







Also note that the proposed coding of modified ordinal patterns is very concise because one stores all information about the relations between the points in one vector [image: there is no content]. Let us give an example of calculating the modified ordinal pattern of order [image: there is no content] and delay [image: there is no content] (see Figure 7). For instance, the point [image: there is no content] is equal to the points [image: there is no content] and [image: there is no content], i.e., [image: there is no content], and it is greater than the two values [image: there is no content]=x5 and [image: there is no content], i.e., [image: there is no content]. One can easily check the position of the point [image: there is no content] when counting positions from the bottom up.


Figure 7. The modified ordinal pattern [image: there is no content].



[image: Entropy 15 04392 g007]








5.1.1. Successive Modified Ordinal Patterns


The proposed coding of modified ordinal patterns allows to compute the successive modified ordinal patterns in a simple way like in Subsection2.1.2. . One obtains the successive modified ordinal pattern [image: there is no content] from the given one [image: there is no content] by


I[image: there is no content]+1τ(t+τ)=I[image: there is no content]τ(t)if[image: there is no content]<[image: there is no content]orb[image: there is no content](t)=1I[image: there is no content]τ(t)+1if[image: there is no content]=[image: there is no content],b[image: there is no content](t)=0I[image: there is no content]τ(t)+2if[image: there is no content]>[image: there is no content],b[image: there is no content](t)=0



(11)




[compare with Equation (3)]. One needs [image: there is no content] comparisons and, at most, d additions to obtain the successive modified ordinal pattern when the current one is given. This property is useful for a relatively fast computing of modified ordinal patterns, when one cannot use the precomputed table by some reason.




5.1.2. Number Representation


We assign to each modified ordinal pattern a number from [image: there is no content] (see Appendix A.1 for the proof and the details of enumeration):


N[image: there is no content]τ(t)=N[image: there is no content]τ([image: there is no content])=∑[image: there is no content]=1[image: there is no content]I[image: there is no content]τ(t)(2[image: there is no content]−1)!!



(12)




where [image: there is no content] stands for the odd factorial (2[image: there is no content]−1)!!=∏j=1[image: there is no content](2j−1).



The modified ordinal patterns of order [image: there is no content] in their number representation are given in Table 6. Note that there are “gaps” in the enumeration. For example, there are no modified ordinal patterns corresponding to the numbers 10 and 13 (see Appendix A.1 for details).



Table 6. The modified ordinal patterns of order [image: there is no content].







	
Modified ordinal pattern

	
 [image: Entropy 15 04392 i019]

	
 [image: Entropy 15 04392 i020]

	
 [image: Entropy 15 04392 i021]

	
 [image: Entropy 15 04392 i022]

	
 [image: Entropy 15 04392 i023]

	
 [image: Entropy 15 04392 i024]

	
 [image: Entropy 15 04392 i025]

	
 [image: Entropy 15 04392 i026]

	
 [image: Entropy 15 04392 i027]

	
 [image: Entropy 15 04392 i028]

	
 [image: Entropy 15 04392 i029]

	
 [image: Entropy 15 04392 i030]

	
 [image: Entropy 15 04392 i031]




	
([image: there is no content],[image: there is no content])

	
(0,0)
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5.2. Precomputed Successive Modified Ordinal Patterns


Similar to the definition of the function [image: there is no content] in Equation (5), we introduce here a function [image: there is no content] for determining the successive modified ordinal pattern [image: there is no content] from the given one [image: there is no content] and from the position L of the next point:


N[image: there is no content]τ(t+τ)=[image: there is no content](N[image: there is no content]τ(t),[image: there is no content])



(13)




The position L of the next point [image: there is no content] is defined in a similar way as the entries I[image: there is no content] for modified ordinal patterns, but it is calculated now in relation to the previous points [image: there is no content], not to the following points as in Definition 3. We have the term B coding whether the point [image: there is no content] is equal to any point from [image: there is no content]:


B=1if[image: there is no content]=xt−jτforsomej∈{0,1,…,[image: there is no content]−1}0otherwise



(14)




Then the position L is calculated as


[image: there is no content]=B+2#{r∈{0,1,…,[image: there is no content]−1}∣xt−rτ>[image: there is no content],brτ(t)=0}



(15)




For example, there are [image: there is no content] possible positions of the next point [image: there is no content] among the previous [image: there is no content] points (see Figure 8).


Figure 8. There are [image: there is no content] possible positions of the next point [image: there is no content].
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The successive modified ordinal patterns of order [image: there is no content] are given in Table 7.



Table 7. The successive modified ordinal patterns N2τ(t+τ)=[image: there is no content](N2τ(t),[image: there is no content]).







	

	

	
[image: there is no content]




	
position [image: there is no content]

	

	
0

	
3

	
6

	
9

	
12

	

	
1

	
4

	
7

	

	
2

	
5

	
8

	
11

	
14






	
0

	

	
0

	

	
3

	

	
6




	
1

	

	
1

	

	
4

	

	
9




	
2

	

	
2

	

	
11

	

	
12




	
3

	

	
5

	

	
−

	

	
7




	
4

	

	
8

	

	
−

	

	
14













5.3. How can the Precomputed Table be Obtained?


One obtains the entries of the table by determining for each modified ordinal pattern of order d all possible successive modified ordinal patterns in dependence on the position [image: there is no content]=0,1,…,2[image: there is no content] of the next point.



For example, when using the number representation (12), one obtains the successive modified ordinal patterns [image: there is no content] from the given modified ordinal pattern [image: there is no content] for all [image: there is no content]=0,1,…,2[image: there is no content] by Equation (11). Then the entries of the table are obtained by Equation (12). The precomputed tables of successive modified ordinal patterns of the orders [image: there is no content] are given in the supplementary files “table1Eq.mat”,...,“table6Eq.mat”. The MATLAB code for computing the empirical permutation entropy for modified ordinal patterns is given in Appendix B.3.




5.4. Size of the Precomputed Table


In order to use Equation (13) for the efficient computation of modified ordinal patterns one has to store [image: there is no content] values in the precomputed table, which are [image: there is no content] values for each of position [image: there is no content]=0,1,…,2[image: there is no content] for each of [image: there is no content] numbers (although there are some empty entries, see for details Appendix A.1).



The enumeration (12) also allows to reduce the table size, because one can group modified ordinal patterns of order d according to the same relations between the last d points (see Table 7 for example).




5.5. Efficiency of the Method


Computing the number [image: there is no content] from [image: there is no content] by Equation (13) takes less than [image: there is no content] comparisons and less than [image: there is no content] additions since it involves only the determination of the position L of the next point (see Table 8). One needs d multiplications and [image: there is no content] additions more, when computing successive modified ordinal patterns by Equation (11) without using the precomputed tables.



Table 8. Efficiency of computing the modified ordinal pattern [image: there is no content] from [image: there is no content].
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6. Results


In this section, we compare by an example the efficiency of the proposed method of computing the empirical permutation entropy (see “PE.m” in Appendix B.1 for a realization in MATLAB) with the method introduced in [11] (see “oldPE.m” in Appendix B.2) and with one of the standard methods available in the Internet (see “pec.m” from [28]). We also present the time of computing the empirical permutation entropy for modified ordinal patterns (see “PEeq.m” in Appendix B.3). For estimating the execution time of MATLAB scripts we use the MATLAB function “cputime”. The execution time of the methods are presented for illustration purposes, therefore we consider only one dataset. Note that for other datasets similar results are obtained. For a more reliable justification of the method see Table 4, Table 5 and Table 8.



The methods are compared for a one-channel EEG dataset recorded at a sampling rate of 256 Hz. We consider the orders [image: there is no content], the delay [image: there is no content] and different lengths of a time series. First, by the methods we compute the empirical permutation entropy of only one window (see Table 9) since the script realized by G. Ouyang is not adapted for sliding windows. The execution time is averaged over several runs.



Table 9. Computing the empirical permutation entropy of one window by different methods (seconds).
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We compare now the methods of computing the empirical permutation entropy for a sliding window of 512 samples (2 seconds) for the same EEG dataset in dependence on the orders [image: there is no content] and on the length of a time series (see Table 10). A maximal overlapping between the sliding windows and the delay [image: there is no content] are used. The execution time is averaged over several runs.



Table 10. Computing the empirical permutation entropy of a time series in sliding windows by different methods (seconds).
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7. Conclusions


In this paper, we proposed an efficient method for computing ordinal patterns and computing the empirical permutation entropy. As one can see from Table 9, Table 10, the proposed method is much faster than the known methods. This allows to measure the complexity of very large datasets by the empirical permutation entropy in real-time. The proposed method of efficient computing ordinal patterns can be applied not only to fast computing the empirical permutation entropy, but to fast computing other ordinal-patterns-based characteristics as well. The development of ordinal time series analysis is far from finished. Recently, new ideas, e.g., concepts for quantifying coupling of time series and the systems behind, are considered [26], partially with a higher computational effort than for the permutation entropy. Here, the presented method, with necessary adaptions, could be applied in order to minimize computational costs.








A. Supplementary Materials


A.1. Number Representation of Modified Ordinal Patterns


Let us discuss first why the enumeration of modified ordinal patterns (12) has “gaps”. Consider the modified ordinal pattern [image: there is no content] of some vector [image: there is no content], where the vector (b0τ(t),b1τ(t),…,b[image: there is no content]τ(t)) indicates equalities between the points of the vector as given by Definition 3. Note that the more r<[image: there is no content] with [image: there is no content] are, the less is the range of I[image: there is no content]τ(t):


I[image: there is no content]τ(t)≤2([image: there is no content]−∑r=1[image: there is no content]−1brτ(t))



(16)




That is the more points in [image: there is no content] are equal to any point, the less distinct values are in the vector. When enumerating modified ordinal patterns by Equation (12), we consider all possible combinations of I[image: there is no content]∈{0,1,…,2[image: there is no content]} for [image: there is no content], and, according to Equation (16), some of these combinations do not correspond to any modified ordinal pattern. That is why the enumeration has “gaps”.



We show now that different modified ordinal patterns of order d have different numbers computed by Equation (12). Let us define a set I[image: there is no content] of all vectors (I1,I2,…,I[image: there is no content]) as


I[image: there is no content]={(I1,I2,…,I[image: there is no content])∣I[image: there is no content]∈{0,1,…,2[image: there is no content]}for[image: there is no content]=1,2,…,[image: there is no content]}












Proposition 1. 

For each [image: there is no content]∈N, the assignment


(I1,I2,…,I[image: there is no content])↦N[image: there is no content]((I1,I2,…,I[image: there is no content])),








where N[image: there is no content]((I1,I2,…,I[image: there is no content]))is computed by Equation (12), defines a bijection from the set I[image: there is no content]onto [image: there is no content].








Proof. 

Note that [image: there is no content]. Then by Equation (12) for all [image: there is no content]≥2 one has the recursion


N[image: there is no content]((I[image: there is no content])[image: there is no content]=1[image: there is no content])=N[image: there is no content]((I[image: there is no content])[image: there is no content]=1[image: there is no content])+(2[image: there is no content]−1)!!I[image: there is no content]








which by induction on d provides different N[image: there is no content]((I[image: there is no content])[image: there is no content]=1[image: there is no content]) for different (I1,I2,…,I[image: there is no content]). ☐







Note again that not all vectors from the set I[image: there is no content] are modified ordinal patterns according to Equation (16), but all modified ordinal pattern of order d have different numbers computed by Equation (12).




A.2. The Amount of Modified Ordinal Patterns


One can see from Equation (16) that there are less than [image: there is no content] modified ordinal patterns due to “gaps” in the enumeration. In order to find the actual amount of modified ordinal patterns observe that modified ordinal patterns of order d can be represented as Cayley permutations of a set {0,1,⋯,[image: there is no content]} (see for details [29]).




Definition 4. 

A Cayley permutation of length d is a permutation p of d elements with possible repetitions from a set {[image: there is no content],[image: there is no content],…,x[image: there is no content]} of d elements with an order relation, subject to the condition that if an element [image: there is no content] appears in p, then all elements [image: there is no content] also appear in p.







The number of Cayley permutations is counted by the known ordered Bell numbers [29]. Therefore the amount of modified ordinal patterns of order d is computed by the [image: there is no content]-th ordered Bell number B([image: there is no content]+1) in the following way:


B[image: there is no content]=∑k=0[image: there is no content]∑j=0k(−1)k−jk!j!(k−j)!j[image: there is no content]



(17)







We present in Table A1 the amounts of modified ordinal patterns of orders [image: there is no content]=1,2,…,7, which are computed by Equation (17).



Table A1. The amount of modified ordinal patterns.
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B. MATLAB Scripts


B.1. Computing the Empirical Permutation Entropy by the New Method


 [image: Entropy 15 04392 i032]
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B.2. Computing the Empirical Permutation Entropy by the Old Method
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B.3. Computing the Empirical Permutation Entropy for Modified Ordinal Patterns
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. PE.m

% x — time series , Tau — delay 7, d — order of ordinal patterns d,
9 WS — size M of a sliding window

% e¢ePE — values of the empirical permutation entropy

function ePE = PE(x, Tau, d, WS)

load ([ "table’” mum2str(d) *.mat’]);% the precomputed table

pTbl = eval ([ "table’ num2str(d)]);

Length = numel(x); % length of the time series
dl = d+1;
dTau = dxTau;
nPat = factorial (dl); % amount of ordinal patterns of order d
opd = zeros(1l, nPat); % distribution of ordinal patterns
ePE = zeros (1, Length); % empirical permutation entropy
op = zeros(1l, d); % ordinal pattern (i1,i9,...,1q)
prevOP = zeros (1, Tau); % previous ordinal patterns for 1:7
opW = zeros (1, WS); % ordinal patterns in the window
ancNum = nPat./ factorial (2:d1); % ancillary numbers
peTbl (1:WS) = —(1:WS) .xlog (1:WS); % table of values g(j)
peTbl (2:WS) = (peTbl (2:WS)—peTbl (1:WS—1)) ./WS;
for iTau = 1:Tau

cnt = 1Tau;

op(l) = (x(dTau+iTau—Tau) >= x(dTau+i1Tau));

for j = 2:d

op(j) = sum(x((d—j)*Tau+1Tau) >= x((dl—j)*xTau+iTau:Tau:dTau+i1iTau));
end
opW(cnt) = sum(op.*ancNum) ; % the first ordinal pattern
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opd(opW(cnt)+1) = opd(opW(cnt)+1)+1;

for j = dTau+Tau+iTau:Tau:WS+dTau % loop for the first window
cnt = cnt+Tau;
posL. = 1; % the position [ of the next point

for 1 = j—dTau:Tau:j—Tau
if (x(i) >= x(j))
posl. = posL+1;
end
end
opW(cnt) = pTbl(opW(cnt—Tau)*xdIl+posL);
opd(opW(cnt)+1) = opd(opW(cnt)+1)+1;

end
prevOP(iTau) = opW(cnt) ;
end
ordDistNorm = opd/WS;
ePE (WS+Tauxd) = —nansum (ordDistNorm (1:nPat).xlog (ordDistNorm (1:nPat)));
iTau = 1; % current shift 1:7
iPat = 1; % position of the current pattern in the window

for t = WS+Tauxd+1:Length % loop over all points

posL = 1; % the position [ of the next point
for j = t—dTau:Tau:t—Tau

if (x(j) >= x(t))

posl. = posL+1;

end
end
nNew = pTbl(prevOP(iTau)*dl+posL); % "incoming” ordinal pattern
nOut
prevOP(i1Tau) = nNew;
opW(1Pat) = nNew;
nNew = nNew+1;
nOut = nOut+1;
if nNew "= nOut % update the distribution of ordinal patterns

opW(iPat) ; % “outcoming” ordinal pattern

opd(nNew) = opd(nNew)+1; % “incoming” ordinal pattern
opd (nOut) = opd(nOut)—1; % "outcoming” ordinal pattern

ePE(t) = ePE(t—1)+(peTbl(opd(nNew) )—peTbl(opd(nOut)+1));
else

ePE(t) = ePE(t—1);
end
iTau = 1Tau+1;

iPat = 1Pat+1;
if (iTau > Tau) 1Tau = 1; end
if (iPat > WS) iPat = 1; end
end
ePE = ePE(WS+Tauxd:end) ;
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. oldPE.m

% x — time series , Tau — delay 7, d — order of ordinal patterns d,
%9 WS — size M of a sliding window,
% e¢ePE — values of the empirical permutation entropy

% function i1s realized by the method proposed in Keller, K.; Emonds, J.; Sinn, M.
% Time series from the ordinal viewpoint. Stoch. Dynam. 2007, 2, 247 -272.
function ePE = oldPE(x, Tau, d, WS)

Length = numel(x); % length of the time series
dl = d+1;
dTau = dxTau;
nPat = factorial (dl); % amount of ordinal patterns of order d
opd = zeros(1l, nPat); % distribution of ordinal patterns
ePE = zeros (1, Length); % empirical permutation entropy
op = zeros(Tau, d); % ordinal pattern (i1,%9,...,1q)
opW = zeros (1, WS); % ordinal patterns in the window
ancNum = nPat./ factorial (2:d1); % ancillary numbers
for iTau = 1:Tau % loop for the first window
cnt = 1Tau;
op(iTau, 1) = (x(dTau+iTau—Tau) >= x(dTau+iTau));
for k = 2:d
op(iTau, k) = sum(x((d—k)*xTau+iTau) >= x((dl—k)*Tau+i1Tau:Tau:dTau+1Tau));
end
opW(cnt) = sum(op(iTau, :).xancNum)+1; % the first ordinal pattern

opd(opW(cnt)) = opd(opW(cnt))+1;
for t = dTau+Tau+iTau: Tau:WS+dTau % loop for the next ord. patterns
op(iTau, 2:d) = op(iTau, 1:d—1);
op(iTau, 1) = (x(t—Tau) >= x(t));
for j = 2:d
if (x(t—jxTau) >= x(t))
op(iTau, j) = op(iTau, j)+1;

end

end

opNumber = sum(op(iTau, :).xancNum)+1;

opd (opNumber) = opd(opNumber) +1;

cnt = cnt+Tau;

opW(cnt) = opNumber; % the next ordinal pattern

end

end
ordDistNorm = opd/WS;
ePE (WS+Tauxd) = —nansum (ordDistNorm (1: nPat).xlog (ordDistNorm (1:nPat)));
iTau = 1; % current shift 1:7
iPat = 1; % current pattern in the window
for t = WS+dTau+1:Length % loop for all time—series

op(iTau, 2:d) = op(iTau, 1:d—1);
op(iTau, 1) = (x(t—Tau) >= x(t));
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for j = 2:d
if(x(t—jxTau) >= x(t))
op(iTau, j) = op(iTau, j)+1;

end
end
nNew = sum(op(iTau, :).xancNum)+1; % “incoming” ordinal pattern n
nOut = opW(1Pat); % ”outcoming” ordinal pattern
opW(1Pat) = nNew;
if nNew "= nOut % update the distribution
opd(nNew) = opd(nNew) +1; % “incoming” ordinal pattern
opd(nOut) = opd(nQOut) —1; % “outcoming” ordinal pattern
ordDistNorm = opd/WS;
ePE(t) = —nansum (ordDistNorm (1: nPat).xlog(ordDistNorm (1:nPat)));
else
ePE(t) = ePE(t—1);
end

iTau = 1Tau+1;
iPat = 1Pat+1;
if (1iTau > Tau) iTau = 1; end
if (iPat > WS) iPat = 1; end
end
ePE = ePE(WS+Tauxd:end) ;






media/file34.png





media/file21.png





